Often we want to **capture nonlinear patterns** in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
Often we want to **capture nonlinear patterns** in the data

- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary

Linear models (e.g., linear regression, linear SVM) are not just rich enough
Often we want to capture nonlinear patterns in the data

- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary

Linear models (e.g., linear regression, linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings
Often we want to capture nonlinear patterns in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings
- By mapping data to higher dimensions where it exhibits linear patterns
Kernel Methods: Motivation

- Often we want to **capture nonlinear patterns** in the data
 - Nonlinear Regression: Input-output relationship may not be linear
 - Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

![Diagram](image)

- **Kernels**: Make linear models work in nonlinear settings
 - By **mapping data to higher dimensions** where it exhibits linear patterns
 - Apply the linear model in the new input space
Kernel Methods: Motivation

- Often we want to **capture nonlinear patterns** in the data
 - Nonlinear Regression: Input-output relationship may not be linear
 - Nonlinear Classification: Classes may not be separable by a linear boundary
- Linear models (e.g., linear regression, linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings
- By **mapping data to higher dimensions** where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping \equiv changing the feature representation
Often we want to **capture nonlinear patterns** in the data

- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary

Linear models (e.g., linear regression, linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings

- By **mapping data to higher dimensions** where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping \equiv changing the feature representation

Note: Such mappings can be expensive to compute in general
Often we want to **capture nonlinear patterns** in the data
- Nonlinear Regression: Input-output relationship may not be linear
- Nonlinear Classification: Classes may not be separable by a linear boundary

Linear models (e.g., linear regression, linear SVM) are not just rich enough

Kernels: Make linear models work in nonlinear settings
- By **mapping data to higher dimensions** where it exhibits linear patterns
- Apply the linear model in the new input space
- Mapping ≡ changing the feature representation

Note: Such mappings can be expensive to compute in general
- Kernels give such mappings **for (almost) free**
 - In most cases, the mappings need not be even computed
 - .. using the **Kernel Trick**!
Classifying non-linearly separable data

- Consider this binary classification problem
- Each example represented by a **single feature** x
- No linear separator exists for this data
Classifying non-linearly separable data

- Consider this binary classification problem

![Graph showing a single feature x]

- Each example represented by a single feature x
- No linear separator exists for this data

- Now map each example as $x \rightarrow \{x, x^2\}$
- Each example now has two features ("derived" from the old representation)
Consider this binary classification problem

- Each example represented by a **single feature** \(x \)
- No linear separator exists for this data

Now map each example as \(x \rightarrow \{x, x^2\} \)
- Each example now has **two features** ("derived" from the old representation)
- Data now becomes linearly separable in the new representation
Classifying non-linearly separable data

- Consider this binary classification problem

 ![Graph showing non-linearly separable data]

 Each example represented by a single feature x
 No linear separator exists for this data

- Now map each example as $x \to \{x, x^2\}$
 Each example now has two features (“derived” from the old representation)

- Data now becomes linearly separable in the new representation

 ![Graph showing linear separability in the new representation]

 Linear in the new representation \equiv nonlinear in the old representation
Classifying non-linearly separable data

Let’s look at another example:

Each example defined by a two features $\mathbf{x} = \{x_1, x_2\}$
No linear separator exists for this data
Classifying non-linearly separable data

- Let’s look at another example:

Each example defined by a **two features** \(x = \{x_1, x_2\} \)

- No linear separator exists for this data

- Now map each example as \(x = \{x_1, x_2\} \rightarrow z = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\} \)

- Each example now has **three features** ("derived" from the old representation)
Let’s look at another example:

Each example defined by two features \(x = \{x_1, x_2\} \)

No linear separator exists for this data

Now map each example as \(x = \{x_1, x_2\} \rightarrow z = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\} \)

Each example now has three features ("derived" from the old representation)

Data now becomes linearly separable in the new representation
Feature Mapping

Consider the following mapping ϕ for an example $\mathbf{x} = \{x_1, \ldots, x_D\}$

$$\phi: \mathbf{x} \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots \ldots, x_{D-1}x_D\}$$
Consider the following mapping ϕ for an example $\mathbf{x} = \{x_1, \ldots, x_D\}$

$$
\phi : \mathbf{x} \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots, x_{D-1}x_D\}
$$

It’s an example of a quadratic mapping

- Each new feature uses a pair of the original features
Feature Mapping

Consider the following mapping ϕ for an example $x = \{x_1, \ldots, x_D\}$

$$\phi : x \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots, x_{D-1}x_D\}$$

It’s an example of a quadratic mapping

- Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!
Feature Mapping

- Consider the following mapping ϕ for an example $\mathbf{x} = \{x_1, \ldots, x_D\}$

 $$\phi: \mathbf{x} \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots, x_{D-1}x_D\}$$

- It’s an example of a quadratic mapping
 - Each new feature uses a pair of the original features

- **Problem:** Mapping usually leads to the number of features blow up!
 - Computing the mapping itself can be inefficient in such cases
Consider the following mapping ϕ for an example $x = \{x_1, \ldots, x_D\}$

$$\phi : x \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1 x_2, x_1 x_2, \ldots, x_1 x_D, \ldots, x_{D-1} x_D\}$$

It’s an example of a quadratic mapping

- Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!

- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too

- e.g., imagine computing the similarity between two examples: $\phi(x)^T \phi(z)$
Consider the following mapping ϕ for an example $\mathbf{x} = \{x_1, \ldots, x_D\}$

$$\phi: \mathbf{x} \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_3, \ldots, x_1x_D, \ldots, x_{D-1}x_D\}$$

It’s an example of a quadratic mapping

- Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!

- Computing the mapping itself can be inefficient in such cases
- Moreover, *using* the mapped representation could be inefficient too
 - e.g., imagine computing the similarity between two examples: $\phi(\mathbf{x})^\top \phi(\mathbf{z})$

Thankfully, Kernels help us avoid both these issues!
Feature Mapping

- Consider the following mapping ϕ for an example $\mathbf{x} = \{x_1, \ldots, x_D\}$

$$\phi : \mathbf{x} \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots, , x_D-1x_D\}$$

- It’s an example of a quadratic mapping
 - Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!

- Computing the mapping itself can be inefficient in such cases
- Moreover, using the mapped representation could be inefficient too
 - e.g., imagine computing the similarity between two examples: $\phi(\mathbf{x})^\top \phi(\mathbf{z})$

- Thankfully, Kernels help us avoid both these issues!
 - The mapping doesn’t have to be explicitly computed
Feature Mapping

Consider the following mapping ϕ for an example $x = \{x_1, \ldots, x_D\}$

$$
\phi : x \rightarrow \{x_1^2, x_2^2, \ldots, x_D^2, x_1x_2, x_1x_2, \ldots, x_1x_D, \ldots, x_{D-1}x_D \}
$$

It's an example of a quadratic mapping

- Each new feature uses a pair of the original features

Problem: Mapping usually leads to the number of features blow up!

- Computing the mapping itself can be inefficient in such cases
- Moreover, *using* the mapped representation could be inefficient too
 - e.g., imagine computing the similarity between two examples: $\phi(x)^T \phi(z)$

Thankfully, Kernels help us avoid both these issues!

- The mapping doesn’t have to be explicitly computed
- Computations with the mapped features remain efficient
Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$
Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$

Let's assume we are given a function k (kernel) that takes as inputs x and z

$$k(x, z) = (x^T z)^2$$
Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$

Let’s assume we are given a function k (kernel) that takes as inputs x and z

\[
k(x, z) = (x^T z)^2 = (x_1 z_1 + x_2 z_2)^2
\]
Consider two examples \(x = \{x_1, x_2\} \) and \(z = \{z_1, z_2\} \). Let's assume we are given a function \(k \) (kernel) that takes as inputs \(x \) and \(z \):

\[
k(x, z) = (x^T z)^2
= (x_1 z_1 + x_2 z_2)^2
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
\]
Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Let's assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^\top \mathbf{z})^2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^\top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)$$
Kernels as High Dimensional Feature Mapping

Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$

Let's assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}

\[
k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^\top \mathbf{z})^2
\]
\[
= (x_1 z_1 + x_2 z_2)^2
\]
\[
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
\]
\[
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^\top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
\]
\[
= \phi(\mathbf{x})^\top \phi(\mathbf{z})
\]
Consider two examples \(x = \{x_1, x_2\} \) and \(z = \{z_1, z_2\} \).

Let's assume we are given a function \(k \) (kernel) that takes as inputs \(x \) and \(z \):

\[
k(x, z) = (x^\top z)^2
= (x_1 z_1 + x_2 z_2)^2
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^\top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
= \phi(x)^\top \phi(z)
\]

The above \(k \) implicitly defines a mapping \(\phi \) to a higher dimensional space:

\[
\phi(x) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}
\]
Kernels as High Dimensional Feature Mapping

- Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$
- Let's assume we are given a function k (kernel) that takes as inputs x and z

$$k(x, z) = (x^\top z)^2$$
$$= (x_1 z_1 + x_2 z_2)^2$$
$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2$$
$$= (x_1^2, \sqrt{2}x_1 x_2, x_2^2)^\top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)$$
$$= \phi(x)^\top \phi(z)$$

- The above k implicitly defines a mapping ϕ to a higher dimensional space

$$\phi(x) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}$$

- Note that we didn’t have to define/compute this mapping
Consider two examples \(x = \{x_1, x_2\} \) and \(z = \{z_1, z_2\} \).

