Support Vector Machines (Contd.),
 Classification Loss Functions and Regularizers

Piyush Rai

CS5350/6350: Machine Learning
September 13, 2011

SVM (Recap)

- SVM finds the maximum margin hyperplane that separates the classes

SVM (Recap)

- SVM finds the maximum margin hyperplane that separates the classes

- Margin $\gamma=\frac{1}{\|\mathbf{w}\|}$

SVM (Recap)

- SVM finds the maximum margin hyperplane that separates the classes

- Margin $\gamma=\frac{1}{\|\mathbf{w}\|} \Rightarrow$ maximizing the margin $\gamma \equiv$ minimizing $\|\mathbf{w}\|$ (the norm)

SVM (Recap)

- SVM finds the maximum margin hyperplane that separates the classes

- Margin $\gamma=\frac{1}{\|\mathbf{w}\|} \Rightarrow$ maximizing the margin $\gamma \equiv$ minimizing $\|\mathbf{w}\|$ (the norm)
- The optimization problem for the separable case (no misclassified training example)

$$
\begin{array}{ll}
\text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2} \\
\text { subject to } \quad y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1, \quad n=1, \ldots, N
\end{array}
$$

SVM (Recap)

- SVM finds the maximum margin hyperplane that separates the classes

- Margin $\gamma=\frac{1}{\|\mathbf{w}\|} \Rightarrow$ maximizing the margin $\gamma \equiv$ minimizing $\|\mathbf{w}\|$ (the norm)
- The optimization problem for the separable case (no misclassified training example)

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2} \\
& \text { subject to } \quad y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1, \quad n=1, \ldots, N
\end{aligned}
$$

- This is a Quadratic Program (QP) with N linear inequality constraints

SVM: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2} \\
& \text { subject to } \quad 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right), \quad n=1, \ldots, N
\end{aligned}
$$

SVM: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2} \\
& \text { subject to } \quad 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right), \quad n=1, \ldots, N
\end{aligned}
$$

- Introducing Lagrange Multipliers $\alpha_{n}(n=\{1, \ldots, N\})$, one for each constraint, leads to the Primal Lagrangian:

$$
\begin{aligned}
& \text { Minimize } L_{P}(\mathbf{w}, b, \alpha)=\frac{\|\mathbf{w}\|^{2}}{2}+\sum_{n=1}^{N} \alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right\} \\
& \text { subject to } \quad \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{aligned}
$$

SVM: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2} \\
& \text { subject to } \quad 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right), \quad n=1, \ldots, N
\end{aligned}
$$

- Introducing Lagrange Multipliers $\alpha_{n}(n=\{1, \ldots, N\})$, one for each constraint, leads to the Primal Lagrangian:

$$
\begin{aligned}
& \text { Minimize } L_{P}(\mathbf{w}, b, \alpha)=\frac{\|\mathbf{w}\|^{2}}{2}+\sum_{n=1}^{N} \alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right\} \\
& \text { subject to } \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{aligned}
$$

- We can now solve this Lagrangian
- i.e., optimize $L(\mathbf{w}, b, \alpha)$ w.r.t. \mathbf{w}, b, and α
- .. making use of the Lagrangian Duality theory..

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n},
$$

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\mathbf{w}, b, \alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
\text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{array}
$$

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\mathbf{w}, b, \alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
\text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{array}
$$

- It's a Quadratic Programming problem in α

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\mathbf{w}, b, \alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
\text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{array}
$$

- It's a Quadratic Programming problem in α
- Several off-the-shelf solvers exist to solve such QPs

SVM: The Optimization Problem

- Take (partial) derivatives of L_{P} w.r.t. \mathbf{w}, b and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{aligned}
& \text { Maximize } L_{D}(\mathbf{w}, b, \alpha)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
& \text { subject to } \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \alpha_{n} \geq 0 ; \quad n=1, \ldots, N
\end{aligned}
$$

- It's a Quadratic Programming problem in α
- Several off-the-shelf solvers exist to solve such QPs
- Some examples: quadprog (MATLAB), CVXOPT, CPLEX, IPOPT, etc.

