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SVM (Recap)

@ SVM finds the maximum margin hyperplane that separates the classes

Wix+b=1
/
class+1 @ /
Wx+b>=1 g .. ° wx+b=-1
° ’
(] [ 4 ‘m
7 /
°
| s
°
|an
® L]
’ L B B
/
, B lass1

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 2/18



SVM (Recap)

@ SVM finds the maximum margin hyperplane that separates the classes

Wix+b=1
/
class+1 @ /
Wx+b>=1 g .. ° wx+b=-1
° ’
(] [ 4 ‘m
7 /
°
| s
°
|an
® L]
’ L B B
/
, B lass1

1

@ Margin v = Tl
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@ Margin v = HTlH = maximizing the margin v = minimizing ||w|| (the norm)
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SVM (Recap)

@ SVM finds the maximum margin hyperplane that separates the classes
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@ Margin v = HTlH = maximizing the margin v = minimizing ||w|| (the norm)
@ The optimization problem for the separable case
(no misclassified training example)

2
Minimize f(w,b) = w
subject to  y,(w'x, +b) > 1,
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SVM (Recap)

@ SVM finds the maximum margin hyperplane that separates the classes

@ Margin v = HTlH = maximizing the margin v = minimizing ||w|| (the norm)

@ The optimization problem for the separable case

(no misclassified training example)

Minimize f(w,b) =

[[wl[”

2

subject to  y,(w'x, +b) > 1,

n=1

N

yoeeey

@ This is a Quadratic Program (QP) with N linear inequality constraints
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SVM: The Optimization Problem

@ Our optimization problem is:

2
Minimize f(w,b) = w
subject to 1 < y,(w'x, + b), n=1,...,N
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SVM: The Optimization Problem

@ Our optimization problem is:

2
Minimize f(w,b) = w
subject to 1 < y,(w'x, + b), n=1,...,N
@ Introducing Lagrange Multipliers o, (n = {1,..., N}), one for each
constraint, leads to the Primal Lagrangian:
WP, <
Minimize Lp(w,b,a)="— + Zoa,,{l — yo(w'x, + b)}
2 n=1
subjectto ap, >0; n=1,...,N
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SVM: The Optimization Problem

@ Our optimization problem is:

2
Minimize f(w,b) = w
subject to 1 < y,(w'x, + b), n=1,...,N

@ Introducing Lagrange Multipliers o, (n = {1,..., N}), one for each

constraint, leads to the Primal Lagrangian:

> N
Minimize Lp(w,b,a) = wl® + Zoz,,{l — Ya(w'x, + b)}
2 n=1
subjectto ap, >0; n=1,...,N

@ We can now solve this Lagrangian
o i.e., optimize L(w, b,a) w.r.t. w, b, and a
@ .. making use of the Lagrangian Duality theory..
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SVM: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b and set them to zero

L
o 0w Zanynxn,
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SVM: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b and set them to zero
OLp
w w—z:cv,,ynx,,7 ——O:>Zany,,—0

@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N
1
Maximize Lp(w,b,a) Zan 5 Z aman}/myn(x;xn)

m,n=1
N
subject to Zany,,:o, ap,>0;, n=1,....N

n=1
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SVM: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b and set them to zero
N
OLp
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@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N
1
Maximize Lp(w,b,a) Zan 5 Z aman}/myn(x;xn)

m,n=1
N
subject to Zany,,:o, ap,>0;, n=1,....N

n=1

9 It's a Quadratic Programming problem in «
@ Several off-the-shelf solvers exist to solve such QPs
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SVM: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b and set them to zero
N
OLp
= w—z:cv,,ynx,,7 —:O:>Zany,,:0
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@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N
1
Maximize Lp(w,b,a) Zan 5 Z aman}/myn(x;xn)

m,n=1
N
subject to Zany,,:o, ap,>0;, n=1,....N

n=1

9 It's a Quadratic Programming problem in «

@ Several off-the-shelf solvers exist to solve such QPs
@ Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.
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SVM: The Solution

@ Once we have the a),'s, w and b can be computed as:

N
W =51 QnYnXn

1 T T
b= —3 (Minpy,—41 W' X, + maxpy,—_1W'Xx,)
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SVM: The Solution

@ Once we have the a),'s, w and b can be computed as:

N
W=D 1 QnYnXn
b= —% (Minpy,—+1 W' Xy + Maxp,y,——1 W' X,)
@ Note: Most «,'s in the solution are zero (sparse solution)
o Reason: Karush-Kuhn-Tucker (KKT) conditions

@ For the optimal «,'s
an{l — ys(w'x, +b)} =0
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SVM: The Solution

@ Once we have the a),'s, w and b can be computed as:

N
W =51 QnYnXn

1 T T
b= —3 (Minpy,—41 W' X, + maxpy,—_1W'Xx,)

@ Note: Most «,'s in the solution are zero (sparse solution)

@ Reason: Karush-Kuhn-Tucker (KKT) conditions

9

For the optimal a,’s

an{l — ys(w'x, +b)} =0

a; is non-zero only if x, lies on one of the two
margin boundaries, i.e., for which yn(wan +b)=1
These examples are called support vectors

Support vectors “support” the margin boundaries
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SVM - Non-separable case

@ Non-separable case: No hyperplane can separate the classes perfectly
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SVM - Non-separable case

@ Non-separable case: No hyperplane can separate the classes perfectly
@ Still want to find the maximum margin hyperplane but this time:
@ We will allow some training examples to be misclassified
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@ Non-separable case: No hyperplane can separate the classes perfectly
@ Still want to find the maximum margin hyperplane but this time:

@ We will allow some training examples to be misclassified
@ We will allow some training examples to fall within the margin region
, slack
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SVM - Non-separable case

@ Non-separable case: No hyperplane can separate the classes perfectly
@ Still want to find the maximum margin hyperplane but this time:

@ We will allow some training examples to be misclassified
@ We will allow some training examples to fall within the margin region
.‘ , slack _

,
wx+b=o ,/ W

@ Recall: For the separable case (training loss = 0), the constraints were:

yo(w'x,+b)>1 Vn
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SVM - Non-separable case

@ Non-separable case: No hyperplane can separate the classes perfectly
@ Still want to find the maximum margin hyperplane but this time:

@ We will allow some training examples to be misclassified
@ We will allow some training examples to fall within the margin region
, slack
enm | S

,
wx+b=o ,/ W

@ Recall: For the separable case (training loss = 0), the constraints were:

yo(w'x,+b)>1 Vn
@ For the non-separable case, we relax the above constraints as:

yn(wan + b) 2 1*£n Vn

@ &, is called slack variable (distance x,, goes past the margin boundary)

@ £, > 0,Vn, misclassification when &, > 1
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples

9 .. but we want their number to be minimized
=- by minimizing the sum of slack variables (Z,’:’Zl &n)
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples

9 .. but we want their number to be minimized
=- by minimizing the sum of slack variables (Z,’:’Zl &n)

@ The optimization problem for the non-separable case

2 N
Minimize f(w,b) = w—&-Can
n=1

subject to  y,(w'x,+b)>1-¢, £,>0 n=1,...,N
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples

9 .. but we want their number to be minimized
=- by minimizing the sum of slack variables (Z,’:’Zl &n)

@ The optimization problem for the non-separable case

2 N
Minimize f(w,b) = w—&-CZ&,
n=1

subject to  y,(w'x,+b)>1-¢, £,>0 n=1,...,N

2
o C dictates which term (w or ngzl &n) will dominate the minimization

2
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9 .. but allow potentially large # of misclassified training examples
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples

9 .. but we want their number to be minimized
=- by minimizing the sum of slack variables (Z,’:’Zl &n)

@ The optimization problem for the non-separable case

2 N
Minimize f(w,b) = w—&-Can
n=1

subject to  y,(w'x,+b)>1-¢, £,>0 n=1,...,N

2
o C dictates which term (w or ngzl &n) will dominate the minimization

2
e Small C = H“;H dominates = prefer large margins

9 .. but allow potentially large # of misclassified training examples

o Large C = CZHN:I &, dominates = prefer small # of misclassified examples
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SVM - Non-separable case

@ Non-separable case: We will allow misclassified training examples

9 .. but we want their number to be minimized
=- by minimizing the sum of slack variables (Z,’:’Zl &n)

@ The optimization problem for the non-separable case

2 N
Minimize f(w,b) = w—&-Can
n=1

subject to  y,(w'x,+b)>1-¢, £,>0 n=1,...,N

2
o C dictates which term (w or ngzl &n) will dominate the minimization

2
e Small C = H“;H dominates = prefer large margins

9 .. but allow potentially large # of misclassified training examples

o Large C = CZHN:I &, dominates = prefer small # of misclassified examples
@ .. at the expense of having a small margin
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SVM - Non-separable case: The Optimization Problem