Let's assume we are given a function \(k \) (kernel) that takes as inputs \(x \) and \(z \):

\[
k(x, z) = (x^\top z)^2
\]

\[
= (x_1 z_1 + x_2 z_2)^2
\]

\[
= x_1^2 z_1^2 + x_2^2 z_2^2 + 2x_1 x_2 z_1 z_2
\]

\[
= (x_1^2, \sqrt{2}x_1 x_2, x_2^2) \top (z_1^2, \sqrt{2}z_1 z_2, z_2^2)
\]

\[
= \phi(x) \top \phi(z)
\]

The above \(k \) implicitly defines a mapping \(\phi \) to a higher dimensional space:

\[
\phi(x) = \{x_1^2, \sqrt{2}x_1 x_2, x_2^2\}
\]

Note that we didn’t have to define/compute this mapping.

Simply defining the kernel a certain way gives a higher dim. mapping \(\phi \).
Consider two examples $x = \{x_1, x_2\}$ and $z = \{z_1, z_2\}$

Let’s assume we are given a function k (kernel) that takes as inputs x and z

$$k(x, z) = (x^\top z)^2$$

$$= (x_1z_1 + x_2z_2)^2$$

$$= x_1^2z_1^2 + x_2^2z_2^2 + 2x_1x_2z_1z_2$$

$$= (x_1^2, \sqrt{2}x_1x_2, x_2^2)^\top (z_1^2, \sqrt{2}z_1z_2, z_2^2)$$

$$= \phi(x)^\top \phi(z)$$

The above k implicitly defines a mapping ϕ to a higher dimensional space

$$\phi(x) = \{x_1^2, \sqrt{2}x_1x_2, x_2^2\}$$

Note that we didn’t have to define/compute this mapping

Simply defining the kernel a certain way gives a higher dim. mapping ϕ

Moreover the kernel $k(x, z)$ also computes the dot product $\phi(x)^\top \phi(z)$

$\phi(x)^\top \phi(z)$ would otherwise be much more expensive to compute explicitly
Consider two examples $\mathbf{x} = \{x_1, x_2\}$ and $\mathbf{z} = \{z_1, z_2\}$.

Let's assume we are given a function k (kernel) that takes as inputs \mathbf{x} and \mathbf{z}:

$$k(\mathbf{x}, \mathbf{z}) = (\mathbf{x}^T \mathbf{z})^2$$

$$= (x_1 z_1 + x_2 z_2)^2$$

$$= x_1^2 z_1^2 + x_2^2 z_2^2 + 2 x_1 x_2 z_1 z_2$$

$$= (x_1^2, \sqrt{2} x_1 x_2, x_2^2)^T (z_1^2, \sqrt{2} z_1 z_2, z_2^2)$$

$$= \phi(\mathbf{x})^T \phi(\mathbf{z})$$

The above k implicitly defines a mapping ϕ to a higher dimensional space:

$$\phi(\mathbf{x}) = \{x_1^2, \sqrt{2} x_1 x_2, x_2^2\}$$

Note that we didn’t have to define/compute this mapping.

Simply defining the kernel a certain way gives a higher dim. mapping ϕ.

Moreover the kernel $k(\mathbf{x}, \mathbf{z})$ also computes the dot product $\phi(\mathbf{x})^T \phi(\mathbf{z})$.

$\phi(\mathbf{x})^T \phi(\mathbf{z})$ would otherwise be much more expensive to compute explicitly.

All kernel functions have these properties.
Recall: Each kernel k has an associated feature mapping ϕ
Kernels: Formally Defined

- Recall: Each kernel k has an associated feature mapping ϕ
- ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")
Kernels: Formally Defined

- Recall: Each kernel k has an associated feature mapping ϕ
- ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")
- Kernel $k(x, z)$ takes two inputs and gives their similarity in \mathcal{F} space

\[
\phi : \mathcal{X} \rightarrow \mathcal{F} \\
k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z) = \phi(x)^T \phi(z)
\]
Recall: Each kernel k has an associated feature mapping ϕ

ϕ takes input $x \in \mathcal{X}$ (input space) and maps it to \mathcal{F} ("feature space")

Kernel $k(x, z)$ takes two inputs and gives their similarity in \mathcal{F} space

$$k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}, \quad k(x, z) = \phi(x)^\top \phi(z)$$

