# Kernel Methods and Nonlinear Classification 

Piyush Rai

CS5350/6350: Machine Learning
September 15, 2011

## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough



## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns
- Apply the linear model in the new input space


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping $\equiv$ changing the feature representation


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping $\equiv$ changing the feature representation
- Note: Such mappings can be expensive to compute in general


## Kernel Methods: Motivation

- Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

- Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping $\equiv$ changing the feature representation
- Note: Such mappings can be expensive to compute in general
- Kernels give such mappings for (almost) free
- In most cases, the mappings need not be even computed
- .. using the Kernel Trick!


## Classifying non-linearly separable data

- Consider this binary classification problem
- Each example represented by a single feature $x$
- No linear separator exists for this data


## Classifying non-linearly separable data

- Consider this binary classification problem
- Each example represented by a single feature $x$
- No linear separator exists for this data
- Now map each example as $x \rightarrow\left\{x, x^{2}\right\}$
- Each example now has two features ("derived" from the old representation)


## Classifying non-linearly separable data

- Consider this binary classification problem
- Each example represented by a single feature $x$
- No linear separator exists for this data
- Now map each example as $x \rightarrow\left\{x, x^{2}\right\}$
- Each example now has two features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation



## Classifying non-linearly separable data

- Consider this binary classification problem
- Each example represented by a single feature $x$
- No linear separator exists for this data
- Now map each example as $x \rightarrow\left\{x, x^{2}\right\}$
- Each example now has two features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation

- Linear in the new representation $\equiv$ nonlinear in the old representation



## Classifying non-linearly separable data

- Let's look at another example:

- Each example defined by a two features $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$
- No linear separator exists for this data


## Classifying non-linearly separable data

- Let's look at another example:

- Each example defined by a two features $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$
- No linear separator exists for this data
- Now map each example as $\mathbf{x}=\left\{x_{1}, x_{2}\right\} \rightarrow \mathbf{z}=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}$
- Each example now has three features ("derived" from the old representation)


## Classifying non-linearly separable data

- Let's look at another example:

- Each example defined by a two features $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$
- No linear separator exists for this data
- Now map each example as $\mathbf{x}=\left\{x_{1}, x_{2}\right\} \rightarrow \mathbf{z}=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}$
- Each example now has three features ("derived" from the old representation)
- Data now becomes linearly separable in the new representation



## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient in such cases


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too
- e.g., imagine computing the similarity between two examples: $\phi(\mathrm{x})^{\top} \phi(\mathrm{z})$


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too
- e.g., imagine computing the similarity between two examples: $\phi(\mathrm{x})^{\top} \phi(\mathrm{z})$
- Thankfully, Kernels help us avoid both these issues!


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too
- e.g., imagine computing the similarity between two examples: $\phi(\mathrm{x})^{\top} \phi(\mathrm{z})$
- Thankfully, Kernels help us avoid both these issues!
- The mapping doesn't have to be explicitly computed


## Feature Mapping

- Consider the following mapping $\phi$ for an example $\mathbf{x}=\left\{x_{1}, \ldots, x_{D}\right\}$

$$
\phi: \mathbf{x} \rightarrow\left\{x_{1}^{2}, x_{2}^{2}, \ldots, x_{D}^{2},, x_{1} x_{2}, x_{1} x_{2}, \ldots, x_{1} x_{D}, \ldots \ldots, x_{D-1} x_{D}\right\}
$$

- It's an example of a quadratic mapping
- Each new feature uses a pair of the original features
- Problem: Mapping usually leads to the number of features blow up!
- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too
- e.g., imagine computing the similarity between two examples: $\phi(\mathrm{x})^{\top} \phi(\mathrm{z})$
- Thankfully, Kernels help us avoid both these issues!
- The mapping doesn't have to be explicitly computed
- Computations with the mapped features remain efficient


## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$


## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
k(x, z)=\left(x^{\top} z\right)^{2}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}
\end{aligned}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2}
\end{aligned}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right)
\end{aligned}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathbf{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathrm{x}, \mathrm{z}) & =\left(\mathrm{x}^{\top} \mathrm{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- The above $k$ implicitly defines a mapping $\phi$ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathrm{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- The above $k$ implicitly defines a mapping $\phi$ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

- Note that we didn't have to define/compute this mapping


## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathrm{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- The above $k$ implicitly defines a mapping $\phi$ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

- Note that we didn't have to define/compute this mapping
- Simply defining the kernel a certain way gives a higher dim. mapping $\phi$


## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathrm{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- The above $k$ implicitly defines a mapping $\phi$ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

- Note that we didn't have to define/compute this mapping
- Simply defining the kernel a certain way gives a higher dim. mapping $\phi$
- Moreover the kernel $k(\mathbf{x}, \mathbf{z})$ also computes the dot product $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$
- $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$ would otherwise be much more expensive to compute explicitly


## Kernels as High Dimensional Feature Mapping

- Consider two examples $\mathbf{x}=\left\{x_{1}, x_{2}\right\}$ and $\mathbf{z}=\left\{z_{1}, z_{2}\right\}$
- Let's assume we are given a function $k$ (kernel) that takes as inputs $\mathbf{x}$ and $\mathbf{z}$

$$
\begin{aligned}
k(\mathbf{x}, \mathrm{z}) & =\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \\
& =\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2} \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{1} x_{2} z_{1} z_{2} \\
& =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right)^{\top}\left(z_{1}^{2}, \sqrt{2} z_{1} z_{2}, z_{2}^{2}\right) \\
& =\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- The above $k$ implicitly defines a mapping $\phi$ to a higher dimensional space

$$
\phi(\mathbf{x})=\left\{x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right\}
$$

- Note that we didn't have to define/compute this mapping
- Simply defining the kernel a certain way gives a higher dim. mapping $\phi$
- Moreover the kernel $k(\mathbf{x}, \mathbf{z})$ also computes the dot product $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$
- $\phi(\mathbf{x})^{\top} \phi(\mathbf{z})$ would otherwise be much more expensive to compute explicitly
- All kernel functions have these properties


## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$


## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$
- $\phi$ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to $\mathcal{F}$ ("feature space")


## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$
- $\phi$ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to $\mathcal{F}$ ("feature space")
- Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in $\mathcal{F}$ space

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \mathcal{F} \\
& k: \\
& \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$
- $\phi$ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to $\mathcal{F}$ ("feature space")
- Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in $\mathcal{F}$ space

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \mathcal{F} \\
& k: \\
& \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- $\mathcal{F}$ needs to be a vector space with a dot product defined on it
- Also called a Hilbert Space


## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$
- $\phi$ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to $\mathcal{F}$ ("feature space")
- Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in $\mathcal{F}$ space

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \mathcal{F} \\
& k: \\
& \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- $\mathcal{F}$ needs to be a vector space with a dot product defined on it
- Also called a Hilbert Space
- Can just any function be used as a kernel function?


## Kernels: Formally Defined

- Recall: Each kernel $k$ has an associated feature mapping $\phi$
- $\phi$ takes input $\mathbf{x} \in \mathcal{X}$ (input space) and maps it to $\mathcal{F}$ ("feature space")
- Kernel $k(\mathbf{x}, \mathbf{z})$ takes two inputs and gives their similarity in $\mathcal{F}$ space

$$
\begin{aligned}
& \phi: \mathcal{X} \rightarrow \mathcal{F} \\
& k: \\
& \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(\mathbf{x}, \mathbf{z})=\phi(\mathbf{x})^{\top} \phi(\mathbf{z})
\end{aligned}
$$

- $\mathcal{F}$ needs to be a vector space with a dot product defined on it
- Also called a Hilbert Space
- Can just any function be used as a kernel function?
- No. It must satisfy Mercer's Condition


## Mercer's Condition

- For $k$ to be a kernel function


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition
- Let $k_{1}, k_{2}$ be two kernel functions then the following are as well:


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition
- Let $k_{1}, k_{2}$ be two kernel functions then the following are as well:
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$ : direct sum


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition
- Let $k_{1}, k_{2}$ be two kernel functions then the following are as well:
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$ : direct sum
- $k(\mathbf{x}, \mathbf{z})=\alpha k_{1}(\mathbf{x}, \mathbf{z})$ : scalar product


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition
- Let $k_{1}, k_{2}$ be two kernel functions then the following are as well:
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$ : direct sum
- $k(\mathbf{x}, \mathbf{z})=\alpha k_{1}(\mathbf{x}, \mathbf{z})$ : scalar product
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) k_{2}(\mathbf{x}, \mathbf{z})$ : direct product


## Mercer's Condition

- For $k$ to be a kernel function
- There must exist a Hilbert Space $\mathcal{F}$ for which $k$ defines a dot product
- The above is true if $K$ is a positive definite function

$$
\int d \mathbf{x} \int d \mathbf{z} f(\mathbf{x}) k(\mathbf{x}, \mathbf{z}) f(\mathbf{z})>0 \quad\left(\forall f \in L_{2}\right)
$$

- This is Mercer's Condition
- Let $k_{1}, k_{2}$ be two kernel functions then the following are as well:
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z})+k_{2}(\mathbf{x}, \mathbf{z})$ : direct sum
- $k(\mathbf{x}, \mathbf{z})=\alpha k_{1}(\mathbf{x}, \mathbf{z})$ : scalar product
- $k(\mathbf{x}, \mathbf{z})=k_{1}(\mathbf{x}, \mathbf{z}) k_{2}(\mathbf{x}, \mathbf{z})$ : direct product
- Kernels can also be constructed by composing these rules


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$
- K: $N \times N$ matrix of pairwise similarities between examples in $\mathcal{F}$ space


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$
- K: $N \times N$ matrix of pairwise similarities between examples in $\mathcal{F}$ space
- K is a symmetric matrix


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$
- K: $N \times N$ matrix of pairwise similarities between examples in $\mathcal{F}$ space
- K is a symmetric matrix
- $\mathbf{K}$ is a positive definite matrix (except for a few exceptions)


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$
- K: $N \times N$ matrix of pairwise similarities between examples in $\mathcal{F}$ space
- K is a symmetric matrix
- $\mathbf{K}$ is a positive definite matrix (except for a few exceptions)
- For a P.D. matrix: $\mathbf{z}^{\top} \mathbf{K} \mathbf{z}>0, \quad \forall \mathbf{z} \in \mathbb{R}^{N}$ (also, all eigenvalues positive)


## The Kernel Matrix

- The kernel function $k$ also defines the Kernel Matrix $\mathbf{K}$ over the data
- Given $N$ examples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}$, the $(i, j)$-th entry of $\mathbf{K}$ is defined as:

$$
K_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)
$$

- $K_{i j}$ : Similarity between the $i$-th and $j$-th example in the feature space $\mathcal{F}$
- K: $N \times N$ matrix of pairwise similarities between examples in $\mathcal{F}$ space
- K is a symmetric matrix
- $\mathbf{K}$ is a positive definite matrix (except for a few exceptions)
- For a P.D. matrix: $\mathbf{z}^{\top} \mathbf{K} \mathbf{z}>0, \quad \forall \mathbf{z} \in \mathbb{R}^{N}$ (also, all eigenvalues positive)
- The Kernel Matrix $\mathbf{K}$ is also known as the Gram Matrix


## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

- Polynomial Kernel (of degree $d$ ):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

- Polynomial Kernel (of degree $d$ ):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

- Radial Basis Function (RBF) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\exp \left[-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right]
$$

## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

- Polynomial Kernel (of degree $d$ ):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

- Radial Basis Function (RBF) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\exp \left[-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right]
$$

- $\gamma$ is a hyperparameter (also called the kernel bandwidth)


## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

- Polynomial Kernel (of degree $d$ ):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

- Radial Basis Function (RBF) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\exp \left[-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right]
$$

- $\gamma$ is a hyperparameter (also called the kernel bandwidth)
- The RBF kernel corresponds to an infinite dimensional feature space $\mathcal{F}$ (i.e., you can't actually write down the vector $\phi(\mathbf{x})$ )


## Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\mathbf{x}^{\top} \mathbf{z} \text { (mapping function } \phi \text { is identity - no mapping) }
$$

- Quadratic Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{2} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{2}
$$

- Polynomial Kernel (of degree d):

$$
k(\mathbf{x}, \mathbf{z})=\left(\mathbf{x}^{\top} \mathbf{z}\right)^{d} \quad \text { or } \quad\left(1+\mathbf{x}^{\top} \mathbf{z}\right)^{d}
$$

- Radial Basis Function (RBF) Kernel:

$$
k(\mathbf{x}, \mathbf{z})=\exp \left[-\gamma\|\mathbf{x}-\mathbf{z}\|^{2}\right]
$$

- $\gamma$ is a hyperparameter (also called the kernel bandwidth)
- The RBF kernel corresponds to an infinite dimensional feature space $\mathcal{F}$ (i.e., you can't actually write down the vector $\phi(\mathbf{x})$ )
Note: Kernel hyperparameters (e.g., $d, \gamma$ ) chosen via cross-validation


## Using Kernels

- Kernels can turn a linear model into a nonlinear one


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$
- Any learning algorithm in which examples only appear as dot products $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)$ can be kernelized (i.e., non-linearlized)


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$
- Any learning algorithm in which examples only appear as dot products $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)$ can be kernelized (i.e., non-linearlized)
- .. by replacing the $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$ terms by $\phi\left(\mathbf{x}_{i}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$
- Any learning algorithm in which examples only appear as dot products $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)$ can be kernelized (i.e., non-linearlized)
- .. by replacing the $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$ terms by $\phi\left(\mathbf{x}_{i}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- Most learning algorithms are like that


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$
- Any learning algorithm in which examples only appear as dot products $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)$ can be kernelized (i.e., non-linearlized)
- .. by replacing the $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$ terms by $\phi\left(\mathbf{x}_{i}\right)^{\top} \phi\left(\mathbf{x}_{j}\right)=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- Most learning algorithms are like that
- Perceptron, SVM, linear regression, etc.


## Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space $\mathcal{F}$
- Any learning algorithm in which examples only appear as dot products $\left(\mathbf{x}_{i}^{\top} \mathbf{x}_{j}\right)$ can be kernelized (i.e., non-linearlized)
- .. by replacing the $\mathbf{x}_{i}^{\top} \mathbf{x}_{j}$ terms by $\phi\left(\mathbf{x}_{i}\right)^{\top} \boldsymbol{\phi}\left(\mathbf{x}_{j}\right)=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- Most learning algorithms are like that
- Perceptron, SVM, linear regression, etc.
- Many of the unsupervised learning algorithms too can be kernelized (e.g., $K$-means clustering, Principal Component Analysis, etc.)


## Kernelized SVM Training

- Recall the SVM dual Lagrangian:

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

## Kernelized SVM Training

- Recall the SVM dual Lagrangian:

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{\top} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- Replacing $\mathbf{x}_{m}^{T} \mathbf{x}_{n}$ by $\phi\left(\mathbf{x}_{m}\right)^{\top} \phi\left(\mathbf{x}_{n}\right)=k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)=K_{m n}$, where $k(.,$.$) is some$ suitable kernel function


## Kernelized SVM Training

- Recall the SVM dual Lagrangian:

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{\top} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- Replacing $\mathbf{x}_{m}^{T} \mathbf{x}_{n}$ by $\phi\left(\mathbf{x}_{m}\right)^{\top} \phi\left(\mathbf{x}_{n}\right)=k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)=K_{m n}$, where $k(.,$.$) is some$ suitable kernel function

