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SVM finds the maximum margin hyperplane that separates the classes

Margin γ = 1
||w|| ⇒ maximizing the margin γ ≡ minimizing ||w|| (the norm)

The optimization problem for the separable case
(no misclassified training example)

Minimize f (w, b) =
||w||2

2

subject to yn(w
Txn + b) ≥ 1, n = 1, . . . ,N

This is a Quadratic Program (QP) with N linear inequality constraints
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SVM: The Optimization Problem

Our optimization problem is:
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||w||2
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subject to 1 ≤ yn(w
Txn + b), n = 1, . . . ,N
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SVM: The Optimization Problem

Our optimization problem is:

Minimize f (w, b) =
||w||2

2

subject to 1 ≤ yn(w
Txn + b), n = 1, . . . ,N

Introducing Lagrange Multipliers αn (n = {1, . . . ,N}), one for each
constraint, leads to the Primal Lagrangian:

Minimize LP(w, b, α) =
||w||2

2
+

N
∑

n=1

αn{1− yn(w
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subject to αn ≥ 0; n = 1, . . . ,N
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Minimize f (w, b) =
||w||2

2

subject to 1 ≤ yn(w
Txn + b), n = 1, . . . ,N

Introducing Lagrange Multipliers αn (n = {1, . . . ,N}), one for each
constraint, leads to the Primal Lagrangian:

Minimize LP(w, b, α) =
||w||2

2
+

N
∑

n=1

αn{1− yn(w
Txn + b)}

subject to αn ≥ 0; n = 1, . . . ,N

We can now solve this Lagrangian

i.e., optimize L(w, b, α) w.r.t. w, b, and α

.. making use of the Lagrangian Duality theory..
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SVM: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b and set them to zero

∂LP

∂w
= 0 ⇒ w =

N
∑

n=1

αnynxn,
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= 0 ⇒ w =

N
∑

n=1
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Take (partial) derivatives of LP w.r.t. w, b and set them to zero

∂LP

∂w
= 0 ⇒ w =

N
∑

n=1

αnynxn,
∂LP

∂b
= 0 ⇒

N
∑

n=1

αnyn = 0

Substituting these in the Primal Lagrangian LP gives the Dual Lagrangian

Maximize LD(w, b, α) =

N
∑

n=1

αn −
1

2

N
∑

m,n=1

αmαnymyn(x
T
mxn)

subject to

N
∑

n=1

αnyn = 0, αn ≥ 0; n = 1, . . . ,N

It’s a Quadratic Programming problem in α

Several off-the-shelf solvers exist to solve such QPs
Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.
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SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(

minn:yn=+1 w
Txn +maxn:yn=−1 w

Txn
)

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 5 / 18



SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(

minn:yn=+1 w
Txn +maxn:yn=−1 w

Txn
)

Note: Most αn’s in the solution are zero (sparse solution)

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 5 / 18



SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(

minn:yn=+1 w
Txn +maxn:yn=−1 w

Txn
)

Note: Most αn’s in the solution are zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 5 / 18



SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(

minn:yn=+1 w
Txn +maxn:yn=−1 w

Txn
)

Note: Most αn’s in the solution are zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal αn’s

αn{1− yn(w
T
xn + b)} = 0

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 5 / 18



SVM: The Solution

Once we have the αn’s, w and b can be computed as:

w =
∑N

n=1 αnynxn

b = − 1
2

(

minn:yn=+1 w
Txn +maxn:yn=−1 w

Txn
)

Note: Most αn’s in the solution are zero (sparse solution)

Reason: Karush-Kuhn-Tucker (KKT) conditions

For the optimal αn’s

αn{1− yn(w
T
xn + b)} = 0

αn is non-zero only if xn lies on one of the two
margin boundaries, i.e., for which yn(w

Txn + b) = 1

These examples are called support vectors

Support vectors “support” the margin boundaries
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SVM - Non-separable case
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SVM - Non-separable case

Non-separable case: No hyperplane can separate the classes perfectly

Still want to find the maximum margin hyperplane but this time:

We will allow some training examples to be misclassified
We will allow some training examples to fall within the margin region

Recall: For the separable case (training loss = 0), the constraints were:

yn(w
Txn + b) ≥ 1 ∀n

For the non-separable case, we relax the above constraints as:

yn(w
Txn + b) ≥ 1−ξn ∀n

ξn is called slack variable (distance xn goes past the margin boundary)

