Kernel Methods and Nonlinear Classification

Piyush Rai
CS5350/6350: Machine Learning

September 15, 2011

(CS5350/6350) Kernel Methods September 15, 2011 1/16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

@ Kernels: Make linear models work in nonlinear settings

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

@ Kernels: Make linear models work in nonlinear settings
@ By mapping data to higher dimensions where it exhibits linear patterns

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

@ Kernels: Make linear models work in nonlinear settings

@ By mapping data to higher dimensions where it exhibits linear patterns
@ Apply the linear model in the new input space

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

@ Kernels: Make linear models work in nonlinear settings

@ By mapping data to higher dimensions where it exhibits linear patterns
@ Apply the linear model in the new input space
o Mapping = changing the feature representation

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

@ Kernels: Make linear models work in nonlinear settings

@ By mapping data to higher dimensions where it exhibits linear patterns
@ Apply the linear model in the new input space
o Mapping = changing the feature representation

@ Note: Such mappings can be expensive to compute in general

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Kernel Methods: Motivation

@ Often we want to capture nonlinear patterns in the data

@ Nonlinear Regression: Input-output relationship may not be linear
@ Nonlinear Classification: Classes may not be separable by a linear boundary

@ Linear models (e.g., linear regression, linear SVM) are not just rich enough

[

Kernels: Make linear models work in nonlinear settings
@ By mapping data to higher dimensions where it exhibits linear patterns
@ Apply the linear model in the new input space
o Mapping = changing the feature representation

©

Note: Such mappings can be expensive to compute in general
@ Kernels give such mappings for (almost) free

@ In most cases, the mappings need not be even computed
9 .. using the Kernel Trick!

(CS5350/6350) Kernel Methods September 15, 2011 2 /16

Classifying non-linearly separable data

@ Consider this binary classification problem

S S5 S S8 66000 o EEEEEE X

@ Each example represented by a single feature x
@ No linear separator exists for this data

(CS5350/6350) Kernel Methods September 15, 2011 3/16

Classifying non-linearly separable data

@ Consider this binary classification problem

S S5 S S8 66000 o EEEEEE X

@ Each example represented by a single feature x
@ No linear separator exists for this data

@ Now map each example as x — {x, x?}

@ Each example now has two features (“derived” from the old representation)

(CS5350/6350) Kernel Methods September 15, 2011 3/16

Classifying non-linearly separable data

@ Consider this binary classification problem
—SES888 0666 e EEEEEE X
@ Each example represented by a single feature x
@ No linear separator exists for this data

@ Now map each example as x — {x, x?}
@ Each example now has two features (“derived” from the old representation)

@ Data now becomes linearly separable in the new representation

(CS5350/6350) Kernel Methods September 15, 2011 3/16

Classifying non-linearly separable data

@ Consider this binary classification problem

—SES888 0666 e EEEEEE X
@ Each example represented by a single feature x
@ No linear separator exists for this data

@ Now map each example as x — {x, x?}
@ Each example now has two features (“derived” from the old representation)

@ Data now becomes linearly separable in the new representation

@ Linear in the new representation = nonlinear in the old representation

—I—I—I—I—I—@I—I—I—I—I—I—x

(CS5350/6350) Kernel Methods September 15, 2011 3/16

Classifying non-linearly separable data

@ Let's look at another example:

o Each example defined by a two features x = {x1,x2}
@ No linear separator exists for this data

(CS5350/6350) Kernel Methods September 15, 2011 4/16

Classifying non-linearly separable data

@ Let's look at another example:

o Each example defined by a two features x = {x1,x2}
@ No linear separator exists for this data
@ Now map each example as x = {x1, x2} — z = {x%, V2x1x2, X3}
o Each example now has three features (“derived” from the old representation)

(CS5350/6350) Kernel Methods September 15, 2011 4/16

Classifying non-linearly separable data

@ Let's look at another example:

o Each example defined by a two features x = {x1,x2}

@ No linear separator exists for this data
@ Now map each example as x = {x1, x2} — z = {x%, V2x1x2, X3}

o Each example now has three features (“derived” from the old representation)
@ Data now becomes linearly separable in the new representation

