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Andrei A. Markov (1856 – 1922)
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Random Processes

A random process is a collection of random variables
indexed by some set I, taking values in some set S.

I is the index set, usually time, e.g. Z
+, R, R

+.

S is the state space, e.g. Z
+, R

n, {1, 2, . . . , n}, {a, b, c}.

We classify random processes according to both the index
set (discrete or continuous) and the state space (finite,
countable or uncountable/continuous).
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Markov Processes

A random process is called a Markov Process if,
conditional on the current state of the process, its future
is independent of its past.

More formally, X(t) is Markovian if has the following
property:

P(X(tn) = jn |X(tn−1) = jn−1 , . . . , X(t1) = j1)

= P(X(tn) = jn |X(tn−1) = jn−1)

for all finite sequences of times t1 < . . . < tn ∈ I and of
states j1, . . . , jn ∈ S.
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Time Homogeneity

A Markov chain (X(t)) is said to be time-homogeneous if

P(X(s + t) = j |X(s) = i)

is independent of s. When this holds, putting s = 0 gives

P(X(s + t) = j |X(s) = i) = P(X(t) = j |X(0) = i).
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Time Homogeneity

A Markov chain (X(t)) is said to be time-homogeneous if

P(X(s + t) = j |X(s) = i)

is independent of s. When this holds, putting s = 0 gives

P(X(s + t) = j |X(s) = i) = P(X(t) = j |X(0) = i).

Probabilities depend on elapsed time, not absolute time.
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.

We write the one-step transition matrix
P = (pij, i, j ∈ S).
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Discrete-time Markov chains

At time epochs n = 1, 2, 3, . . . the process changes from
one state i to another state j with probability pij.

We write the one-step transition matrix
P = (pij, i, j ∈ S).

Example: a frog hopping on 3 rocks. Put S = {1, 2, 3}.

P =
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DTMC example

Example: A frog hopping on 3 rocks. Put S = {1, 2, 3}.

P =
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We can gain some insight by drawing a picture:
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DTMCs: n-step probabilities

We have P , which tells us what happens over one time
step; lets work out what happens over two time steps:

p
(2)
ij = P(X2 = j |X0 = i)

=
∑

k∈S

P(X1 = k |X0 = i) P(X2 = j |X1 = k , X0 = i)

=
∑

k∈S

pikpkj.
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DTMCs: n-step probabilities

We have P , which tells us what happens over one time
step; lets work out what happens over two time steps:

p
(2)
ij = P(X2 = j |X0 = i)

=
∑

k∈S

P(X1 = k |X0 = i) P(X2 = j |X1 = k , X0 = i)

=
∑

k∈S

pikpkj.

So P (2) = PP = P 2.
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DTMCs: n-step probabilities

We have P , which tells us what happens over one time
step; lets work out what happens over two time steps:

p
(2)
ij = P(X2 = j |X0 = i)

=
∑

k∈S

P(X1 = k |X0 = i) P(X2 = j |X1 = k , X0 = i)

=
∑

k∈S

pikpkj.

So P (2) = PP = P 2.

Similarly, P (3) = P 2P = P 3 and P (n) = Pn.
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).

We can then calculate the state probabilities

π(n) = (π
(n)
j , j ∈ S) of being in state j at time n as

follows:

π
(n)
j =

∑

k∈S

P(X0 = k) P(Xn = j |X0 = k)

=
∑

k∈S

π
(0)
j p

(n)
ij .
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DTMC: Arbitrary initial distributions

We may wish to start the chain according to some initial
distribution π(0).

We can then calculate the state probabilities

π(n) = (π
(n)
j , j ∈ S) of being in state j at time n as

follows:

π
(n)
j =

∑

k∈S

P(X0 = k) P(Xn = j |X0 = k)

=
∑

k∈S

π
(0)
j p

(n)
ij .

Or, in matrix notation, π(n) = π(0)Pn; similarly we can
show that π(n+1) = π(n)P .
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.
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Class structure
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possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.
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Class structure

We say that a state i leads to j (written i → j) if it is
possible to get from i to j in some finite number of

jumps: p
(n)
ij > 0 for some n ≥ 0.

We say that i communicates with j (written i ↔ j) if
i → j and j → i.

The relation ↔ partitions the state space into
communicating classes.

We call the state space irreducible if it consists of a
single communicating class.

These properties are easy to determine from a
transition probability graph.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.

Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then
they are recurrent/transient together.

We therefore speak of recurrent or transient classes
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Classification of states

We call a state i recurrent or transient according as
P(Xn = i for infinitely many n) is equal to one or zero.

