Fall 2012: Schedule: CIS 8603 Artificial Intelligence

Dr. Longin Jan Latecki  

 Topics (AI applications in green)

  1. 08/27: Intro to AI (IntroAI.ppt), Robot Perception, DARPA Grand Challenge 2005 by Sebastian Thrun,

  2. 09/10: Perception lecture by David J. Heeger, Intro to Computer Vision, Filters and Edges  

  3. 09/17, 24: States and Searching, Robot Path Planning (A* Example)

  4. 10/01: Agent Architectures and Hierarchical Control

  5. 10/01: Intro to Machine Learning

  6. 10/08: Naive Bayes Classifier

  7. 10/08: Nearest Neighbor Classifier

  8. 10/15: Semi-Supervised Learning and Image Classification

  9. 10/22: Random Walk and SSL, and Image Retrieval

  10. 10/29: Hurricane Sandy

  11. 11/05: PageRank and Markov Process

  12. 11/12: Matching with Hungarian Algorithm

  13. 11/12: Maximum Weight Subgraph for Matching and Object Detection, Relevant Subgraph

  14. 11/19: Clustering and Image Segmentation

  15. 11/26: Principal Component Analysis and Face Recognition

  16. 11/26: Decision Trees

  17. 12/03: Perceptron with SVM introduction

  18. 12/10: Final Exam 5:30-7:30 pm

  19. SVM and Image Classification

  20. Kernel Methods (KernelMethods.pdf)

  21. Parameter Estimation (ParameterEstimation.pdf)

  22. Ensemble Learning (Ensemble_Learning.ppt)

  23. Nonlinear Dimensionality Reduction

  24. Markov Random Fields and Stereo Matching and Image Segmentation

  25. Markov Chains from Virtual Laboratories in Probability and Statistics:
    Introduction,  Recurrence and Transience, Periodicity, Invariant and Limiting Distributions,
    Time Reversal, Random Walks on Graphs

  26. Reinforcement Learning: Markov Decision Processes

  27. Probability in AI,  Probabilistic Inference

  28. Features and Constraints

  29. Feature selection (FSIntroguyon03a.pdf)

 

Project Assignments

  1. A* Shortest path due on Sep. 26, Project1 description, code, evaluation, winners ppt, winning Alg.

  2. Semi-Supervised learning due on Nov. 7, Project2 description, evaluation, winning Alg., winners ppt

  3. Point matching due on Nov. 29, Project3 description, code, evaluation, winning Alg

  4. Clustering

 

Further Topics in AI

  1. Computer Vision 1. (VisOverView.pdf)

  2. Computer Vision 2. (MultiView3D.pdf)

  3. Matrix Algebra (GreatMatrixIntro.pdf)

Web resources and books:

David Poole and Alan Mackworth, Artificial Intelligence. Foundations of Computational Agents. Cambridge University Press 2010 website

Stephen Marsland, Machine Learning: An Algorithmic Perspective.  CRC 2009

Stanford online course http://www.ai-class.com/

Some slides are based on following courses:

http://www.cs.utah.edu/~piyush/teaching/cs5350.html

http://www.cs.colorado.edu/~grudic/teaching/CSCI3202_2007/index.html