(CS5350/6350) Kernel Methods September 15, 2011 4/16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}

: 2 2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}

: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}

: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}

: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

@ Computing the mapping itself can be inefficient in such cases

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}
: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

@ Computing the mapping itself can be inefficient in such cases

o Moreover, using the mapped representation could be inefficient too

9 e.g., imagine computing the similarity between two examples: ¢(x) " ¢(z)

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}

: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

@ Computing the mapping itself can be inefficient in such cases

o Moreover, using the mapped representation could be inefficient too

9 e.g., imagine computing the similarity between two examples: ¢(x) " ¢(z)

@ Thankfully, Kernels help us avoid both these issues!

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}
: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

@ Computing the mapping itself can be inefficient in such cases

o Moreover, using the mapped representation could be inefficient too

9 e.g., imagine computing the similarity between two examples: ¢(x) " ¢(z)

@ Thankfully, Kernels help us avoid both these issues!

@ The mapping doesn’t have to be explicitly computed

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Feature Mapping

@ Consider the following mapping ¢ for an example x = {x1,...,xp}
: 2 .2 2
DX = X X5, XDy XIX2, XIX2, ey XIXDy e e e ,XD—1XD }
@ It's an example of a quadratic mapping

@ Each new feature uses a pair of the original features

@ Problem: Mapping usually leads to the number of features blow up!

@ Computing the mapping itself can be inefficient in such cases

o Moreover, using the mapped representation could be inefficient too
9 e.g., imagine computing the similarity between two examples: ¢(x) " ¢(z)
@ Thankfully, Kernels help us avoid both these issues!

@ The mapping doesn’t have to be explicitly computed

o Computations with the mapped features remain efficient

(CS5350/6350) Kernel Methods September 15, 2011 5/ 16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

k(x,z) = (xTz)2

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

k(x,z) = (xTz)2

= (az 4 xzn)

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

k(x,z) = (xTz)2

(xz1 4 x22)?

2 2 2 2
= X1z + X2z, +2x1%02122

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z
(x"2)’

(xz1 4 x22)?

k(x, z)

2 2 2 2
= X1z + X2z, +2x1%02122

= (X12, \f2x1xz, XZZ)T(zf, ﬁzlzz, 222)

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

(x"2)°

(xz1 4 x22)?

k(x, z)
2 2 2 2
= X1z + X2z, +2x1%02122

= (4, V2xx, %) (7, V2azn,3)
= ¢ 90

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

(x"2)°

(xz1 4 x22)?

k(x, z)

= ><12212 + x22222 + 2x1X021 22

= (X12, \f2x1xz, XZZ)T(zf, ﬁzlzz, 222)
T

= o(x) ¢(2)

@ The above k implicitly defines a mapping ¢ to a higher dimensional space

¢(X) = {X12v \[2X1X2’ X22}

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

o Consider two examples x = {x1,x2} and z = {z, 2}
@ Let's assume we are given a function k (kernel) that takes as inputs x and z

(x"2)°

(xz1 4 x22)?

k(x, z)

= ><12212 + x22222 + 2x1X021 22

= (X12, \f2x1xz, XZZ)T(zf, ﬁzlzz, 222)
T

= o(x) ¢(2)

@ The above k implicitly defines a mapping ¢ to a higher dimensional space
D(x) = {x3, V2xx0, %3 }

@ Note that we didn't have to define/compute this mapping

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

©

Consider two examples x = {x1,x2} and z = {z, z}

[

Let's assume we are given a function k (kernel) that takes as inputs x and z

(x"2)°

(xz1 4 x22)?

k(x, z)

= ><12212 + x22222 + 2x1X021 22

= (X12, \f2x1xz, XZZ)T(zf, ﬁzlzz, 222)
T

= o(x) ¢(2)

(]

The above k implicitly defines a mapping ¢ to a higher dimensional space
D(x) = {x3, V2xx0, %3 }