\mathcal{F} needs to be a vector space with a dot product defined on it

- Also called a Hilbert Space
Kernels: Formally Defined

- Recall: Each kernel \(k \) has an associated feature mapping \(\phi \).
- \(\phi \) takes input \(x \in \mathcal{X} \) (input space) and maps it to \(\mathcal{F} \) (“feature space”).
- Kernel \(k(x, z) \) takes two inputs and gives their similarity in \(\mathcal{F} \) space:
 \[
 k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad k(x, z) = \phi(x)\top \phi(z)
 \]
- \(\mathcal{F} \) needs to be a vector space with a dot product defined on it.
 - Also called a Hilbert Space.
- Can just any function be used as a kernel function?
Kernels: Formally Defined

- Recall: Each kernel k has an associated feature mapping ϕ

- ϕ takes input $x \in X$ (input space) and maps it to F ("feature space")

- Kernel $k(x, z)$ takes two inputs and gives their similarity in F space

- $\phi : X \rightarrow F$

- $k : X \times X \rightarrow \mathbb{R}, \quad k(x, z) = \phi(x)^\top \phi(z)$

- F needs to be a vector space with a dot product defined on it

- Also called a Hilbert Space

- Can just any function be used as a kernel function?

- No. It must satisfy Mercer’s Condition
Mercer’s Condition

- For k to be a kernel function
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
Mercer’s Condition

For k to be a kernel function:

- There must exist a Hilbert Space \mathcal{F} for which k defines a dot product.
- The above is true if K is a positive definite function.

\[
\int dx \int dz f(x)k(x,z)f(z) > 0 \quad (\forall f \in L_2)
\]
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
 - The above is true if K is a positive definite function
 \[
 \int dx \int dz f(x) k(x, z) f(z) > 0 \quad (\forall f \in L_2)
 \]
 - This is Mercer’s Condition
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
 - The above is true if K is a positive definite function

\[
\int dx \int dz f(x)k(x, z)f(z) > 0 \quad (\forall f \in L_2)
\]

- This is Mercer’s Condition
- Let k_1, k_2 be two kernel functions then the following are as well:
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
 - The above is true if K is a **positive definite function**
 \[
 \int dx \int dz f(x)k(x, z)f(z) > 0 \quad (\forall f \in L_2)
 \]
 - This is Mercer’s Condition
- Let k_1, k_2 be two kernel functions then the following are as well:
 - $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
Mercer’s Condition

- For \(k \) to be a kernel function
 - There must exist a Hilbert Space \(\mathcal{F} \) for which \(k \) defines a dot product
 - The above is true if \(K \) is a **positive definite function**

\[
\int dx \int dz f(x) k(x,z) f(z) > 0 \quad (\forall f \in L_2)
\]

- This is Mercer’s Condition
- Let \(k_1, k_2 \) be two kernel functions then the following are as well:
 - \(k(x,z) = k_1(x,z) + k_2(x,z) \): direct sum
 - \(k(x,z) = \alpha k_1(x,z) \): scalar product
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
 - The above is true if K is a positive definite function
 \[
 \int dx \int dz f(x)k(x, z)f(z) > 0 \quad (\forall f \in L_2)
 \]
 - This is Mercer’s Condition
- Let k_1, k_2 be two kernel functions then the following are as well:
 - $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
 - $k(x, z) = \alpha k_1(x, z)$: scalar product
 - $k(x, z) = k_1(x, z)k_2(x, z)$: direct product
Mercer’s Condition

- For k to be a kernel function
 - There must exist a Hilbert Space \mathcal{F} for which k defines a dot product
 - The above is true if K is a positive definite function
 \[
 \int dxf(x)k(x, z)f(z) > 0 \quad (\forall f \in L_2)
 \]
 - This is Mercer’s Condition
- Let k_1, k_2 be two kernel functions then the following are as well:
 - $k(x, z) = k_1(x, z) + k_2(x, z)$: direct sum
 - $k(x, z) = \alpha k_1(x, z)$: scalar product
 - $k(x, z) = k_1(x, z)k_2(x, z)$: direct product
- Kernels can also be constructed by composing these rules
The kernel function k also defines the Kernel Matrix K over the data.
The Kernel Matrix

- The kernel function k also defines the Kernel Matrix K over the data.

- Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of K is defined as:

$$K_{ij} = k(x_i, x_j) = \phi(x_i)^{\top} \phi(x_j)$$
The kernel function k also defines the Kernel Matrix \mathbf{K} over the data.

Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of \mathbf{K} is defined as:

$$K_{ij} = k(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$$

K_{ij}: Similarity between the i-th and j-th example in the feature space \mathcal{F}.
The Kernel Matrix

- The kernel function k also defines the Kernel Matrix K over the data
- Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of K is defined as:
 \[K_{ij} = k(x_i, x_j) = \phi(x_i)^\top \phi(x_j) \]
- K_{ij}: Similarity between the i-th and j-th example in the feature space F
- K: $N \times N$ matrix of pairwise similarities between examples in F space
The kernel function k also defines the Kernel Matrix K over the data.

Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of K is defined as:

$$K_{ij} = k(x_i, x_j) = \phi(x_i)\top\phi(x_j)$$

- K_{ij}: Similarity between the i-th and j-th example in the feature space \mathcal{F}.
- K: $N \times N$ matrix of pairwise similarities between examples in \mathcal{F} space.
- K is a symmetric matrix.
The kernel function \(k \) also defines the Kernel Matrix \(K \) over the data.

Given \(N \) examples \(\{x_1, \ldots, x_N\} \), the \((i, j)\)-th entry of \(K \) is defined as:

\[
K_{ij} = k(x_i, x_j) = \phi(x_i)\top \phi(x_j)
\]

- \(K_{ij} \): Similarity between the \(i \)-th and \(j \)-th example in the feature space \(\mathcal{F} \).
- \(K \): \(N \times N \) matrix of pairwise similarities between examples in \(\mathcal{F} \) space.
- \(K \) is a symmetric matrix.
- \(K \) is a positive definite matrix (except for a few exceptions).
The Kernel Matrix

- The kernel function k also defines the Kernel Matrix K over the data.

- Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of K is defined as:

$$K_{ij} = k(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$$

- K_{ij}: Similarity between the i-th and j-th example in the feature space \mathcal{F}.

- K: $N \times N$ matrix of pairwise similarities between examples in \mathcal{F} space.

- K is a symmetric matrix.

- K is a positive definite matrix (except for a few exceptions).

- For a P.D. matrix: $z^\top K z > 0, \quad \forall z \in \mathbb{R}^N$ (also, all eigenvalues positive).
The Kernel Matrix

- The kernel function k also defines the Kernel Matrix K over the data.

- Given N examples $\{x_1, \ldots, x_N\}$, the (i,j)-th entry of K is defined as:

$$K_{ij} = k(x_i, x_j) = \phi(x_i)^\top \phi(x_j)$$

- K_{ij}: Similarity between the i-th and j-th example in the feature space \mathcal{F}.

- K: $N \times N$ matrix of pairwise similarities between examples in \mathcal{F} space.

- K is a symmetric matrix.

- K is a positive definite matrix (except for a few exceptions).

- For a P.D. matrix: $z^\top K z > 0$, $\forall z \in \mathbb{R}^N$ (also, all eigenvalues positive).

- The Kernel Matrix K is also known as the Gram Matrix.
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:

 \[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- Linear (trivial) Kernel:
 \[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

- Quadratic Kernel:
 \[k(x, z) = (x^\top z)^2 \text{ or } (1 + x^\top z)^2 \]
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- **Linear (trivial) Kernel:**
 \[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

- **Quadratic Kernel:**
 \[k(x, z) = (x^\top z)^2 \quad \text{or} \quad (1 + x^\top z)^2 \]

- **Polynomial Kernel (of degree \(d \)):**
 \[k(x, z) = (x^\top z)^d \quad \text{or} \quad (1 + x^\top z)^d \]
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- **Linear (trivial) Kernel:**
 \[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

- **Quadratic Kernel:**
 \[k(x, z) = (x^\top z)^2 \quad \text{or} \quad (1 + x^\top z)^2 \]

- **Polynomial Kernel (of degree \(d \)):**
 \[k(x, z) = (x^\top z)^d \quad \text{or} \quad (1 + x^\top z)^d \]

- **Radial Basis Function (RBF) Kernel:**
 \[k(x, z) = \exp[-\gamma \|x - z\|^2] \]
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- **Linear (trivial) Kernel:**
 \[k(x, z) = x^T z \] (mapping function \(\phi \) is identity - no mapping)

- **Quadratic Kernel:**
 \[k(x, z) = (x^T z)^2 \quad \text{or} \quad (1 + x^T z)^2 \]

- **Polynomial Kernel (of degree \(d \)):**
 \[k(x, z) = (x^T z)^d \quad \text{or} \quad (1 + x^T z)^d \]

- **Radial Basis Function (RBF) Kernel:**
 \[k(x, z) = \exp[-\gamma \|x - z\|^2] \]
 \(\gamma \) is a hyperparameter (also called the kernel bandwidth)
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- **Linear (trivial) Kernel:**
 \[k(x, z) = x^\top z \] (mapping function \(\phi \) is identity - no mapping)

- **Quadratic Kernel:**
 \[k(x, z) = (x^\top z)^2 \text{ or } (1 + x^\top z)^2 \]

- **Polynomial Kernel (of degree } \text{d}):**
 \[k(x, z) = (x^\top z)^d \text{ or } (1 + x^\top z)^d \]