@ Our optimization problem is:

5 N
Minimize f(w,b,&) = Hv;” +CZ£,,
n=1

subject to 1 §y,,(wa,,+b)+£,7, 0<¢, n=1,...,N

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 8 /18



SVM - Non-separable case: The Optimization Problem

@ Our optimization problem is:

Minimize f(w,b,&) = HWH2+CZ£

subject to 1 §y,,(w x,,+b)+£,7, 0<¢, n=1,...,N

o Introducing Lagrange Multipliers ap, 8, (n = {1,..., N}), for the constraints,
leads to the Primal Lagrangian:

Minimize Lp(w, b, &, o, B) = liwl® H

+ <CZ£n+Zan{l—yn wxy + b)—€,}— Z Bnkn

subject to ap, 8, >0; n=1,...,N
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SVM - Non-separable case: The Optimization Problem

@ Our optimization problem is:

Minimize f(w,b,&) = HWH2+CZ£

subject to 1 §y,,(w x,,+b)+£,7, 0<¢, n=1,...,N

o Introducing Lagrange Multipliers ap, 8, (n = {1,..., N}), for the constraints,
leads to the Primal Lagrangian:

Minimize Lp(w, b, &, o, B) = liwl® H

+ <CZ£n+Zan{l—yn wxy + b)—€,}— Z Bnkn

subject to ap, 8, >0; n=1,...,N

@ Comparison note: Terms in red font were not there in the separable case
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

lp N
— =0=w= QpYnXn,
w HXZ; nYnXn
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

lp N alp N
W:Ozw:Zanynxn, §:0¢Zanyn:0,

n=1 n=1
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

lp N alp N
WZOiW:;Qn)’nXm E:(Jﬁgan}/n:ov

aLp
0&n

=0=C—a,—B,=0
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

oL N oL N
il =0=w= E ®nYnXn, i =0= § anyn =0,
n=1

oLp
=0=C— —Bn=0
ow — b oo = Fn

¢,

@ Using C —a,—B,=0and 3, >0

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 9 /18



SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

oL N oL N
il =0=w= E ®nYnXn, i =0= § anyn =0,
n=1

oLp
=0=C— —Bn=0
ow — b oo = Fn

¢,

@ UsingC—a,—f6,=0and 3, >0=a,<C
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

oL N oL N
il =0=w= E ®nYnXn, i =0= § anyn =0,
n=1

oLp
=0=C— —Bn=0
ow — b oo = Fn

¢,

@ UsingC—a,—f6,=0and 3, >0=a,<C
@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N N
- ) 1
Maximize Lp(w,b,&, o, ) = g an = E AmCnYmYn(XI%5)

n=1 m,n=1

N
subject to Zanyn:O, 0<a,<C; n=1,...,N

n=1
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SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

lp N alp N
WZOiW:;Qn)’nXm E:(Jﬁgan}/n:ov

aLp
=0=C— — =0
o, Qp Bn

@ UsingC—a,—f6,=0and 3, >0=a,<C
@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N N
- ) 1
Maximize Lp(w,b,&, o, ) = g an = E AmCnYmYn(XI%5)
n=1 m,n=1

N
subject to Zanyn:O, 0<a,<C; n=1,...,N

n=1

@ Again a Quadratic Programming problem in «

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 9 /18



SVM - Non-separable case: The Optimization Problem

o Take (partial) derivatives of Lp w.r.t. w, b, £, and set them to zero

lp N alp N
W:O:}w:,Z:;a,,ynxm WI(Ji;anYn:Oy

aLp
=0=C— — =0
o, Qp Bn

@ UsingC—a,—f6,=0and 3, >0=a,<C
@ Substituting these in the Primal Lagrangian Lp gives the Dual Lagrangian

N N
1
Maximize Lp(w,b,&, o, ) = g an = E AmCnYmYn(XI%5)

n=1 m,n=1

N
subject to Zanyn:O, 0<a,<C; n=1,...,N

n=1

@ Again a Quadratic Programming problem in «
@ Given «, the solution for w, b has the same form as the separable case
@ Note: «a is again sparse. Nonzero «,'s correspond to the support vectors
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Support Vectors in the non-separable case