A recurrent state is a state to which the process
always returns.
A transient state is a state which the process
eventually leaves for ever.

Recurrence and transience are class properties; i.e. if
two states are in the same communicating class then
they are recurrent/transient together.

We therefore speak of recurrent or transient classes

We also assume throughout that no states are periodic.
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DTMCs: Two examples

S irreducible:
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S = {0} ∪ C, where C is a transient class:
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DTMCs: Quantities of interest

Quantities of interest include:

Hitting probabilities.

Expected hitting times.

Limiting (stationary) distributions.

Limiting conditional (quasistationary) distributions.
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DTMCs: Hitting probabilities

Let αi be the probability of hitting state 1 starting in state i.

Clearly α1 = 1; and for i 6= 1,

αi = P(hit 1 | start in i)

=
∑

k∈S

P(X1 = k |X0 = i) P(hit 1 | start in k)

=
∑

k∈S

pikαk

Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 14



DTMCs: Hitting probabilities

Let αi be the probability of hitting state 1 starting in state i.

Clearly α1 = 1; and for i 6= 1,

αi = P(hit 1 | start in i)

=
∑

k∈S

P(X1 = k |X0 = i) P(hit 1 | start in k)

=
∑

k∈S

pikαk

Sometimes there may be more than one solution
α = (αi, i ∈ S) to this system of equations.

If this is the case, then the hitting probabilites are given
by the minimal such solution.
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Example: Hitting Probabilities
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Let αi be the probability of hitting state 3 starting in state i.

So α3 = 1 and αi =
∑

k pikαk:

α0 = α0

α1 = 1
2α0 + 1

4α2 + 1
4α3

α2 = 5
8α1 + 1

8α2 + 1
4α3
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Example: Hitting Probabilities
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Let αi be the probability of hitting state 3 starting in state i.

α =











0
9
23
13
23

1











≈











0

0.39

0.57

1











.
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)

This limiting distribution does not depend on the initial
distribution.
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DTMCs: The Limiting Distribution

Assume that the state space is irreducible, aperiodic and
recurrent.

What happens to the state probabilities π
(n)
j as n → ∞?

We know that π(n+1) = π(n)P .

So if there is a limiting distribution π, it must satisfy

π = πP (and
∑

i πi = 1).

(Such a distribution is called stationary.)

This limiting distribution does not depend on the initial
distribution.

When the state space is infinite, it may happen that

π
(n)
j → 0 for all j.
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Example: The Limiting Distribution
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P =
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Substituting P into π = πP gives

π1 = 5
8π2 + 2

3π3,

π2 = 1
2π1 + 1

8π2 + 1
3π3,

π3 = 1
2π1 + 1

4π2,

which together with
∑

i πi = 1 yields

π =
(

38
97

32
97

27
97

)

≈
(

0.39 0.33 0.28
)

.
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DTMCs: The Limiting Conditional Dist’n

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} ∪ C).

The limiting distribution is (1, 0, 0, . . .).
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DTMCs: The Limiting Conditional Dist’n

Assume that the state space is consists of an absorbing
state and a transient class (S = {0} ∪ C).

The limiting distribution is (1, 0, 0, . . .).

Instead of looking at the limiting behaviour of

P(Xn = j |X0 = i) = p
(n)
ij ,

we need to look at

P(Xn = j |Xn 6= 0 , X0 = i) =
p
(n)
ij

1 − p
(n)
i0

for i, j ∈ C.
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).

If C is a finite set, there is a unique such r.
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DTMCs: The Limiting Conditional Dist’n

It turns out we need a solution m = (mi, i ∈ C) of

mPC = rm,

for some r ∈ (0, 1).

If C is a finite set, there is a unique such r.

If C is infinite, there is r∗ ∈ (0, 1) such that all r in the
interval [r∗, 1) are admissible; and the solution
corresponding to r = r∗ is the LCD.
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Example: Limiting Conditional Dist’n

0 1 2

3

5/81/2

1/4

2/3 1/4

1/3

1/8

1/4

P =











1 0 0 0
1
2 0 1

4
1
4

0 5
8

1
8

1
4

0 2
3

1
3 0











Markov Chains: An Introduction/Review — MASCOS Workshop on Markov Chains, April 2005 – p. 25



Example: Limiting Conditional Dist’n
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Example: Limiting Conditional Dist’n
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Solving mPC = rm, we get

r1 ≈ 0.773 and m ≈ (0.45, 0.30, 0.24)
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DTMCs: Summary

From the one-step transition probabilities we can calculate:

n-step transition probabilities,

hitting probabilities,

expected hitting times,

limiting distributions, and

limiting conditional distributions.
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