- **Radial Basis Function (RBF) Kernel:**
 \[k(x, z) = \exp[-\gamma \|x - z\|^2] \]

- \(\gamma \) is a hyperparameter (also called the kernel bandwidth)
- The RBF kernel corresponds to an infinite dimensional feature space \(\mathcal{F} \) (i.e., you can’t actually write down the vector \(\phi(x) \))
Some Examples of Kernels

The following are the most popular kernels for real-valued vector inputs

- **Linear (trivial) Kernel:**
 \[k(x, z) = x^T z \] (mapping function \(\phi \) is identity - no mapping)

- **Quadratic Kernel:**
 \[k(x, z) = (x^T z)^2 \quad \text{or} \quad (1 + x^T z)^2 \]

- **Polynomial Kernel (of degree \(d \))**:
 \[k(x, z) = (x^T z)^d \quad \text{or} \quad (1 + x^T z)^d \]

- **Radial Basis Function (RBF) Kernel:**
 \[k(x, z) = \exp[-\gamma \|x - z\|^2] \]

 - \(\gamma \) is a hyperparameter (also called the kernel bandwidth)
 - The RBF kernel corresponds to an infinite dimensional feature space \(\mathcal{F} \) (i.e., you can’t actually write down the vector \(\phi(x) \))

Note: Kernel hyperparameters (e.g., \(d, \gamma \)) chosen via cross-validation
Using Kernels

- Kernels can turn a linear model into a nonlinear one
Kernels can turn a linear model into a nonlinear one.

Recall: Kernel $k(x, z)$ represents a dot product in some high dimensional feature space \mathcal{F}.
Using Kernels

- Kernels can turn a linear model into a nonlinear one
- Recall: Kernel $k(x, z)$ represents a dot product in some high dimensional feature space \mathcal{F}
- Any learning algorithm in which examples only appear as dot products $(x_i^\top x_j)$ can be kernelized (i.e., non-linearlized)
Kernels can turn a linear model into a nonlinear one

Recall: Kernel $k(\mathbf{x}, \mathbf{z})$ represents a dot product in some high dimensional feature space \mathcal{F}

Any learning algorithm in which examples only appear as dot products $(\mathbf{x}_i^\top \mathbf{x}_j)$ can be kernelized (i.e., non-linearized)

.. by replacing the $\mathbf{x}_i^\top \mathbf{x}_j$ terms by $\phi(\mathbf{x}_i)^\top \phi(\mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j)$
Using Kernels

- Kernels can turn a linear model into a nonlinear one.
- Recall: Kernel $k(x, z)$ represents a dot product in some high dimensional feature space \mathcal{F}.
- Any learning algorithm in which examples only appear as dot products $(x_i^\top x_j)$ can be kernelized (i.e., non-linearized).
 - .. by replacing the $x_i^\top x_j$ terms by $\phi(x_i)^\top \phi(x_j) = k(x_i, x_j)$
- Most learning algorithms are like that.
Kernels can turn a linear model into a nonlinear one

Recall: Kernel \(k(x, z) \) represents a dot product in some high dimensional feature space \(\mathcal{F} \)

Any learning algorithm in which examples only appear as dot products \((x_i^\top x_j) \) can be kernelized (i.e., non-linearized)

.. by replacing the \(x_i^\top x_j \) terms by \(\phi(x_i)^\top \phi(x_j) = k(x_i, x_j) \)

Most learning algorithms are like that

- Perceptron, SVM, linear regression, etc.
Using Kernels

- Kernels can turn a linear model into a nonlinear one.

- Recall: Kernel $k(x, z)$ represents a dot product in some high dimensional feature space F.

- Any learning algorithm in which examples only appear as dot products ($x_i^\top x_j$) can be kernelized (i.e., non-linearized).

 - .. by replacing the $x_i^\top x_j$ terms by $\phi(x_i)^\top \phi(x_j) = k(x_i, x_j)$.

- Most learning algorithms are like that.

 - Perceptron, SVM, linear regression, etc.