ξn ≥ 0, ∀n, misclassification when ξn > 1
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SVM - Non-separable case

Non-separable case: We will allow misclassified training examples

.. but we want their number to be minimized
⇒ by minimizing the sum of slack variables (

∑N

n=1 ξn)

The optimization problem for the non-separable case

Minimize f (w, b) =
||w||2

2
+C

N
∑

n=1

ξn

subject to yn(w
Txn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N
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Non-separable case: We will allow misclassified training examples

.. but we want their number to be minimized
⇒ by minimizing the sum of slack variables (

∑N
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The optimization problem for the non-separable case

Minimize f (w, b) =
||w||2
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N
∑
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ξn

subject to yn(w
Txn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

C dictates which term ( ||w||2

2 or C
∑N

n=1 ξn) will dominate the minimization

Small C ⇒ ||w||2

2
dominates ⇒ prefer large margins

.. but allow potentially large # of misclassified training examples

Large C ⇒ C
∑N

n=1 ξn dominates ⇒ prefer small # of misclassified examples
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SVM - Non-separable case

Non-separable case: We will allow misclassified training examples

.. but we want their number to be minimized
⇒ by minimizing the sum of slack variables (

∑N

n=1 ξn)

The optimization problem for the non-separable case

Minimize f (w, b) =
||w||2

2
+C

N
∑

n=1

ξn

subject to yn(w
Txn + b) ≥ 1−ξn, ξn ≥ 0 n = 1, . . . ,N

C dictates which term ( ||w||2

2 or C
∑N

n=1 ξn) will dominate the minimization

Small C ⇒ ||w||2

2
dominates ⇒ prefer large margins

.. but allow potentially large # of misclassified training examples

Large C ⇒ C
∑N

n=1 ξn dominates ⇒ prefer small # of misclassified examples

.. at the expense of having a small margin
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SVM - Non-separable case: The Optimization Problem

Our optimization problem is:

Minimize f (w, b, ξ) =
||w||2

2
+C

N
∑

n=1

ξn

subject to 1 ≤ yn(w
Txn + b)+ξn, 0 ≤ ξn n = 1, . . . ,N

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 8 / 18



SVM - Non-separable case: The Optimization Problem

Our optimization problem is:

Minimize f (w, b, ξ) =
||w||2

2
+C

N
∑

n=1

ξn

subject to 1 ≤ yn(w
Txn + b)+ξn, 0 ≤ ξn n = 1, . . . ,N

Introducing Lagrange Multipliers αn, βn (n = {1, . . . ,N}), for the constraints,
leads to the Primal Lagrangian:

Minimize LP (w, b, ξ, α, β) =
||w||2

2
+ +C

N∑

n=1

ξn +
N∑

n=1

αn{1 − yn(w
T
xn + b)−ξn}−

N∑

n=1

βnξn

subject to αn, βn ≥ 0; n = 1, . . . ,N
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SVM - Non-separable case: The Optimization Problem

Our optimization problem is:

Minimize f (w, b, ξ) =
||w||2

2
+C

N
∑

n=1

ξn

subject to 1 ≤ yn(w
Txn + b)+ξn, 0 ≤ ξn n = 1, . . . ,N

Introducing Lagrange Multipliers αn, βn (n = {1, . . . ,N}), for the constraints,
leads to the Primal Lagrangian:

Minimize LP (w, b, ξ, α, β) =
||w||2

2
+ +C

N∑

n=1

ξn +
N∑

n=1

αn{1 − yn(w
T
xn + b)−ξn}−

N∑

n=1

βnξn

subject to αn, βn ≥ 0; n = 1, . . . ,N

Comparison note: Terms in red font were not there in the separable case
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SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero
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SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero

∂LP

∂w
= 0 ⇒ w =

N∑

n=1

αnynxn,
∂LP

∂b
= 0 ⇒

N∑

n=1

αnyn = 0,
∂LP

∂ξn
= 0 ⇒ C − αn − βn = 0

Using C − αn − βn = 0 and βn ≥ 0
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SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero
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SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero

∂LP
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∂LP
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n=1