SVM: The Solution

- Once we have the α_{n} 's, w and b can be computed as:

$$
\begin{gathered}
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \\
b=-\frac{1}{2}\left(\min _{n: y_{n}=+1} \mathbf{w}^{T} \mathbf{x}_{n}+\max _{n: y_{n}=-1} \mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{gathered}
$$

SVM: The Solution

- Once we have the α_{n} 's, wand b can be computed as:

$$
\begin{gathered}
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \\
b=-\frac{1}{2}\left(\min _{n: y_{n}=+1} \mathbf{w}^{T} \mathbf{x}_{n}+\max _{n: y_{n}=-1} \mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{gathered}
$$

- Note: Most α_{n} 's in the solution are zero (sparse solution)

SVM: The Solution

- Once we have the α_{n} 's, wand b can be computed as:

$$
\begin{gathered}
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \\
b=-\frac{1}{2}\left(\min _{n: y_{n}=+1} \mathbf{w}^{T} \mathbf{x}_{n}+\max _{n: y_{n}=-1} \mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{gathered}
$$

- Note: Most α_{n} 's in the solution are zero (sparse solution)
- Reason: Karush-Kuhn-Tucker (KKT) conditions

SVM: The Solution

- Once we have the α_{n} 's, wand b can be computed as:

$$
\begin{gathered}
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \\
b=-\frac{1}{2}\left(\min _{n: y_{n}=+1} \mathbf{w}^{T} \mathbf{x}_{n}+\max _{n: y_{n}=-1} \mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{gathered}
$$

- Note: Most α_{n} 's in the solution are zero (sparse solution)
- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_{n} 's

$$
\alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}=0
$$

SVM: The Solution

- Once we have the α_{n} 's, w and b can be computed as:

$$
\begin{gathered}
\mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n} \\
b=-\frac{1}{2}\left(\min _{n: y_{n}=+1} \mathbf{w}^{T} \mathbf{x}_{n}+\max _{n: y_{n}=-1} \mathbf{w}^{T} \mathbf{x}_{n}\right)
\end{gathered}
$$

- Note: Most α_{n} 's in the solution are zero (sparse solution)
- Reason: Karush-Kuhn-Tucker (KKT) conditions
- For the optimal α_{n} 's

$$
\alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}=0
$$

- α_{n} is non-zero only if \mathbf{x}_{n} lies on one of the two margin boundaries, i.e., for which $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)=1$

- These examples are called support vectors
- Support vectors "support" the margin boundaries

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified
- We will allow some training examples to fall within the margin region

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified
- We will allow some training examples to fall within the margin region

- Recall: For the separable case (training loss $=0$), the constraints were:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified
- We will allow some training examples to fall within the margin region

- Recall: For the separable case (training loss $=0$), the constraints were:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

- For the non-separable case, we relax the above constraints as:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n} \quad \forall n
$$

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified
- We will allow some training examples to fall within the margin region

- Recall: For the separable case (training loss $=0$), the constraints were:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

- For the non-separable case, we relax the above constraints as:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n} \quad \forall n
$$

- ξ_{n} is called slack variable (distance \mathbf{x}_{n} goes past the margin boundary)

SVM - Non-separable case

- Non-separable case: No hyperplane can separate the classes perfectly
- Still want to find the maximum margin hyperplane but this time:
- We will allow some training examples to be misclassified
- We will allow some training examples to fall within the margin region

- Recall: For the separable case (training loss $=0$), the constraints were:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1 \quad \forall n
$$

- For the non-separable case, we relax the above constraints as:

$$
y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n} \quad \forall n
$$

- ξ_{n} is called slack variable (distance \mathbf{x}_{n} goes past the margin boundary)
- $\xi_{n} \geq 0, \forall n$, misclassification when $\xi_{n}>1$

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

- C dictates which term $\left(\frac{\|\mathbf{w}\|^{2}}{2}\right.$ or $\left.C \sum_{n=1}^{N} \xi_{n}\right)$ will dominate the minimization