 - Many of the unsupervised learning algorithms too can be kernelized (e.g., K-means clustering, Principal Component Analysis, etc.)
Recall the SVM dual Lagrangian:

\[
\text{Maximize } L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m \cdot x_n)
\]

subject to \(\sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N \)
Kernelized SVM Training

- Recall the SVM dual Lagrangian:

\[
\begin{align*}
\text{Maximize} \quad & L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \\
\text{subject to} \quad & \sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N
\end{align*}
\]

- Replacing \(x_m^T x_n\) by \(\phi(x_m)^\top \phi(x_n) = k(x_m, x_n) = K_{mn}\), where \(k(., .)\) is some suitable kernel function
Kernelized SVM Training

- Recall the SVM dual Lagrangian:

\[
\text{Maximize } L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \\
\text{subject to } \sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N
\]

- Replacing \(x_m^T x_n\) by \(\phi(x_m)^T \phi(x_n) = k(x_m, x_n) = K_{mn}\), where \(k(., .)\) is some suitable kernel function:

\[
\text{Maximize } L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n K_{mn} \\
\text{subject to } \sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N
\]
Kernelized SVM Training

- Recall the SVM dual Lagrangian:

\[
\text{Maximize } L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n)
\]

subject to \(\sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N \)

- Replacing \(x_m^T x_n \) by \(\phi(x_m)^T \phi(x_n) = k(x_m, x_n) = K_{mn} \), where \(k(., .) \) is some suitable kernel function

\[
\text{Maximize } L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n K_{mn}
\]

subject to \(\sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N \)

- SVM now learns a linear separator in the kernel defined feature space \(\mathcal{F} \)
Kernelized SVM Training

- Recall the SVM dual Lagrangian:

\[L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n (x_m^T x_n) \]

subject to \[\sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N \]

- Replacing \(x_m^T x_n \) by \(\phi(x_m)^\top \phi(x_n) = k(x_m, x_n) = K_{mn} \), where \(k(., .) \) is some suitable kernel function

\[L_D(w, b, \xi, \alpha, \beta) = \sum_{n=1}^{N} \alpha_n - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_m \alpha_n y_m y_n K_{mn} \]

subject to \[\sum_{n=1}^{N} \alpha_n y_n = 0, \quad 0 \leq \alpha_n \leq C; \quad n = 1, \ldots, N \]

- SVM now learns a linear separator in the kernel defined feature space \(\mathcal{F} \)
 - This corresponds to a non-linear separator in the original space \(\mathcal{X} \)
Prediction for a test example \mathbf{x} (assume $b = 0$)

$$y = \text{sign}(\mathbf{w}^\top \mathbf{x})$$
Kernelized SVM Prediction

- Prediction for a test example \mathbf{x} (assume $b = 0$)

$$y = \text{sign}(\mathbf{w}^\top \mathbf{x}) = \text{sign}(\sum_{n \in SV} \alpha_n y_n \mathbf{x}_n^\top \mathbf{x})$$

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)
Kernelized SVM Prediction

- Prediction for a test example \mathbf{x} (assume $b = 0$)

$$
 y = \text{sign}(\mathbf{w}^\top \mathbf{x}) = \text{sign}(\sum_{n \in SV} \alpha_n y_n \mathbf{x}_n^\top \mathbf{x})
$$

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)

- Replacing each example with its feature mapped representation ($\mathbf{x} \rightarrow \phi(\mathbf{x})$)

$$
 y = \text{sign}(\sum_{n \in SV} \alpha_n y_n \phi(\mathbf{x}_n)^\top \phi(\mathbf{x}))
$$
Kernelized SVM Prediction

- Prediction for a test example \mathbf{x} (assume $b = 0$)

$$ y = \text{sign}(\mathbf{w}^\top \mathbf{x}) = \text{sign}(\sum_{n \in \text{SV}} \alpha_n y_n \mathbf{x}_n^\top \mathbf{x}) $$

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)

- Replacing each example with its feature mapped representation ($\mathbf{x} \to \phi(\mathbf{x})$)

$$ y = \text{sign}(\sum_{n \in \text{SV}} \alpha_n y_n \phi(\mathbf{x}_n)^\top \phi(\mathbf{x})) = \text{sign}(\sum_{n \in \text{SV}} \alpha_n y_n k(\mathbf{x}_n, \mathbf{x})) $$
Kernelized SVM Prediction

- Prediction for a test example x (assume $b = 0$)

$$y = \text{sign}(w^\top x) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n x_n^\top x\right)$$

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)
- Replacing each example with its feature mapped representation ($x \rightarrow \phi(x)$)

$$y = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n \phi(x_n)^\top \phi(x)\right) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n k(x_n, x)\right)$$

- The weight vector for the kernelized case can be expressed as:

$$w = \sum_{n \in SV} \alpha_n y_n \phi(x_n)$$
Kernelized SVM Prediction

- Prediction for a test example x (assume $b = 0$)

$$
y = \text{sign}(w^\top x) = \text{sign}(\sum_{n \in SV} \alpha_n y_n x_n^\top x)
$$

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)
- Replacing each example with its feature mapped representation ($x \rightarrow \phi(x)$)

$$
y = \text{sign}(\sum_{n \in SV} \alpha_n y_n \phi(x_n)^\top \phi(x)) = \text{sign}(\sum_{n \in SV} \alpha_n y_n k(x_n, x))
$$