@ The separable case has only one type of support vectors

o .. ones that lie on the margin boundaries w' x+ b= —1 and w' x+ b = +1
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@ The separable case has only one type of support vectors

o .. ones that lie on the margin boundaries w' x+ b= —1 and w' x+ b = +1

@ The non-separable case has three types of support vectors
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Support Vectors in the non-separable case

@ The separable case has only one type of support vectors

o .. ones that lie on the margin boundaries w' x+ b= —1 and w' x+ b = +1

@ The non-separable case has three types of support vectors

3
[ ] /
) .Vv/
class+1.. [ ] -
° 1 - WX+ b=-1
[} @ /
Ps / v B
A ]
° 1 ‘o3
[ |
[
/
wix+b=1 UL

B B assa
[ ] [ ]

@ Lying on the margin boundaries w'x + b = —1 and w'x + b = +1 (& = 0)
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Support Vectors in the non-separable case

@ The separable case has only one type of support vectors

o .. ones that lie on the margin boundaries w' x+ b= —1 and w' x+ b = +1

@ The non-separable case has three types of support vectors

3
[ ] /
) .Vv/
class+1.. [ ] -
° 1 - WX+ b=-1
[} @ /
Ps / v B
A ]
° 1 ‘o3
[ |
[
/
wix+b=1 UL

B B assa
[ ] [ ]

@ Lying on the margin boundaries w’x + b= —1and w'x+ b= +1 (£, = 0)
@ Lying within the margin region (0 < &, < 1) but still on the correct side
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Support Vectors in the non-separable case

@ The separable case has only one type of support vectors

o .. ones that lie on the margin boundaries w' x+ b= —1 and w' x+ b = +1

@ The non-separable case has three types of support vectors

3
[ ] /
) .Vv/
class+1.. [ ] -
° 1 - WX+ b=-1
[} @ /
Ps / v B
A ]
° 1 ‘o3
[ |
[
/
wix+b=1 UL

B B assa
[ ] [ ]

@ Lying on the margin boundaries w'x + b = —1 and w'x + b = +1 (& = 0)
@ Lying within the margin region (0 < &, < 1) but still on the correct side
@ Lying on the wrong side of the hyperplane (£, > 1)
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Support Vector Machines: some notes

@ Training time of the standard SVM is O(N3) (have to solve the QP)

@ Can be prohibitive for large datasets
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Support Vector Machines: some notes

@ Training time of the standard SVM is O(N3) (have to solve the QP)

@ Can be prohibitive for large datasets

@ Lots of research has gone into speeding up the SVMs
o Many approximate QP solvers are used to speed up SVMs
@ Online training (e.g., using stochastic gradient descent)

@ Several extensions exist

@ Nonlinear separation boundaries by applying the Kernel Trick (next class)
@ More than 2 classes (multiclass classification)

@ Structured outputs (structured prediction)

(9

Real-valued outputs (support vector regression)

@ Popular SVM implementations: libSVM, SVMLight, SVM-struct, etc.

@ Also http://www.kernel-machines.org/software
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http://www.kernel-machines.org/software

Loss Functions for Linear Classification

@ We have seen two linear binary classification algorithms (Perceptron, SVM)
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Loss Functions for Linear Classification

@ We have seen two linear binary classification algorithms (Perceptron, SVM)

@ Linear binary classification written as a general optimization problem:
N

. —_ . T R )
min L(w, b) min nzz:l]l(y,,(w X, + b) < 0) + AR(w, b)

o I(.) is the indicator function (1 if (.) is true, 0 otherwise)
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min L(w, b) min nzz:l]l(y,,(w X, + b) < 0) + AR(w, b)

o I(.) is the indicator function (1 if (.) is true, 0 otherwise)
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Loss Functions for Linear Classification

@ We have seen two linear binary classification algorithms (Perceptron, SVM)

@ Linear binary classification written as a general optimization problem:
N

. . T
min L(w, b) = min nzz:l]l(y,,(w X, + b) < 0) + AR(w, b)

W’

o I(.) is the indicator function (1 if (.) is true, 0 otherwise)
@ The objective is sum of two parts: the loss function and the regularizer

@ Want to fit training data well and also want to have simple solutions
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Loss Functions for Linear Classification

©

We have seen two linear binary classification algorithms (Perceptron, SVM)

(]