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

- C dictates which term $\left(\frac{\|\mathbf{w}\|^{2}}{2}\right.$ or $\left.C \sum_{n=1}^{N} \xi_{n}\right)$ will dominate the minimization
- Small $C \Rightarrow \frac{\|\mathbf{w}\|^{2}}{2}$ dominates \Rightarrow prefer large margins

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

- C dictates which term $\left(\frac{\|\mathbf{w}\|^{2}}{2}\right.$ or $\left.C \sum_{n=1}^{N} \xi_{n}\right)$ will dominate the minimization
- Small $C \Rightarrow \frac{\|\mathbf{w}\|^{2}}{2}$ dominates \Rightarrow prefer large margins
- .. but allow potentially large \# of misclassified training examples

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

- C dictates which term $\left(\frac{\|\mathbf{w}\|^{2}}{2}\right.$ or $\left.C \sum_{n=1}^{N} \xi_{n}\right)$ will dominate the minimization
- Small $C \Rightarrow \frac{\|\mathbf{w}\|^{2}}{2}$ dominates \Rightarrow prefer large margins
- .. but allow potentially large \# of misclassified training examples
- Large $C \Rightarrow C \sum_{n=1}^{N} \xi_{n}$ dominates \Rightarrow prefer small $\#$ of misclassified examples

SVM - Non-separable case

- Non-separable case: We will allow misclassified training examples
- .. but we want their number to be minimized
\Rightarrow by minimizing the sum of slack variables $\left(\sum_{n=1}^{N} \xi_{n}\right)$
- The optimization problem for the non-separable case

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right) \geq 1-\xi_{n}, \quad \xi_{n} \geq 0 \quad n=1, \ldots, N
\end{aligned}
$$

- C dictates which term $\left(\frac{\|\mathbf{w}\|^{2}}{2}\right.$ or $\left.C \sum_{n=1}^{N} \xi_{n}\right)$ will dominate the minimization
- Small $C \Rightarrow \frac{\|\mathbf{w}\|^{2}}{2}$ dominates \Rightarrow prefer large margins
- .. but allow potentially large \# of misclassified training examples
- Large $C \Rightarrow C \sum_{n=1}^{N} \xi_{n}$ dominates \Rightarrow prefer small \# of misclassified examples
- .. at the expense of having a small margin

SVM - Non-separable case: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b, \xi)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } \quad 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)+\xi_{n}, \quad 0 \leq \xi_{n} \quad n=1, \ldots, N
\end{aligned}
$$

SVM - Non-separable case: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b, \xi)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)+\xi_{n}, \quad 0 \leq \xi_{n} \quad n=1, \ldots, N
\end{aligned}
$$

- Introducing Lagrange Multipliers $\alpha_{n}, \beta_{n}(n=\{1, \ldots, N\})$, for the constraints, leads to the Primal Lagrangian:

$$
\begin{aligned}
& \text { Minimize } L_{P}(\mathbf{w}, b, \xi, \alpha, \beta)=\frac{\|\mathbf{w}\|^{2}}{2}++C \sum_{n=1}^{N} \xi_{n}+\sum_{n=1}^{N} \alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-\xi_{n}\right\}-\sum_{n=1}^{N} \beta_{n} \xi_{n} \\
& \text { subject to } \quad \alpha_{n}, \beta_{n} \geq 0 ; \quad n=1, \ldots, N
\end{aligned}
$$

SVM - Non-separable case: The Optimization Problem

- Our optimization problem is:

$$
\begin{aligned}
& \text { Minimize } f(\mathbf{w}, b, \xi)=\frac{\|\mathbf{w}\|^{2}}{2}+C \sum_{n=1}^{N} \xi_{n} \\
& \text { subject to } 1 \leq y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)+\xi_{n}, \quad 0 \leq \xi_{n} \quad n=1, \ldots, N
\end{aligned}
$$