αnyn = 0,
∂LP

∂ξn
= 0 ⇒ C − αn − βn = 0

Using C − αn − βn = 0 and βn ≥ 0 ⇒ αn ≤ C

Substituting these in the Primal Lagrangian LP gives the Dual Lagrangian

Maximize LD(w, b, ξ, α, β) =
N
∑

n=1

αn −
1

2

N
∑

m,n=1

αmαnymyn(x
T
mxn)

subject to

N
∑

n=1

αnyn = 0, 0 ≤ αn≤ C ; n = 1, . . . ,N

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 9 / 18



SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero

∂LP

∂w
= 0 ⇒ w =

N∑

n=1

αnynxn,
∂LP

∂b
= 0 ⇒

N∑

n=1

αnyn = 0,
∂LP

∂ξn
= 0 ⇒ C − αn − βn = 0

Using C − αn − βn = 0 and βn ≥ 0 ⇒ αn ≤ C

Substituting these in the Primal Lagrangian LP gives the Dual Lagrangian

Maximize LD(w, b, ξ, α, β) =
N
∑

n=1

αn −
1

2

N
∑

m,n=1

αmαnymyn(x
T
mxn)

subject to

N
∑

n=1

αnyn = 0, 0 ≤ αn≤ C ; n = 1, . . . ,N

Again a Quadratic Programming problem in α

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 9 / 18



SVM - Non-separable case: The Optimization Problem

Take (partial) derivatives of LP w.r.t. w, b, ξn and set them to zero

∂LP

∂w
= 0 ⇒ w =

N∑

n=1

αnynxn,
∂LP

∂b
= 0 ⇒

N∑

n=1

αnyn = 0,
∂LP

∂ξn
= 0 ⇒ C − αn − βn = 0

Using C − αn − βn = 0 and βn ≥ 0 ⇒ αn ≤ C

Substituting these in the Primal Lagrangian LP gives the Dual Lagrangian

Maximize LD(w, b, ξ, α, β) =
N
∑

n=1

αn −
1

2

N
∑

m,n=1

αmαnymyn(x
T
mxn)

subject to

N
∑

n=1

αnyn = 0, 0 ≤ αn≤ C ; n = 1, . . . ,N

Again a Quadratic Programming problem in α

Given α, the solution for w, b has the same form as the separable case

Note: α is again sparse. Nonzero αn’s correspond to the support vectors
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Support Vectors in the non-separable case

The separable case has only one type of support vectors

.. ones that lie on the margin boundaries wTx+ b = −1 and wTx+ b = +1
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Support Vectors in the non-separable case

The separable case has only one type of support vectors

.. ones that lie on the margin boundaries wTx+ b = −1 and wTx+ b = +1

The non-separable case has three types of support vectors

1 Lying on the margin boundaries wTx+ b = −1 and wTx+ b = +1 (ξn = 0)

2 Lying within the margin region (0 < ξn < 1) but still on the correct side
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Support Vectors in the non-separable case

The separable case has only one type of support vectors

.. ones that lie on the margin boundaries wTx+ b = −1 and wTx+ b = +1

The non-separable case has three types of support vectors

1 Lying on the margin boundaries wTx+ b = −1 and wTx+ b = +1 (ξn = 0)

2 Lying within the margin region (0 < ξn < 1) but still on the correct side

3 Lying on the wrong side of the hyperplane (ξn ≥ 1)
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Support Vector Machines: some notes

Training time of the standard SVM is O(N3) (have to solve the QP)

Can be prohibitive for large datasets
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Can be prohibitive for large datasets

Lots of research has gone into speeding up the SVMs

Many approximate QP solvers are used to speed up SVMs

Online training (e.g., using stochastic gradient descent)
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Can be prohibitive for large datasets

Lots of research has gone into speeding up the SVMs

Many approximate QP solvers are used to speed up SVMs

Online training (e.g., using stochastic gradient descent)

Several extensions exist

Nonlinear separation boundaries by applying the Kernel Trick (next class)
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Support Vector Machines: some notes

Training time of the standard SVM is O(N3) (have to solve the QP)

Can be prohibitive for large datasets

Lots of research has gone into speeding up the SVMs

Many approximate QP solvers are used to speed up SVMs

Online training (e.g., using stochastic gradient descent)

Several extensions exist

Nonlinear separation boundaries by applying the Kernel Trick (next class)

More than 2 classes (multiclass classification)

Structured outputs (structured prediction)

Real-valued outputs (support vector regression)

Popular SVM implementations: libSVM, SVMLight, SVM-struct, etc.

