Markov Chains: An Introduction/Review

David Sirl
dsirl@maths.uq.edu.au
http://www.maths.uq.edu.au/~dsirl/

The University
Of Queensland
A USTRALIA

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics and Statistics of Complex Systems

Modified and shortened by Longin Jan Latecki latecki@temple.edu

Andrei A. Markov (1856 - 1922)

Random Processes

A random process is a collection of random variables indexed by some set I, taking values in some set S.

- I is the index set, usually time, e.g. $\mathbb{Z}^{+}, \mathbb{R}, \mathbb{R}^{+}$.
- S is the state space, e.g. $\mathbb{Z}^{+}, \mathbb{R}^{n},\{1,2, \ldots, n\},\{a, b, c\}$.

We classify random processes according to both the index set (discrete or continuous) and the state space (finite, countable or uncountable/continuous).

Markov Processes

- A random process is called a Markov Process if, conditional on the current state of the process, its future is independent of its past.
- More formally, $X(t)$ is Markovian if has the following property:

$$
\begin{aligned}
& \mathbb{P}\left(X\left(t_{n}\right)=j_{n} \mid X\left(t_{n-1}\right)=j_{n-1}, \ldots, X\left(t_{1}\right)=j_{1}\right) \\
= & \mathbb{P}\left(X\left(t_{n}\right)=j_{n} \mid X\left(t_{n-1}\right)=j_{n-1}\right)
\end{aligned}
$$

for all finite sequences of times $t_{1}<\ldots<t_{n} \in I$ and of states $j_{1}, \ldots, j_{n} \in S$.

Time Homogeneity

A Markov chain $(X(t))$ is said to be time-homogeneous if

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)
$$

is independent of s. When this holds, putting $s=0$ gives

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)=\mathbb{P}(X(t)=j \mid X(0)=i) .
$$

Time Homogeneity

A Markov chain $(X(t))$ is said to be time-homogeneous if

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)
$$

is independent of s. When this holds, putting $s=0$ gives

$$
\mathbb{P}(X(s+t)=j \mid X(s)=i)=\mathbb{P}(X(t)=j \mid X(0)=i) .
$$

Probabilities depend on elapsed time, not absolute time.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.
- We write the one-step transition matrix $P=\left(p_{i j}, i, j \in S\right)$.

Discrete-time Markov chains

- At time epochs $n=1,2,3, \ldots$ the process changes from one state i to another state j with probability $p_{i j}$.
- We write the one-step transition matrix $P=\left(p_{i j}, i, j \in S\right)$.
- Example: a frog hopping on 3 rocks. Put $S=\{1,2,3\}$.

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

DTMC example

- Example: A frog hopping on 3 rocks. Put $S=\{1,2,3\}$.

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

- We can gain some insight by drawing a picture:

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j} .
\end{aligned}
$$

- So $P^{(2)}=P P=P^{2}$.

DTMCs: n-step probabilities

- We have P, which tells us what happens over one time step; lets work out what happens over two time steps:

$$
\begin{aligned}
p_{i j}^{(2)} & =\mathbb{P}\left(X_{2}=j \mid X_{0}=i\right) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}\left(X_{2}=j \mid X_{1}=k, X_{0}=i\right) \\
& =\sum_{k \in S} p_{i k} p_{k j} .
\end{aligned}
$$

- So $P^{(2)}=P P=P^{2}$.
- Similarly, $P^{(3)}=P^{2} P=P^{3}$ and $P^{(n)}=P^{n}$.

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.
- We can then calculate the state probabilities
$\pi^{(n)}=\left(\pi_{j}^{(n)}, j \in S\right)$ of being in state j at time n as follows:

DTMC: Arbitrary initial distributions

- We may wish to start the chain according to some initial distribution $\pi^{(0)}$.
- We can then calculate the state probabilities
$\pi^{(n)}=\left(\pi_{j}^{(n)}, j \in S\right)$ of being in state j at time n as follows:

$$
\begin{aligned}
\pi_{j}^{(n)} & =\sum_{k \in S} \mathbb{P}\left(X_{0}=k\right) \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right) \\
& =\sum_{k \in S} \pi_{j}^{(0)} p_{i j}^{(n)}
\end{aligned}
$$

- Or, in matrix notation, $\pi^{(n)}=\pi^{(0)} P^{n}$; similarly we can show that $\pi^{(n+1)}=\pi^{(n)} P$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.
- We call the state space irreducible if it consists of a single communicating class.