Note that we didn't have to define/compute this mapping

©

©

Simply defining the kernel a certain way gives a higher dim. mapping ¢

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

©

Consider two examples x = {x1,x2} and z = {z, z}

[

Let's assume we are given a function k (kernel) that takes as inputs x and z

(x"2)°

(xz1 4 x22)?

k(x, z)

= ><12212 + ><22222 + 2x1X021 22

= (X12, \f2x1xz, XZZ)T(zf, \62122, 222)
T

= o(x) ¢(2)

(]

The above k implicitly defines a mapping ¢ to a higher dimensional space
D(x) = {x3, V2xx0, %3 }

Note that we didn't have to define/compute this mapping

©

©

Simply defining the kernel a certain way gives a higher dim. mapping ¢
@ Moreover the kernel k(x,z) also computes the dot product ¢(x)' ¢(z)
o ¢(x) T ¢(z) would otherwise be much more expensive to compute explicitly

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels as High Dimensional Feature Mapping

©

Consider two examples x = {x1,x2} and z = {z, z}

[

Let's assume we are given a function k (kernel) that takes as inputs x and z

k(x, z) (xTz)2

(xz1 4 x22)?

= ><12212 + ><22222 + 2x1X021 22

= (4, V2xx, %) (7, V2azn,3)

= ¢ o2

(]

The above k implicitly defines a mapping ¢ to a higher dimensional space
D(x) = {x3, V2xx0, %3 }

Note that we didn't have to define/compute this mapping

©

©

Simply defining the kernel a certain way gives a higher dim. mapping ¢
@ Moreover the kernel k(x,z) also computes the dot product ¢(x)' ¢(z)
o ¢(x) T ¢(z) would otherwise be much more expensive to compute explicitly

(]

All kernel functions have these properties

(CS5350/6350) Kernel Methods September 15, 2011 6 /16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢

@ ¢ takes input x € X' (input space) and maps it to F (“feature space”)

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢
@ ¢ takes input x € X' (input space) and maps it to F (“feature space”)

o Kernel k(x,z) takes two inputs and gives their similarity in F space

¢ @ X = F
k @ XxX =R, k(x,z)=¢(x) ¢(2)

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢
@ ¢ takes input x € X' (input space) and maps it to F (“feature space”)

o Kernel k(x,z) takes two inputs and gives their similarity in F space

¢ @ X = F
k @ XxX =R, k(x,z)=¢(x) ¢(2)

@ F needs to be a vector space with a dot product defined on it

o Also called a Hilbert Space

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢
@ ¢ takes input x € X' (input space) and maps it to F (“feature space”)

o Kernel k(x,z) takes two inputs and gives their similarity in F space

¢ @ X = F
k @ XxX =R, k(x,z)=¢(x) ¢(2)

@ F needs to be a vector space with a dot product defined on it

o Also called a Hilbert Space

@ Can just any function be used as a kernel function?

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Kernels: Formally Defined

9 Recall: Each kernel k has an associated feature mapping ¢
@ ¢ takes input x € X' (input space) and maps it to F (“feature space”)

o Kernel k(x,z) takes two inputs and gives their similarity in F space

¢ @ X = F
k @ XxX =R, k(x,z)=¢(x) ¢(2)

@ F needs to be a vector space with a dot product defined on it
o Also called a Hilbert Space
@ Can just any function be used as a kernel function?

@ No. It must satisfy Mercer’s Condition

(CS5350/6350) Kernel Methods September 15, 2011 7/16

Mercer's Condition

@ For k to be a kernel function

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function

/dx/dzf(x)k(x,z)f(z) >0 (VfeLl)

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function
/dx/dzf(x)k(x,z)f(z) >0 (Vfel)

@ This is Mercer's Condition

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function
/dx/dzf(x)k(x,z)f(z) >0 (Vfel)

@ This is Mercer's Condition

@ Let kq, ko be two kernel functions then the following are as well:

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function
/dx/dzf(x)k(x,z)f(z) >0 (Vfel)

@ This is Mercer's Condition

@ Let kq, ko be two kernel functions then the following are as well:

o k(x,z) = ki(x,z) + ko(x,z): direct sum

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function
/dx/dzf(x)k(x,z)f(z) >0 (Vfel)