Linear binary classification written as a general optimization problem:
N

. . T
min L(w, b) = min nzz:l]l(y,,(w X, + b) < 0) + AR(w, b)

W’

©

I(.) is the indicator function (1 if (.) is true, 0 otherwise)
The objective is sum of two parts: the loss function and the regularizer

(]

@ Want to fit training data well and also want to have simple solutions

The above loss function called the 0-1 loss

(]

Loss=1
1)

Loss =0
©0) y (wx, +b)

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 12 /18



Loss Functions for Linear Classification

©

We have seen two linear binary classification algorithms (Perceptron, SVM)

(]

Linear binary classification written as a general optimization problem:
N

. . T
min L(w, b) = min nzz:l]l(y,,(w X, + b) < 0) + AR(w, b)

W’

©

I(.) is the indicator function (1 if (.) is true, 0 otherwise)
The objective is sum of two parts: the loss function and the regularizer

(]

@ Want to fit training data well and also want to have simple solutions

The above loss function called the 0-1 loss

(]

Loss=1
1)

Loss =0
©0) y (wx, +b)

©

The 0-1 loss is NP-hard to optimize (exactly/approximately) in general

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 12 /18



Loss Functions for Linear Classification

@ We have seen two linear binary classification algorithms (Perceptron, SVM)

@ Linear binary classification written as a general optimization problem:
N

min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b pr]
o I(.) is the indicator function (1 if (.) is true, 0 otherwise)
@ The objective is sum of two parts: the loss function and the regularizer
@ Want to fit training data well and also want to have simple solutions

@ The above loss function called the 0-1 loss

Loss=1
1)

Loss=0
©0) y (wx, +b)

@ The 0-1 loss is NP-hard to optimize (exactly/approximately) in general

@ Different loss function approximations and regularizers lead to specific
algorithms (e.g., Perceptron, SVM, Logistic Regression, etc.).
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The 0-1 Loss

Loss =1
(0,1)

Loss =0
(00) y (w'x +b)

@ It's a combinatorial optimization problem
@ Can be shown to be NP-hard

o .. using a reduction of a variant of the satisfiability problem
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The 0-1 Loss

Loss =1
(0,1)

Loss =0
(0,0) yn(wan +b)

©

It's a combinatorial optimization problem

Can be shown to be NP-hard

©

o .. using a reduction of a variant of the satisfiability problem

(]

No polynomial time algorithm

@ Loss function is non-smooth, non-convex
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The 0-1 Loss

Loss =1
(0,1)

Loss =0
(00) y (w'x +b)

©

It's a combinatorial optimization problem

Can be shown to be NP-hard

©

o .. using a reduction of a variant of the satisfiability problem

(]

No polynomial time algorithm
@ Loss function is non-smooth, non-convex
@ Small changes in w, b can change the loss by a lot
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Approximations to the 0-1 loss

@ We use loss functions that are convex approximations to the 0-1 loss
9 These are called surrogate loss functions
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Approximations to the 0-1 loss

@ We use loss functions that are convex approximations to the 0-1 loss
9 These are called surrogate loss functions

o Examples of surrogate loss functions (assuming b = 0):
o Hinge loss: [1 — yaw”x,]4+ = max{0,1 — y,w'x,}

o Log loss: log[1 + exp(—y.w ' x,)]

o Exponential loss: exp(fy,,wa,,)

@ All are convex upper bounds on the 0-1 loss

@ Minimizing a convex upper bound also pushes down o ¥

the original function o P

@ Unlike 0-1 loss, these loss functions depend on how
far the examples are from the hyperplane
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Approximations to the 0-1 loss

@ We use loss functions that are convex approximations to the 0-1 loss
9 These are called surrogate loss functions

o Examples of surrogate loss functions (assuming b = 0):
o Hinge loss: [1 — yaw”x,]4+ = max{0,1 — y,w'x,}

o Log loss: log[1 + exp(—y.w ' x,)]

o Exponential loss: exp(fy,,wa,,)

@ All are convex upper bounds on the 0-1 loss

@ Minimizing a convex upper bound also pushes down o ¥

the original function o P

@ Unlike 0-1 loss, these loss functions depend on how
far the examples are from the hyperplane