Class structure

- We say that a state i leads to j (written $i \rightarrow j$) if it is possible to get from i to j in some finite number of jumps: $p_{i j}^{(n)}>0$ for some $n \geq 0$.
- We say that i communicates with j (written $i \leftrightarrow j$) if $i \rightarrow j$ and $j \rightarrow i$.
- The relation \leftrightarrow partitions the state space into communicating classes.
- We call the state space irreducible if it consists of a single communicating class.
- These properties are easy to determine from a transition probability graph.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.
- Recurrence and transience are class properties; i.e. if two states are in the same communicating class then they are recurrent/transient together.
- We therefore speak of recurrent or transient classes

Classification of states

- We call a state i recurrent or transient according as $\mathbb{P}\left(X_{n}=i\right.$ for infinitely many $\left.n\right)$ is equal to one or zero.
- A recurrent state is a state to which the process always returns.
- A transient state is a state which the process eventually leaves for ever.
- Recurrence and transience are class properties; i.e. if two states are in the same communicating class then they are recurrent/transient together.
- We therefore speak of recurrent or transient classes
- We also assume throughout that no states are periodic.

DTMCs: Two examples

- S irreducible:

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

- $S=\{0\} \cup C$, where C is a transient class:

DTMCs: Quantities of interest

Quantities of interest include:

- Hitting probabilities.
- Expected hitting times.
- Limiting (stationary) distributions.
- Limiting conditional (quasistationary) distributions.

DTMCs: Hitting probabilities

Let α_{i} be the probability of hitting state 1 starting in state i.

- Clearly $\alpha_{1}=1$; and for $i \neq 1$,

$$
\begin{aligned}
\alpha_{i} & =\mathbb{P}(\text { hit } 1 \mid \text { start in } i) \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}(\text { hit } 1 \mid \text { start in } k) \\
& =\sum_{k \in S} p_{i k} \alpha_{k}
\end{aligned}
$$

DTMCs: Hitting probabilities

Let α_{i} be the probability of hitting state 1 starting in state i.

- Clearly $\alpha_{1}=1$; and for $i \neq 1$,

$$
\begin{aligned}
\alpha_{i} & =\mathbb{P}(\text { hit } 1 \mid \text { start in } i)=\sum_{k} P\left(\text { hit }\left\{, X_{j}=k\right\} X_{\sigma}=i\right)= \\
& =\sum_{k \in S} \mathbb{P}\left(X_{1}=k \mid X_{0}=i\right) \mathbb{P}(\text { hit } 1 \mid \underbrace{\text { start in } k}_{X_{1}}) \\
& =\sum_{k \in S} p_{i k} \alpha_{k} \\
& \propto=P_{\infty}, \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)^{\top}
\end{aligned}
$$

- Sometimes there may be more than one solution $\alpha=\left(\alpha_{i}, i \in S\right)$ to this system of equations.
If this is the case, then the hitting probabilites are given by the minimal such solution.

Example: Hitting Probabilities

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Let α_{i} be the probability of hitting state 3 starting in state i.
So $\alpha_{3}=1$ and $\alpha_{i}=\sum_{k} p_{i k} \alpha_{k}$:

$$
\begin{aligned}
& \alpha_{0}=\alpha_{0} \\
& \alpha_{1}=\frac{1}{2} \alpha_{0}+\frac{1}{4} \alpha_{2}+\frac{1}{4} \alpha_{3} \\
& \alpha_{2}=\frac{5}{8} \alpha_{1}+\frac{1}{8} \alpha_{2}+\frac{1}{4} \alpha_{3}
\end{aligned}
$$

Example: Hitting Probabilities

Let α_{i} be the probability of hitting state 3 starting in state i.

$$
\alpha=\left(\begin{array}{c}
0 \\
\frac{9}{23} \\
\frac{13}{23} \\
1
\end{array}\right) \approx\left(\begin{array}{c}
0 \\
0.39 \\
0.57 \\
1
\end{array}\right) .
$$

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

- This limiting distribution does not depend on the initial distribution.

DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and recurrent.

- What happens to the state probabilities $\pi_{j}^{(n)}$ as $n \rightarrow \infty$?
- We know that $\pi^{(n+1)}=\pi^{(n)} P$.
- So if there is a limiting distribution π, it must satisfy

$$
\pi=\pi P \quad\left(\text { and } \sum_{i} \pi_{i}=1\right) .
$$

(Such a distribution is called stationary.)

- This limiting distribution does not depend on the initial distribution.
- When the state space is infinite, it may happen that $\pi_{j}^{(n)} \rightarrow 0$ for all j.

Example: The Limiting Distribution

$$
P=\left(\begin{array}{ccc}
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Substituting P into $\pi=\pi P$ gives

$$
\begin{aligned}
& \pi_{1}=\frac{5}{8} \pi_{2}+\frac{2}{3} \pi_{3} \\
& \pi_{2}=\frac{1}{2} \pi_{1}+\frac{1}{8} \pi_{2}+\frac{1}{3} \pi_{3} \\
& \pi_{3}=\frac{1}{2} \pi_{1}+\frac{1}{4} \pi_{2}
\end{aligned}
$$

which together with $\sum_{i} \pi_{i}=1$ yields

$$
\pi=\left(\begin{array}{lll}
\frac{38}{97} & \frac{32}{97} & \frac{27}{97}
\end{array}\right) \approx(0.390 .330 .28)
$$

DTMCs: The Limiting Conditional Dist'n

Assume that the state space is consists of an absorbing state and a transient class ($S=\{0\} \cup C$).

- The limiting distribution is $(1,0,0, \ldots)$.

DTMCs: The Limiting Conditional Dist'n

Assume that the state space is consists of an absorbing state and a transient class ($S=\{0\} \cup C$).

- The limiting distribution is $(1,0,0, \ldots)$.
- Instead of looking at the limiting behaviour of

$$
\mathbb{P}\left(X_{n}=j \mid X_{0}=i\right)=p_{i j}^{(n)},
$$

we need to look at

$$
\mathbb{P}\left(X_{n}=j \mid X_{n} \neq 0, X_{0}=i\right)=\frac{p_{i j}^{(n)}}{1-p_{i 0}^{(n)}}
$$

for $i, j \in C$.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

- If C is a finite set, there is a unique such r.

DTMCs: The Limiting Conditional Dist'n

- It turns out we need a solution $m=\left(m_{i}, i \in C\right)$ of

$$
m P_{C}=r m,
$$

for some $r \in(0,1)$.

- If C is a finite set, there is a unique such r.
- If C is infinite, there is $r^{*} \in(0,1)$ such that all r in the interval $\left[r^{*}, 1\right)$ are admissible; and the solution corresponding to $r=r^{*}$ is the LCD.

Example: Limiting Conditional Dist'n

$$
P=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 0 & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
0 & \frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Example: Limiting Conditional Dist'n

$$
P_{C}=\left(\begin{array}{lll}
0 & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Example: Limiting Conditional Dist'n

$$
P_{C}=\left(\begin{array}{ccc}
0 & \frac{1}{4} & \frac{1}{4} \\
\frac{5}{8} & \frac{1}{8} & \frac{1}{4} \\
\frac{2}{3} & \frac{1}{3} & 0
\end{array}\right)
$$

Solving $m P_{C}=r m$, we get

$$
r_{1} \approx 0.773 \quad \text { and } \quad m \approx(0.45,0.30,0.24)
$$

DTMCs: Summary

From the one-step transition probabilities we can calculate:

- n-step transition probabilities,
- hitting probabilities,
- expected hitting times,,\nless
- limiting distributions, and
- limiting conditional distributions.