Also http://www.kernel-machines.org/software
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Loss Functions for Linear Classification

We have seen two linear binary classification algorithms (Perceptron, SVM)
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Loss Functions for Linear Classification

We have seen two linear binary classification algorithms (Perceptron, SVM)

Linear binary classification written as a general optimization problem:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

I(.) is the indicator function (1 if (.) is true, 0 otherwise)
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Loss Functions for Linear Classification

We have seen two linear binary classification algorithms (Perceptron, SVM)

Linear binary classification written as a general optimization problem:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

I(.) is the indicator function (1 if (.) is true, 0 otherwise)

The objective is sum of two parts: the loss function and the regularizer

Want to fit training data well and also want to have simple solutions

The above loss function called the 0-1 loss

The 0-1 loss is NP-hard to optimize (exactly/approximately) in general

Different loss function approximations and regularizers lead to specific

algorithms (e.g., Perceptron, SVM, Logistic Regression, etc.).
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The 0-1 Loss

It’s a combinatorial optimization problem

Can be shown to be NP-hard

.. using a reduction of a variant of the satisfiability problem
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The 0-1 Loss

It’s a combinatorial optimization problem

Can be shown to be NP-hard

.. using a reduction of a variant of the satisfiability problem

No polynomial time algorithm

Loss function is non-smooth, non-convex

Small changes in w, b can change the loss by a lot
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Approximations to the 0-1 loss

We use loss functions that are convex approximations to the 0-1 loss

These are called surrogate loss functions
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We use loss functions that are convex approximations to the 0-1 loss

These are called surrogate loss functions

Examples of surrogate loss functions (assuming b = 0):
Hinge loss: [1− ynw

Txn]+ = max{0, 1− ynw
Txn}
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Approximations to the 0-1 loss

We use loss functions that are convex approximations to the 0-1 loss

These are called surrogate loss functions

Examples of surrogate loss functions (assuming b = 0):
Hinge loss: [1− ynw

Txn]+ = max{0, 1− ynw
Txn}

Log loss: log[1 + exp(−ynw
Txn)]

Exponential loss: exp(−ynw
Txn)

All are convex upper bounds on the 0-1 loss

Minimizing a convex upper bound also pushes down
the original function

Unlike 0-1 loss, these loss functions depend on how
far the examples are from the hyperplane
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Approximations to the 0-1 loss

We use loss functions that are convex approximations to the 0-1 loss

These are called surrogate loss functions

Examples of surrogate loss functions (assuming b = 0):
Hinge loss: [1− ynw

Txn]+ = max{0, 1− ynw
Txn}

Log loss: log[1 + exp(−ynw
Txn)]

Exponential loss: exp(−ynw
Txn)

All are convex upper bounds on the 0-1 loss

Minimizing a convex upper bound also pushes down
the original function

Unlike 0-1 loss, these loss functions depend on how
far the examples are from the hyperplane

Apart from convexity, smoothness is the other desirable for loss functions

Smoothness allows using gradient (or stochastic gradient) descent
Note: hinge loss is not smooth at (1,0) but subgradient descent can be used
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Loss functions for specific algorithms

Recall SVM non-separable case: we minimized the sum of slacks
∑N

n=1 ξn
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Loss functions for specific algorithms

Recall SVM non-separable case: we minimized the sum of slacks
∑N

n=1 ξn

No penalty (ξn = 0) if yn(w
Txn + b) ≥ 1

Linear penalty (ξn = 1− yn(w
Txn + b)) if yn(w

Txn + b) < 1
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Loss functions for specific algorithms
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No penalty (ξn = 0) if yn(w
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Linear penalty (ξn = 1− yn(w
Txn + b)) if yn(w
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∑N
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Loss functions for specific algorithms