@ Apart from convexity, smoothness is the other desirable for loss functions

@ Smoothness allows using gradient (or stochastic gradient) descent
@ Note: hinge loss is not smooth at (1,0) but subgradient descent can be used
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zyzl én
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zﬁzl én

om e

o No penalty (£, = 0) if ya(w'x, + b) > 1
o Linear penalty (£, =1 — y,(w'x, + b)) if yo(w'x, + b) < 1
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zyzl én

om e

o No penalty (£, = 0) if ya(w'x, + b) > 1
o Linear penalty (&, =1 — yo(w'x, + b)) if yo(w'x, + b) < 1
o It's precisely the hinge loss max{0,1 — y,(w'x, + b)}
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zﬁzl én

om e

(9

No penalty (&» = 0) if ya(w'x, + b) > 1

(9

Linear penalty (£, = 1 — yn(W X, + b)) if yo(w'x, + b) < 1
It's precisely the hinge loss max{0,1 — y,(w'x, + b)}

(9

o Note: Some SVMs minimize the sum of squared slacks Zﬁlzl £
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zﬁzl én

(9

No penalty (&» = 0) if ya(w'x, + b) > 1

o Linear penalty (£, =1 — y,(w'x, + b)) if yo(w'x, + b) < 1

o It's precisely the hinge loss max{0,1 — y,(w'x, + b)}

@ Note: Some SVMs minimize the sum of squared slacks Zﬁlzl £

@ Perceptron uses a variant of the hinge loss: max{0, —y,(w'x, + b)}
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zyzl én

om . oslack

(9

No penalty (&» = 0) if ya(w'x, + b) > 1

o Linear penalty (£, =1 — y,(w'x, + b)) if yo(w'x, + b) < 1

o It's precisely the hinge loss max{0,1 — y,(w'x, + b)}

@ Note: Some SVMs minimize the sum of squared slacks ZLV:I £

@ Perceptron uses a variant of the hinge loss: max{0, —y,(w'x, + b)}
9 Logistic Regression uses the log loss

@ Misnomer: Logistic Regression does classification, not regression!
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Loss functions for specific algorithms

@ Recall SVM non-separable case: we minimized the sum of slacks Zyzl én

om . oslack

(9

No penalty (&» = 0) if ya(w'x, + b) > 1

o Linear penalty (£, =1 — y,(w'x, + b)) if yo(w'x, + b) < 1

o It's precisely the hinge loss max{0,1 — y,(w'x, + b)}

@ Note: Some SVMs minimize the sum of squared slacks ZLV:I £

@ Perceptron uses a variant of the hinge loss: max{0, —y,(w'x, + b)}
9 Logistic Regression uses the log loss
@ Misnomer: Logistic Regression does classification, not regression!

@ Boosting uses the exponential loss
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:

N
. _ . T R )
min L(w, b) mlpnzz:l]l(y,,(w Xp + b) < 0) + AR(w, b)

W,
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
in L(w, b) = min » I(ys(w'x,+ b) < 0)+ AR(w, b
min L(w, b) nvg’lg; (va(W"xn + b) < 0) + AR(w, b)

@ We have already seen the approximation choices for the 0-1 loss function
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:

W,

N
. _ . T R )
min L(w, b) mlpnzz:l]l(y,,(w Xp + b) < 0) + AR(w, b)

@ We have already seen the approximation choices for the 0-1 loss function
@ What about the regularizer term R(w, b) that ensures simple solutions?
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:

W,

N
. _ . T
min L(w, b) = min ,?:1 I(yn(w'x,+ b) < 0) + AR(w, b)

@ We have already seen the approximation choices for the 0-1 loss function
@ What about the regularizer term R(w, b) that ensures simple solutions?

@ The regularizer R(w, b) determines what each entry wy of w looks like

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 16 / 18



Regularizers

@ Recall: The optimization problem for regularized linear binary classification:

N

n\;lp L(w, b) = n\;lp EEH(y,,(wa,, + b) < 0)+ AR(w, b)
n—

@ We have already seen the approximation choices for the 0-1 loss function

@ What about the regularizer term R(w, b) that ensures simple solutions?

@ The regularizer R(w, b) determines what each entry wy of w looks like

9 Ideally, we want most entries wy of w be zero
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
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n\;lp L(w, b) = n\;lp EEH(y,,(wa,, + b) < 0)+ AR(w, b)
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@ We have already seen the approximation choices for the 0-1 loss function

@ What about the regularizer term R(w, b) that ensures simple solutions?