@ This is Mercer's Condition
@ Let kq, ko be two kernel functions then the following are as well:
o k(x,z) = ki(x,z) + ko(x,z): direct sum

o k(x,z) = aki(x,2): scalar product

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function
/dx/dzf(x)k(x,z)f(z) >0 (VfeLl)
@ This is Mercer's Condition
@ Let kq, ko be two kernel functions then the following are as well:
o k(x,z) = ki(x,z) + ko(x,z): direct sum
o k(x,z) = aki(x,2): scalar product

o k(x,z) = ki(x, z)ka(x,z): direct product

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

Mercer's Condition

@ For k to be a kernel function

o There must exist a Hilbert Space F for which k defines a dot product

9 The above is true if K is a positive definite function

/dx/dzf(x)k(x,z)f(z) >0 (Vfel)
@ This is Mercer's Condition
@ Let kq, ko be two kernel functions then the following are as well:
o k(x,z) = ki(x,z) + ko(x,z): direct sum
o k(x,z) = aki(x,2): scalar product
o k(x,z) = ki(x, z)ka(x,z): direct product
@ Kernels can also be constructed by composing these rules

(CS5350/6350) Kernel Methods September 15, 2011 8 /16

The Kernel Matrix

@ The kernel function k also defines the Kernel Matrix K over the data

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

@ The kernel function k also defines the Kernel Matrix K over the data

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Ki = k(xi,x;) = ¢(x;) " d(x))

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

@ The kernel function k also defines the Kernel Matrix K over the data

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Ki = k(xi,x;) = ¢(x;) " d(x))

o Kj: Similarity between the i-th and j-th example in the feature space F

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

@ The kernel function k also defines the Kernel Matrix K over the data

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Ki = k(xi,x;) = ¢(x;) " d(x))

o Kj: Similarity between the i-th and j-th example in the feature space F

o K: N x N matrix of pairwise similarities between examples in F space

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

The kernel function k also defines the Kernel Matrix K over the data

©

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Kij = k(xi,x;) = ¢(xi) " p(x;)
Kij: Similarity between the i-th and j-th example in the feature space F

©

o K: N x N matrix of pairwise similarities between examples in F space

@ K is a symmetric matrix

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

The kernel function k also defines the Kernel Matrix K over the data

©

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Kij = k(xi,x;) = ¢(xi) " p(x;)
Kij: Similarity between the i-th and j-th example in the feature space F

©

o K: N x N matrix of pairwise similarities between examples in F space
@ K is a symmetric matrix

o K is a positive definite matrix (except for a few exceptions)

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

The kernel function k also defines the Kernel Matrix K over the data

©

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Kij = k(xi,x;) = ¢(xi) " p(x;)
Kij: Similarity between the i-th and j-th example in the feature space F

©

o K: N x N matrix of pairwise similarities between examples in F space
@ K is a symmetric matrix
o K is a positive definite matrix (except for a few exceptions)

@ For a P.D. matrix: z'Kz >0, Vz e RN (also, all eigenvalues positive)

(CS5350/6350) Kernel Methods September 15, 2011 9/16

The Kernel Matrix

The kernel function k also defines the Kernel Matrix K over the data

©

o Given N examples {x1,...,xn}, the (i,)-th entry of K is defined as:

Kij = k(xi,x;) = ¢(xi) " p(x;)
Kij: Similarity between the i-th and j-th example in the feature space F

©

o K: N x N matrix of pairwise similarities between examples in F space
@ K is a symmetric matrix

o K is a positive definite matrix (except for a few exceptions)

@ For a P.D. matrix: z' Kz >0, Vz € RN (also, all eigenvalues positive)

@ The Kernel Matrix K is also known as the Gram Matrix

(CS5350/6350) Kernel Methods September 15, 2011 9/16

Some Examples of Kernels
The following are the most popular kernels for real-valued vector inputs

o Linear (trivial) Kernel:

k(x,z) = x"z (mapping function ¢ is identity - no mapping)

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:

k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?