Recall SVM non-separable case: we minimized the sum of slacks
∑N

n=1 ξn

No penalty (ξn = 0) if yn(w
Txn + b) ≥ 1

Linear penalty (ξn = 1− yn(w
Txn + b)) if yn(w

Txn + b) < 1

It’s precisely the hinge loss max{0, 1− yn(w
Txn + b)}

Note: Some SVMs minimize the sum of squared slacks
∑N

n=1 ξ
2
n

Perceptron uses a variant of the hinge loss: max{0,−yn(w
Txn + b)}

(CS5350/6350) SVMs, Loss Functions and Regularization September 13, 2011 15 / 18



Loss functions for specific algorithms

Recall SVM non-separable case: we minimized the sum of slacks
∑N

n=1 ξn

No penalty (ξn = 0) if yn(w
Txn + b) ≥ 1

Linear penalty (ξn = 1− yn(w
Txn + b)) if yn(w

Txn + b) < 1

It’s precisely the hinge loss max{0, 1− yn(w
Txn + b)}

Note: Some SVMs minimize the sum of squared slacks
∑N

n=1 ξ
2
n

Perceptron uses a variant of the hinge loss: max{0,−yn(w
Txn + b)}

Logistic Regression uses the log loss

Misnomer: Logistic Regression does classification, not regression!
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Loss functions for specific algorithms

Recall SVM non-separable case: we minimized the sum of slacks
∑N

n=1 ξn

No penalty (ξn = 0) if yn(w
Txn + b) ≥ 1

Linear penalty (ξn = 1− yn(w
Txn + b)) if yn(w

Txn + b) < 1

It’s precisely the hinge loss max{0, 1− yn(w
Txn + b)}

Note: Some SVMs minimize the sum of squared slacks
∑N

n=1 ξ
2
n

Perceptron uses a variant of the hinge loss: max{0,−yn(w
Txn + b)}

Logistic Regression uses the log loss

Misnomer: Logistic Regression does classification, not regression!

Boosting uses the exponential loss
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Regularizers

Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)
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min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function
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We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?
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The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0).
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Regularizers

Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0). Desired minimization:

Rcnt(w, b) =

D
∑

d=1

I(wd 6= 0)
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Regularizers

Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0). Desired minimization:

Rcnt(w, b) =

D
∑

d=1

I(wd 6= 0)

Rcnt(w, b) is NP-hard to minimize, so its approximations are used
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Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0). Desired minimization:

Rcnt(w, b) =

D
∑

d=1

I(wd 6= 0)

Rcnt(w, b) is NP-hard to minimize, so its approximations are used

A good approximation is to make the individual wd ’s small
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Regularizers

Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0). Desired minimization:

Rcnt(w, b) =

D
∑

d=1

I(wd 6= 0)

Rcnt(w, b) is NP-hard to minimize, so its approximations are used

A good approximation is to make the individual wd ’s small

Small wd ⇒ small changes in some feature xd won’t affect prediction by much
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Regularizers

Recall: The optimization problem for regularized linear binary classification:

min
w,b

L(w, b) = min
w,b

N
∑

n=1

I(yn(w
Txn + b) < 0) + λR(w, b)

We have already seen the approximation choices for the 0-1 loss function

What about the regularizer term R(w, b) that ensures simple solutions?

The regularizer R(w, b) determines what each entry wd of w looks like

Ideally, we want most entries wd of w be zero , so prediction depends only on
a small number of features (for which wd 6= 0). Desired minimization:

Rcnt(w, b) =

D
∑

d=1

I(wd 6= 0)

Rcnt(w, b) is NP-hard to minimize, so its approximations are used

A good approximation is to make the individual wd ’s small

Small wd ⇒ small changes in some feature xd won’t affect prediction by much

Small individual weights wd is a notion of function simplicity
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Norm based Regularizers

Norm based regularizers are used as approximations to Rcnt(w, b)
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Norm based Regularizers

Norm based regularizers are used as approximations to Rcnt(w, b)

ℓ2 squared norm: ||w||22 =
∑D

d=1 w
2
d
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Smaller p favors sparser vector w (most entries of w close/equal to 0)

But the norm becomes non-convex for p < 1 and is hard to optimize

The ℓ1 norm is the most preferred regularizer for sparse w (many wd ’s zero)

Convex, but it’s not smooth at the axis points
.. but several methods exists to deal with it, e.g., subgradient descent

The ℓ2 squared norm tries to keep the individual wd ’s small

Convex, smooth, and the easiest to deal with
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Next class..

Introduction to Kernels

Nonlinear classification algorithms

Kernelized Perceptron
Kernelized Support Vector Machines
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