@ The regularizer R(w, b) determines what each entry wy of w looks like

@ ldeally, we want most entries wy of w be zero , so prediction depends only on
a small number of features (for which wy # 0).
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b 1
We have already seen the approximation choices for the 0-1 loss function
What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wy of w looks like

¢ ¢ ¢ ¢

Ideally, we want most entries wy of w be zero , so prediction depends only on

a small number of features (for which wy # 0). Desired minimization:
D

R (w,b) = [(wy # 0)
d=1
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b 1
We have already seen the approximation choices for the 0-1 loss function
What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wy of w looks like

¢ ¢ ¢ ¢

Ideally, we want most entries wy of w be zero , so prediction depends only on

a small number of features (for which wy # 0). Desired minimization:
D

R (w, b) = Y "I(wg # 0)

d=1

©

R<"t(w, b) is NP-hard to minimize, so its approximations are used
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b 1
We have already seen the approximation choices for the 0-1 loss function
What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wy of w looks like

¢ ¢ ¢ ¢

Ideally, we want most entries wy of w be zero , so prediction depends only on

a small number of features (for which wy # 0). Desired minimization:
D

R (w, b) = Y "I(wg # 0)

d=1
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R<"t(w, b) is NP-hard to minimize, so its approximations are used

@ A good approximation is to make the individual wy's small
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b 1
We have already seen the approximation choices for the 0-1 loss function
What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wy of w looks like

¢ ¢ ¢ ¢

Ideally, we want most entries wy of w be zero , so prediction depends only on

a small number of features (for which wy # 0). Desired minimization:
D

R (w, b) = Y "I(wg # 0)

d=1

©

R<"t(w, b) is NP-hard to minimize, so its approximations are used
@ A good approximation is to make the individual wy's small

o Small wy = small changes in some feature x; won't affect prediction by much
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Regularizers

@ Recall: The optimization problem for regularized linear binary classification:
N
min L(w, b) = min Z]I(y,,(wa,, + b) < 0)+ AR(w, b)
w,b w,b 1
We have already seen the approximation choices for the 0-1 loss function
What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wy of w looks like

¢ ¢ ¢ ¢

Ideally, we want most entries wy of w be zero , so prediction depends only on

a small number of features (for which wy # 0). Desired minimization:
D

R (w, b) = Y "I(wg # 0)

d=1

©

R<"t(w, b) is NP-hard to minimize, so its approximations are used
@ A good approximation is to make the individual wy's small
o Small wy = small changes in some feature x; won't affect prediction by much
@ Small individual weights wy is a notion of function simplicity
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Norm based Regularizers

@ Norm based regularizers are used as approximations to R<"*(w, b)
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Norm based Regularizers

@ Norm based regularizers are used as approximations to R<"*(w, b)
o £ squared norm: ||w||3 = 25:1 w3

o 1 norm: [lwll = Y2, wql
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Norm based Regularizers

@ Norm based regularizers are used as approximations to R<"*(w, b)
o ¢, squared norm: ||w||3 = 25:1 w2
s fa norm: [jwll; = X5, [wel

s £, norm: ||wl||, = (ZdD:l wi)!/P

w2 w2 w2

M.
NP,

Figure: Contour plots. Left: ¢> norm, Center: ¢1 norm, Right: £, norm (for p < 1)
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Norm based Regularizers

@ Norm based regularizers are used as approximations to R<"*(w, b)
o ¢, squared norm: ||w||3 = 25:1 w2
s fa norm: [jwll; = X5, [wel

s £, norm: ||wl||, = (ZdDzl wi)!/P

w2 w2 w2

M.
NP,

Figure: Contour plots. Left: ¢> norm, Center: ¢1 norm, Right: £, norm (for p < 1)

@ Smaller p favors sparser vector w (most entries of w close/equal to 0)
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@ Smaller p favors sparser vector w (most entries of w close/equal to 0)
@ But the norm becomes non-convex for p < 1 and is hard to optimize
@ The ¢; norm is the most preferred regularizer for sparse w (many wy's zero)

o Convex, but it's not smooth at the axis points
@ .. but several methods exists to deal with it, e.g., subgradient descent

@ The /5 squared norm tries to keep the individual wy's small
@ Convex, smooth, and the easiest to deal with
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Next class..

@ Introduction to Kernels
@ Nonlinear classification algorithms

@ Kernelized Perceptron
o Kernelized Support Vector Machines
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