- Introducing Lagrange Multipliers $\alpha_{n}, \beta_{n}(n=\{1, \ldots, N\})$, for the constraints, leads to the Primal Lagrangian:

$$
\begin{aligned}
& \text { Minimize } L_{P}(\mathbf{w}, b, \xi, \alpha, \beta)=\frac{\|\mathbf{w}\|^{2}}{2}++C \sum_{n=1}^{N} \xi_{n}+\sum_{n=1}^{N} \alpha_{n}\left\{1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)-\xi_{n}\right\}-\sum_{n=1}^{N} \beta_{n} \xi_{n} \\
& \text { subject to } \quad \alpha_{n}, \beta_{n} \geq 0 ; \quad n=1, \ldots, N
\end{aligned}
$$

- Comparison note: Terms in red font were not there in the separable case

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}
$$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0
$$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

- Using $C-\alpha_{n}-\beta_{n}=0$ and $\beta_{n} \geq 0$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

- Using $C-\alpha_{n}-\beta_{n}=0$ and $\beta_{n} \geq 0 \Rightarrow \alpha_{n} \leq C$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

- Using $C-\alpha_{n}-\beta_{n}=0$ and $\beta_{n} \geq 0 \Rightarrow \alpha_{n} \leq C$
- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
\text { subject to } \quad \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{array}
$$

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. w, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

- Using $C-\alpha_{n}-\beta_{n}=0$ and $\beta_{n} \geq 0 \Rightarrow \alpha_{n} \leq C$
- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{aligned}
& \text { Maximize } \quad L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
& \text { subject to } \quad \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{aligned}
$$

- Again a Quadratic Programming problem in α

SVM - Non-separable case: The Optimization Problem

- Take (partial) derivatives of L_{p} w.r.t. \mathbf{w}, b, ξ_{n} and set them to zero

$$
\frac{\partial L_{P}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{n=1}^{N} \alpha_{n} y_{n} \mathbf{x}_{n}, \quad \frac{\partial L_{P}}{\partial b}=0 \Rightarrow \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad \frac{\partial L_{P}}{\partial \xi_{n}}=0 \Rightarrow C-\alpha_{n}-\beta_{n}=0
$$

- Using $C-\alpha_{n}-\beta_{n}=0$ and $\beta_{n} \geq 0 \Rightarrow \alpha_{n} \leq C$
- Substituting these in the Primal Lagrangian L_{P} gives the Dual Lagrangian

$$
\begin{array}{ll}
\text { Maximize } & L_{D}(\mathbf{w}, b, \xi, \alpha, \beta)=\sum_{n=1}^{N} \alpha_{n}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{T} \mathbf{x}_{n}\right) \\
\text { subject to } \quad \sum_{n=1}^{N} \alpha_{n} y_{n}=0, \quad 0 \leq \alpha_{n} \leq C ; \quad n=1, \ldots, N
\end{array}
$$

- Again a Quadratic Programming problem in α
- Given α, the solution for \mathbf{w}, b has the same form as the separable case
- Note: α is again sparse. Nonzero α_{n} 's correspond to the support vectors

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
- .. ones that lie on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1$

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
- .. ones that lie on the margin boundaries $\mathbf{w}^{\top} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1$
- The non-separable case has three types of support vectors

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
- .. ones that lie on the margin boundaries $\mathbf{w}^{\top} \mathbf{x}+b=-1$ and $\mathbf{w}^{\top} \mathbf{x}+b=+1$
- The non-separable case has three types of support vectors

(1) Lying on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1\left(\xi_{n}=0\right)$

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
- .. ones that lie on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1$
- The non-separable case has three types of support vectors

(1) Lying on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1\left(\xi_{n}=0\right)$
(2) Lying within the margin region $\left(0<\xi_{n}<1\right)$ but still on the correct side

Support Vectors in the non-separable case

- The separable case has only one type of support vectors
- .. ones that lie on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1$
- The non-separable case has three types of support vectors

(1) Lying on the margin boundaries $\mathbf{w}^{T} \mathbf{x}+b=-1$ and $\mathbf{w}^{T} \mathbf{x}+b=+1\left(\xi_{n}=0\right)$
(2) Lying within the margin region $\left(0<\xi_{n}<1\right)$ but still on the correct side
(3) Lying on the wrong side of the hyperplane $\left(\xi_{n} \geq 1\right)$