(CS5350/6350) Kernel Methods September 15, 2011

10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:

k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?
@ Polynomial Kernel (of degree d):
k(x,z) = (x"2)? or (1+x'z)

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:

k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?
@ Polynomial Kernel (of degree d):
k(x,z) = (x"2)? or (1+x'z)
@ Radial Basis Function (RBF) Kernel:
k(x,2) = exp[—||x — 2||%]

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:

k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?
@ Polynomial Kernel (of degree d):
k(x,z) = (x"2)? or (1+x'z)
@ Radial Basis Function (RBF) Kernel:
k(x,2) = exp[—||x — 2||%]

@ 7 is a hyperparameter (also called the kernel bandwidth)

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:
k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?
@ Polynomial Kernel (of degree d):
k(x,z) = (x"2)? or (1+x'z)
@ Radial Basis Function (RBF) Kernel:
k(x,z) = exp[—/|lx — 2||’]
@ 7 is a hyperparameter (also called the kernel bandwidth)

@ The RBF kernel corresponds to an infinite dimensional feature space F (i.e.,
you can't actually write down the vector ¢(x))

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs
o Linear (trivial) Kernel:
k(x,z) = x"z (mapping function ¢ is identity - no mapping)
@ Quadratic Kernel:
k(x,z) = (x'z)? or (1+x'z)?
@ Polynomial Kernel (of degree d):
k(x,z) = (x"2)? or (1+x'z)
@ Radial Basis Function (RBF) Kernel:
k(x,z) = exp[—/|lx — 2||’]
@ 7 is a hyperparameter (also called the kernel bandwidth)

@ The RBF kernel corresponds to an infinite dimensional feature space F (i.e.,
you can't actually write down the vector ¢(x))

Note: Kernel hyperparameters (e.g., d,) chosen via cross-validation

(CS5350/6350) Kernel Methods September 15, 2011 10 / 16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

@ Any learning algorithm in which examples only appear as dot products (x,ij)
can be kernelized (i.e., non-linearlized)

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

@ Any learning algorithm in which examples only appear as dot products (x,ij)
can be kernelized (i.e., non-linearlized)

o .. by replacing the x;” x; terms by ¢(x;)" ¢(x;) = k(xi, ;)

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

@ Any learning algorithm in which examples only appear as dot products (x,ij)
can be kernelized (i.e., non-linearlized)

o .. by replacing the x;” x; terms by ¢(x;)" ¢(x;) = k(xi, ;)

@ Most learning algorithms are like that

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

@ Any learning algorithm in which examples only appear as dot products (x,ij)
can be kernelized (i.e., non-linearlized)

o .. by replacing the x;” x; terms by ¢(x;)" ¢(x;) = k(xi, ;)
@ Most learning algorithms are like that

@ Perceptron, SVM, linear regression, etc.

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Using Kernels

@ Kernels can turn a linear model into a nonlinear one

@ Recall: Kernel k(x,z) represents a dot product in some high dimensional
feature space F

@ Any learning algorithm in which examples only appear as dot products (x,ij)
can be kernelized (i.e., non-linearlized)

o .. by replacing the x;” x; terms by ¢(x;)" ¢(x;) = k(xi, ;)
@ Most learning algorithms are like that

@ Perceptron, SVM, linear regression, etc.

@ Many of the unsupervised learning algorithms too can be kernelized (e.g.,
K-means clustering, Principal Component Analysis, etc.)

(CS5350/6350) Kernel Methods September 15, 2011 11 /16

Kernelized SVM Training

@ Recall the SVM dual Lagrangian:

N N
1
Maximize Lp(w, b, &, a, B) = E a, — 5 g am(x,,y,,,y,,(x,:x,,)
n=1

m,n=1
N
subject to Zany,,:o, 0<a,<C n=1,...,N

n=1

(CS5350/6350) Kernel Methods September 15, 2011 12 /16

Kernelized SVM Training

@ Recall the SVM dual Lagrangian:

N N
1
Maximize Lp(w, b, &, a, B) = E a, — 5 g am(x,,y,,,y,,(x,:x,,)
n=1

m,n=1
N
subject to Zany,,:o, 0<a,<C n=1,...,N

n=1

@ Replacing xx, by ¢(xm) " @d(x,) = k(Xm,Xn) = Kmn, where k(.,.) is some
suitable kernel function

(CS5350/6350) Kernel Methods September 15, 2011 12 /16

Kernelized SVM Training

@ Recall the SVM dual Lagrangian:

Maximize Lp(w, b, &, a, B) = Z(y,, - = Z ama,,y,,,y,,(x Xp)

mnl
N
subject to Zany,,:o, 0<a,<C n=1,...,N
n=1

@ Replacing xx, by ¢(xm) " @d(x,) = k(Xm,Xn) = Kmn, where k(.,.) is some
suitable kernel function

Maximize Lp(w, b, &, o, B) = Za,, — Z AmnYmYnKmn
m,n=1
N
subject to Za,,y,,:Ot 0<a,<C;, n=1,...,N
n=1

(CS5350/6350) Kernel Methods September 15, 2011 12 /16

Kernelized SVM Training

@ Recall the SVM dual Lagrangian:

Maximize Lp(w, b, &, o, B) =

N

subject to Z anyn =0,
n=1

Zan -= Z U @nYim Y (X1 Xn)

0<a,<C;

mnl

@ Replacing xx, by ¢(xm) " @d(x,) = k(Xm,Xn) = Kmn, where k(.,.) is some
suitable kernel function

Maximize Lp(w, b, &, o, B) =

N

subject to Z anyn =0,
n=1

Sor-3

0<a,<C;

Z Am&nYmYnKmn

mn1

n=1,..

N

@ SVM now learns a linear separator in the kernel defined feature space F

(CS5350/6350)

Kernel Methods

September 15, 2011

12 /16

Kernelized SVM Training

@ Recall the SVM dual Lagrangian:

Maximize Lp(w, b, &, o, B) =

N

subject to Z anyn =0,
n=1

Zan -= Z U @nYim Y (X1 Xn)

0<a,<C;

mnl

@ Replacing xx, by ¢(xm) " @d(x,) = k(Xm,Xn) = Kmn, where k(.,.) is some
suitable kernel function

Maximize Lp(w, b, &, o, B) =

N

subject to Z anyn =0,
n=1

Sor-3

0<a,<C;

Z Am&nYmYnKmn

mn1

n=1,..

N

@ SVM now learns a linear separator in the kernel defined feature space F

@ This corresponds to a non-linear separator in the original space X

(CS5350/6350)

Kernel Methods

September 15, 2011

12 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)

y = sign(w ' x)

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)
y = sign(w " x) = sign(Z QnYnXn ' X)
nesv

@ SV is the set of support vectors (i.e., examples for which «, > 0)

(CS5350/6350) Kernel Methods September 15, 2011

13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)

y = sign(w " x) = sign(Z QnYnXn ' X)
nesv

@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))

y = sign(> anynd(xs) " p(x))

nesSv

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)

y = sign(w " x) = sign(Z QnYnXn ' X)
nesv

@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))

y = sign(Z anynd(xn) T (x)) = sign(Z anynk(Xn, X))

nesSv nesSv

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)
y = sign(w " x) = sign(Z QnYnXn ' X)
nesv

@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))

y = sign(Z anynd(xn) T (x)) = sign(Z anynk(Xn, X))

nesSv nesSv

@ The weight vector for the kernelized case can be expressed as:

w = Z anYn¢(xn)

nesv

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)
y = sign(w " x) = sign(Z QnYnXn ' X)
nesv

@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))

y = sign(3" anyad(x:)T $(x) = sign(> anynk(xs,x))
nesSv nesSv
@ The weight vector for the kernelized case can be expressed as:

w = E Oényn Xn E Oényn Xn7 .

nesv neSv

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)
y = sign(w " x) = sign(Z QnYnXn | X)
nesSv
@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))
y = sign(Y anyad(xa)" ¢(x)) = sign(D anynk(xs,x))
nesSv nesv
@ The weight vector for the kernelized case can be expressed as:
w = Z Qnyn@ x,, Z Qnynk Xny-
nesv nesSv