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n} K_{m n} \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

## Kernelized SVM Training

- Recall the SVM dual Lagrangian:

$$
\begin{aligned}
& \text { Maximize } \quad L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{\top} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- Replacing $\mathbf{x}_{m}^{T} \mathbf{x}_{n}$ by $\phi\left(\mathbf{x}_{m}\right)^{\top} \phi\left(\mathbf{x}_{n}\right)=k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)=K_{m n}$, where $k(.,$.$) is some$ suitable kernel function

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n} K_{m n} \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- SVM now learns a linear separator in the kernel defined feature space $\mathcal{F}$


## Kernelized SVM Training

- Recall the SVM dual Lagrangian:

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{\top} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- Replacing $\mathbf{x}_{m}^{T} \mathbf{x}_{n}$ by $\phi\left(\mathbf{x}_{m}\right)^{\top} \phi\left(\mathbf{x}_{n}\right)=k\left(\mathbf{x}_{m}, \mathbf{x}_{n}\right)=K_{m n}$, where $k(.,$.$) is some$ suitable kernel function

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n} K_{m n} \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- SVM now learns a linear separator in the kernel defined feature space $\mathcal{F}$
- This corresponds to a non-linear separator in the original space $\mathcal{X}$


## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)
$$

## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
\mathbf{y}=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )


## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)
$$

## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right)
$$

## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right)
$$

- The weight vector for the kernelized case can be expressed as:

$$
\mathbf{w}=\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)
$$

## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right)
$$

- The weight vector for the kernelized case can be expressed as:

$$
\mathbf{w}=\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)=\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, .\right)
$$

## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right)
$$

- The weight vector for the kernelized case can be expressed as:

$$
\mathbf{w}=\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)=\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, .\right)
$$

- Important: Kernelized SVM needs the support vectors at the test time (except when you can write $\phi\left(\mathbf{x}_{n}\right)$ as an explicit, reasonably-sized vector)


## Kernelized SVM Prediction

- Prediction for a test example $\mathbf{x}$ (assume $b=0$ )

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}^{\top} \mathbf{x}\right)
$$

- $S V$ is the set of support vectors (i.e., examples for which $\alpha_{n}>0$ )
- Replacing each example with its feature mapped representation ( $\mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$ )

$$
y=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)^{\top} \phi(\mathbf{x})\right)=\operatorname{sign}\left(\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, \mathbf{x}\right)\right)
$$

- The weight vector for the kernelized case can be expressed as:

$$
\mathbf{w}=\sum_{n \in S V} \alpha_{n} y_{n} \phi\left(\mathbf{x}_{n}\right)=\sum_{n \in S V} \alpha_{n} y_{n} k\left(\mathbf{x}_{n}, .\right)
$$

- Important: Kernelized SVM needs the support vectors at the test time (except when you can write $\phi\left(\mathbf{x}_{n}\right)$ as an explicit, reasonably-sized vector)
- In the unkernelized version $\mathbf{w}=\sum_{n \in S V} \alpha_{n} y_{n} \mathbf{x}_{n}$ can be computed and stored as a $D \times 1$ vector, so the support vectors need not be stored


## SVM with an RBF Kernel



- The learned decision boundary in the original space is nonlinear


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences
- Kernels can even be learned from the data (hot research topic!)


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences
- Kernels can even be learned from the data (hot research topic!)
- Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences
- Kernels can even be learned from the data (hot research topic!)
- Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)
- A question worth thinking about: Wouldn't mapping the data to higher dimensional space cause my classifier (say SVM) to overfit?


## Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
- All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences
- Kernels can even be learned from the data (hot research topic!)
- Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)
- A question worth thinking about: Wouldn't mapping the data to higher dimensional space cause my classifier (say SVM) to overfit?
- The answer lies in the concepts of large margins and generalization


## Next class..

- Intro to probabilistic methods for supervised learning
- Linear Regression (probabilistic version)
- Logistic Regression