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist
- Nonlinear separation boundaries by applying the Kernel Trick (next class)

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist
- Nonlinear separation boundaries by applying the Kernel Trick (next class)
- More than 2 classes (multiclass classification)

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist
- Nonlinear separation boundaries by applying the Kernel Trick (next class)
- More than 2 classes (multiclass classification)
- Structured outputs (structured prediction)

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist
- Nonlinear separation boundaries by applying the Kernel Trick (next class)
- More than 2 classes (multiclass classification)
- Structured outputs (structured prediction)
- Real-valued outputs (support vector regression)

Support Vector Machines: some notes

- Training time of the standard SVM is $O\left(N^{3}\right)$ (have to solve the QP)
- Can be prohibitive for large datasets
- Lots of research has gone into speeding up the SVMs
- Many approximate QP solvers are used to speed up SVMs
- Online training (e.g., using stochastic gradient descent)
- Several extensions exist
- Nonlinear separation boundaries by applying the Kernel Trick (next class)
- More than 2 classes (multiclass classification)
- Structured outputs (structured prediction)
- Real-valued outputs (support vector regression)
- Popular SVM implementations: libSVM, SVMLight, SVM-struct, etc.
- Also http://www.kernel-machines.org/software

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1 if (.) is true, 0$ otherwise)

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1$ if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1$ if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer
- Want to fit training data well and also want to have simple solutions

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1$ if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer
- Want to fit training data well and also want to have simple solutions
- The above loss function called the 0-1 loss

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1$ if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer
- Want to fit training data well and also want to have simple solutions
- The above loss function called the 0-1 loss

- The 0-1 loss is NP-hard to optimize (exactly/approximately) in general

Loss Functions for Linear Classification

- We have seen two linear binary classification algorithms (Perceptron, SVM)
- Linear binary classification written as a general optimization problem:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- $\mathbb{I}($.$) is the indicator function (1$ if (.) is true, 0 otherwise)
- The objective is sum of two parts: the loss function and the regularizer
- Want to fit training data well and also want to have simple solutions
- The above loss function called the 0-1 loss

- The 0-1 loss is NP-hard to optimize (exactly/approximately) in general
- Different loss function approximations and regularizers lead to specific algorithms (e.g., Perceptron, SVM, Logistic Regression, etc.).

The 0-1 Loss

- It's a combinatorial optimization problem
- Can be shown to be NP-hard
- .. using a reduction of a variant of the satisfiability problem

The 0-1 Loss

- It's a combinatorial optimization problem
- Can be shown to be NP-hard
- .. using a reduction of a variant of the satisfiability problem
- No polynomial time algorithm

The 0-1 Loss

- It's a combinatorial optimization problem
- Can be shown to be NP-hard
- .. using a reduction of a variant of the satisfiability problem
- No polynomial time algorithm
- Loss function is non-smooth, non-convex

The 0-1 Loss

- It's a combinatorial optimization problem
- Can be shown to be NP-hard
- .. using a reduction of a variant of the satisfiability problem
- No polynomial time algorithm
- Loss function is non-smooth, non-convex
- Small changes in \mathbf{w}, b can change the loss by a lot

Approximations to the 0-1 loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right\}$

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the $0-1$ loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)\right]$

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the $0-1$ loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)\right]$
- Exponential loss: $\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)$

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)\right]$
- Exponential loss: $\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)$
- All are convex upper bounds on the $0-1$ loss
- Minimizing a convex upper bound also pushes down the original function
- Unlike 0-1 loss, these loss functions depend on how far the examples are from the hyperplane

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)\right]$
- Exponential loss: $\exp \left(-y_{n} \mathbf{w}^{\top} \mathbf{x}_{n}\right)$
- All are convex upper bounds on the $0-1$ loss
- Minimizing a convex upper bound also pushes down the original function