@ Important: Kernelized SVM needs the support vectors at the test time
(except when you can write ¢(x,) as an explicit, reasonably-sized vector)

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

Kernelized SVM Prediction

@ Prediction for a test example x (assume b = 0)
y = sign(w " x) = sign(Z QnYnXn | X)
nesSv
@ SV is the set of support vectors (i.e., examples for which «, > 0)
@ Replacing each example with its feature mapped representation (x — ¢(x))
y = sign(Y anyad(xa)" ¢(x)) = sign(D anynk(xs,x))
nesSv nesv
@ The weight vector for the kernelized case can be expressed as:
w = Z Qnyn@ x,, Z Qnynk Xny-
nesv nesSv

@ Important: Kernelized SVM needs the support vectors at the test time
(except when you can write ¢(x,) as an explicit, reasonably-sized vector)

@ In the unkernelized version w = ZnESV QinynXn can be computed and stored as
a D x 1 vector, so the support vectors need not be stored

(CS5350/6350) Kernel Methods September 15, 2011 13 /16

SVM

with an RBF Kernel

@ The learned decision boundary in the original space is nonlinear
(CS5350/6350)

Kernel Methods

£ DA
September 15, 2011

14 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models

@ All you need to do is replace the inner products with the kernel

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models

@ All you need to do is replace the inner products with the kernel

@ All the computations remain as efficient as in the original space

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models

@ All you need to do is replace the inner products with the kernel

@ All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models
@ All you need to do is replace the inner products with the kernel

@ All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

@ Many kernels are tailor-made for specific types of data

@ Strings (string kernels): DNA matching, text classification, etc.
@ Trees (tree kernels): Comparing parse trees of phrases/sentences

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models
@ All you need to do is replace the inner products with the kernel

@ All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

@ Many kernels are tailor-made for specific types of data

@ Strings (string kernels): DNA matching, text classification, etc.
@ Trees (tree kernels): Comparing parse trees of phrases/sentences

@ Kernels can even be learned from the data (hot research topic!)

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models
@ All you need to do is replace the inner products with the kernel

@ All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

@ Many kernels are tailor-made for specific types of data

@ Strings (string kernels): DNA matching, text classification, etc.
@ Trees (tree kernels): Comparing parse trees of phrases/sentences

@ Kernels can even be learned from the data (hot research topic!)

@ Kernel learning means learning the similarities between examples (instead of
using some pre-defined notion of similarity)

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models

@ All you need to do is replace the inner products with the kernel

©

All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

(]

Many kernels are tailor-made for specific types of data

@ Strings (string kernels): DNA matching, text classification, etc.
@ Trees (tree kernels): Comparing parse trees of phrases/sentences

@ Kernels can even be learned from the data (hot research topic!)

@ Kernel learning means learning the similarities between examples (instead of
using some pre-defined notion of similarity)

@ A question worth thinking about: Wouldn't mapping the data to higher
dimensional space cause my classifier (say SVM) to overfit?

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Kernels: concluding notes

@ Kernels give a modular way to learn nonlinear patterns using linear models

@ All you need to do is replace the inner products with the kernel

©

All the computations remain as efficient as in the original space

@ Choice of the kernel is an important factor

(]

Many kernels are tailor-made for specific types of data

@ Strings (string kernels): DNA matching, text classification, etc.
@ Trees (tree kernels): Comparing parse trees of phrases/sentences

@ Kernels can even be learned from the data (hot research topic!)

@ Kernel learning means learning the similarities between examples (instead of
using some pre-defined notion of similarity)

@ A question worth thinking about: Wouldn't mapping the data to higher
dimensional space cause my classifier (say SVM) to overfit?

@ The answer lies in the concepts of large margins and generalization

(CS5350/6350) Kernel Methods September 15, 2011 15 / 16

Next class..

@ Intro to probabilistic methods for supervised learning

@ Linear Regression (probabilistic version)
9 Logistic Regression

(CS5350/6350) Kernel Methods September 15, 2011 16 / 16