- The weight vector for the kernelized case can be expressed as:

$$
w = \sum_{n \in SV} \alpha_n y_n \phi(x_n) = \sum_{n \in SV} \alpha_n y_n k(x_n, x)$$
Kernelized SVM Prediction

- Prediction for a test example x (assume $b = 0$)
 \[
 y = \text{sign}(w^\top x) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n x_n^\top x\right)
 \]

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)
- Replacing each example with its feature mapped representation ($x \rightarrow \phi(x)$)
 \[
 y = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n \phi(x_n)^\top \phi(x)\right) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n k(x_n, x)\right)
 \]

- The weight vector for the kernelized case can be expressed as:
 \[
 w = \sum_{n \in SV} \alpha_n y_n \phi(x_n) = \sum_{n \in SV} \alpha_n y_n k(x_n, .)
 \]

- **Important:** Kernelized SVM needs the support vectors at the test time (except when you can write $\phi(x_n)$ as an explicit, reasonably-sized vector)
Kernelized SVM Prediction

- Prediction for a test example x (assume $b = 0$)
 \[
y = \text{sign}(w^\top x) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n x_n^\top x\right)
 \]

- SV is the set of support vectors (i.e., examples for which $\alpha_n > 0$)
- Replacing each example with its feature mapped representation ($x \rightarrow \phi(x)$)
 \[
y = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n \phi(x_n)^\top \phi(x)\right) = \text{sign}\left(\sum_{n \in SV} \alpha_n y_n k(x_n, x)\right)
 \]

- The weight vector for the kernelized case can be expressed as:
 \[
w = \sum_{n \in SV} \alpha_n y_n \phi(x_n) = \sum_{n \in SV} \alpha_n y_n k(x_n, .)
 \]

- **Important**: Kernelized SVM needs the support vectors at the test time (except when you can write $\phi(x_n)$ as an explicit, reasonably-sized vector)
 - In the unkernelized version $w = \sum_{n \in SV} \alpha_n y_n x_n$ can be computed and stored as a $D \times 1$ vector, so the support vectors need not be stored
The learned decision boundary in the original space is nonlinear.
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
 - All you need to do is replace the inner products with the kernel
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
 - All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
 - All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models.
 - All you need to do is replace the inner products with the kernel.

- All the computations remain as efficient as in the original space.

- Choice of the kernel is an important factor.

- Many kernels are tailor-made for specific types of data:
 - Strings (string kernels): DNA matching, text classification, etc.
 - Trees (tree kernels): Comparing parse trees of phrases/sentences.
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models.
 - All you need to do is replace the inner products with the kernel.
- All the computations remain as efficient as in the original space.
- Choice of the kernel is an important factor.
- Many kernels are tailor-made for specific types of data.
 - Strings (string kernels): DNA matching, text classification, etc.
 - Trees (tree kernels): Comparing parse trees of phrases/sentences.
- Kernels can even be learned from the data (hot research topic!)
Kernels: concluding notes

- Kernels give a modular way to learn nonlinear patterns using linear models
 - All you need to do is replace the inner products with the kernel
- All the computations remain as efficient as in the original space
- Choice of the kernel is an important factor
- Many kernels are tailor-made for specific types of data
 - Strings (string kernels): DNA matching, text classification, etc.
 - Trees (tree kernels): Comparing parse trees of phrases/sentences
- Kernels can even be learned from the data (hot research topic!)
 - Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)
Kernels give a modular way to learn nonlinear patterns using linear models

- All you need to do is replace the inner products with the kernel

All the computations remain as efficient as in the original space

Choice of the kernel is an important factor

Many kernels are tailor-made for specific types of data

- Strings (string kernels): DNA matching, text classification, etc.
- Trees (tree kernels): Comparing parse trees of phrases/sentences

Kernels can even be learned from the data (hot research topic!)

- Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)

A question worth thinking about: Wouldn’t mapping the data to higher dimensional space cause my classifier (say SVM) to overfit?
Kernels give a modular way to learn nonlinear patterns using linear models
 All you need to do is replace the inner products with the kernel

All the computations remain as efficient as in the original space

Choice of the kernel is an important factor

Many kernels are tailor-made for specific types of data
 Strings (string kernels): DNA matching, text classification, etc.
 Trees (tree kernels): Comparing parse trees of phrases/sentences

Kernels can even be learned from the data (hot research topic!)
 Kernel learning means learning the similarities between examples (instead of using some pre-defined notion of similarity)

A question worth thinking about: Wouldn’t mapping the data to higher dimensional space cause my classifier (say SVM) to overfit?
 The answer lies in the concepts of large margins and generalization
Intro to probabilistic methods for supervised learning
- Linear Regression (probabilistic version)
- Logistic Regression