- Unlike 0-1 loss, these loss functions depend on how far the examples are from the hyperplane
- Apart from convexity, smoothness is the other desirable for loss functions

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right)\right]$
- Exponential loss: $\exp \left(-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right)$
- All are convex upper bounds on the 0-1 loss
- Minimizing a convex upper bound also pushes down the original function

- Unlike 0-1 loss, these loss functions depend on how far the examples are from the hyperplane
- Apart from convexity, smoothness is the other desirable for loss functions
- Smoothness allows using gradient (or stochastic gradient) descent

Approximations to the $0-1$ loss

- We use loss functions that are convex approximations to the 0-1 loss
- These are called surrogate loss functions
- Examples of surrogate loss functions (assuming $b=0$):
- Hinge loss: $\left[1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right]_{+}=\max \left\{0,1-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right\}$
- Log loss: $\log \left[1+\exp \left(-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right)\right]$
- Exponential loss: $\exp \left(-y_{n} \mathbf{w}^{T} \mathbf{x}_{n}\right)$
- All are convex upper bounds on the 0-1 loss
- Minimizing a convex upper bound also pushes down the original function

- Unlike 0-1 loss, these loss functions depend on how far the examples are from the hyperplane
- Apart from convexity, smoothness is the other desirable for loss functions
- Smoothness allows using gradient (or stochastic gradient) descent
- Note: hinge loss is not smooth at $(1,0)$ but subgradient descent can be used

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(\boldsymbol{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(\boldsymbol{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$
- It's precisely the hinge loss $\max \left\{0,1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$
- It's precisely the hinge loss $\max \left\{0,1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$
- Note: Some SVMs minimize the sum of squared slacks $\sum_{n=1}^{N} \xi_{n}^{2}$

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$
- It's precisely the hinge loss $\max \left\{0,1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$
- Note: Some SVMs minimize the sum of squared slacks $\sum_{n=1}^{N} \xi_{n}^{2}$
- Perceptron uses a variant of the hinge loss: $\max \left\{0,-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(w^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$
- It's precisely the hinge loss $\max \left\{0,1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$
- Note: Some SVMs minimize the sum of squared slacks $\sum_{n=1}^{N} \xi_{n}^{2}$
- Perceptron uses a variant of the hinge loss: $\max \left\{0,-y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right\}$
- Logistic Regression uses the log loss
- Misnomer: Logistic Regression does classification, not regression!

Loss functions for specific algorithms

- Recall SVM non-separable case: we minimized the sum of slacks $\sum_{n=1}^{N} \xi_{n}$

- No penalty $\left(\xi_{n}=0\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right) \geq 1$
- Linear penalty $\left(\xi_{n}=1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right)$ if $y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)<1$
- It's precisely the hinge loss $\max \left\{0,1-y_{n}\left(\mathbf{w}^{\top} \mathbf{x}_{n}+b\right)\right\}$
- Note: Some SVMs minimize the sum of squared slacks $\sum_{n=1}^{N} \xi_{n}^{2}$
- Perceptron uses a variant of the hinge loss: $\max \left\{0,-y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)\right\}$
- Logistic Regression uses the log loss
- Misnomer: Logistic Regression does classification, not regression!
- Boosting uses the exponential loss

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$).

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$). Desired minimization:

$$
R^{c n t}(\mathbf{w}, b)=\sum_{d=1}^{D} \mathbb{I}\left(w_{d} \neq 0\right)
$$

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$). Desired minimization:

$$
R^{c n t}(\mathbf{w}, b)=\sum_{d=1}^{D} \mathbb{I}\left(w_{d} \neq 0\right)
$$

- $R^{c n t}(\mathbf{w}, b)$ is NP-hard to minimize, so its approximations are used

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$). Desired minimization:

$$
R^{c n t}(\mathbf{w}, b)=\sum_{d=1}^{D} \mathbb{I}\left(w_{d} \neq 0\right)
$$

- $R^{c n t}(\mathbf{w}, b)$ is NP-hard to minimize, so its approximations are used
- A good approximation is to make the individual w_{d} 's small

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \boldsymbol{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$). Desired minimization:

$$
R^{c n t}(\mathbf{w}, b)=\sum_{d=1}^{D} \mathbb{I}\left(w_{d} \neq 0\right)
$$

- $R^{c n t}(\mathbf{w}, b)$ is NP-hard to minimize, so its approximations are used
- A good approximation is to make the individual w_{d} 's small
- Small $w_{d} \Rightarrow$ small changes in some feature x_{d} won't affect prediction by much

Regularizers

- Recall: The optimization problem for regularized linear binary classification:

$$
\min _{\mathbf{w}, b} L(\mathbf{w}, b)=\min _{\mathbf{w}, b} \sum_{n=1}^{N} \mathbb{I}\left(y_{n}\left(\mathbf{w}^{T} \mathbf{x}_{n}+b\right)<0\right)+\lambda R(\mathbf{w}, b)
$$

- We have already seen the approximation choices for the 0-1 loss function
- What about the regularizer term $R(\mathbf{w}, b)$ that ensures simple solutions?
- The regularizer $R(\mathbf{w}, b)$ determines what each entry w_{d} of \mathbf{w} looks like
- Ideally, we want most entries w_{d} of \mathbf{w} be zero, so prediction depends only on a small number of features (for which $w_{d} \neq 0$). Desired minimization:

$$
R^{c n t}(\mathbf{w}, b)=\sum_{d=1}^{D} \mathbb{I}\left(w_{d} \neq 0\right)
$$

- $R^{c n t}(\mathbf{w}, b)$ is NP-hard to minimize, so its approximations are used
- A good approximation is to make the individual w_{d} 's small
- Small $w_{d} \Rightarrow$ small changes in some feature x_{d} won't affect prediction by much
- Small individual weights w_{d} is a notion of function simplicity

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize
- The ℓ_{1} norm is the most preferred regularizer for sparse \mathbf{w} (many w_{d} 's zero)

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize
- The ℓ_{1} norm is the most preferred regularizer for sparse \mathbf{w} (many w_{d} 's zero)
- Convex, but it's not smooth at the axis points

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize
- The ℓ_{1} norm is the most preferred regularizer for sparse \mathbf{w} (many w_{d} 's zero)
- Convex, but it's not smooth at the axis points
- .. but several methods exists to deal with it, e.g., subgradient descent

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize
- The ℓ_{1} norm is the most preferred regularizer for sparse \mathbf{w} (many w_{d} 's zero)
- Convex, but it's not smooth at the axis points
- .. but several methods exists to deal with it, e.g., subgradient descent
- The ℓ_{2} squared norm tries to keep the individual w_{d} 's small

Norm based Regularizers

- Norm based regularizers are used as approximations to $R^{c n t}(\mathbf{w}, b)$
- ℓ_{2} squared norm: $\|\mathbf{w}\|_{2}^{2}=\sum_{d=1}^{D} w_{d}^{2}$
- ℓ_{1} norm: $\|\mathbf{w}\|_{1}=\sum_{d=1}^{D}\left|w_{d}\right|$
- ℓ_{p} norm: $\|\mathbf{w}\|_{p}=\left(\sum_{d=1}^{D} w_{d}^{p}\right)^{1 / p}$

Figure: Contour plots. Left: ℓ_{2} norm, Center: ℓ_{1} norm, Right: ℓ_{p} norm (for $p<1$)

- Smaller p favors sparser vector \mathbf{w} (most entries of \mathbf{w} close/equal to 0)
- But the norm becomes non-convex for $p<1$ and is hard to optimize
- The ℓ_{1} norm is the most preferred regularizer for sparse \mathbf{w} (many w_{d} 's zero)
- Convex, but it's not smooth at the axis points
- .. but several methods exists to deal with it, e.g., subgradient descent
- The ℓ_{2} squared norm tries to keep the individual w_{d} 's small
- Convex, smooth, and the easiest to deal with

Next class..

- Introduction to Kernels
- Nonlinear classification algorithms
- Kernelized Perceptron
- Kernelized Support Vector Machines

