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What is Machine Learning?

Machine Learning:
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What is Machine Learning?

Machine Learning:

Designing algorithms that can learn patterns from data (and exploit them)

Approach: human supplies training examples, the machine learns

Example: Show the machine a bunch of spam and legitimate emails and let it
learn to predict if a new email is spam or not

Machine Learning primarily uses the statistically motivated approach

No hand-crafted rules - subtle pattern nuances are often be difficult to specify

Instead, let the machine figure out the rules on its own by looking at data

.. by building statistical models of the data

The statistical model helps uncover the process which generated the data

Desirable Property: Generalization

The model shouldn’t overfit on the training data

It should generalize well on unseen (future) test data
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Generalization (Pictorially)

Pictures below: The X axis is the input. The Y axis is the response.
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Generalization (Pictorially)

Pictures below: The X axis is the input. The Y axis is the response.

Which of the four red curves fits the data (blue dots) best?

Which curve is expected to generalize the best?

Are they both the same? If yes, why? If no, why not?

Lesson: Simple models should be preferred over complicated models

Simple models can prevent overfitting
Caution: Too simple a model can underfit (e.g., M = 0 above)
General guideline: Choose a model not-too-simple, yet not-too-complex
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Machine Learning in the real-world

Broadly applicable in many domains (e.g., finance, robotics, bioinformatics,
vision, natural language, etc.). Some applications:

Spam filtering
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flags for programs

.. and many more

12 IT skills that employers can’t say no to (Machine Learning is #1)
http://www.computerworld.com/s/article/9026623/12_IT_skills_that_employers_can_t_say_no_to_
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Major Machine Learning Paradigms

Nomenclature: x denotes an input/example/instance, y denotes a
response/output/label/prediction

Supervised Learning: learning with a teacher
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Nomenclature: x denotes an input/example/instance, y denotes a
response/output/label/prediction

Supervised Learning: learning with a teacher

Given: N labeled training examples {(x1, y1), . . . , (xN , yN)}

Goal: learn mapping f that predicts label y for a test example x

Example: Spam classification, webpage categorization

Unsupervised Learning: learning without a teacher

Given: a set of N unlabeled inputs {x1, . . . , xN}

Goal: learn some intrinsic structure in the inputs (e.g., groups/clusters)

Example: Automatically grouping news stories (Google News)

Reinforcement Learning: learning by interacting

Given: an agent acting in an environment (having a set of states)

Goal: learn a policy (state to action mapping) that maximizes agent’s reward

Example: Automatic vehicle navigation, (computer) learning to play Chess
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Supervised Learning

Given: N labeled training examples {(x1, y1), . . . , (xN , yN)}

Goal: learn a model that predicts the label y for a test example x
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Supervised Learning

Given: N labeled training examples {(x1, y1), . . . , (xN , yN)}

Goal: learn a model that predicts the label y for a test example x

Assumption: The training and the test examples are drawn from the same
data distribution

Things to keep in mind:

No single learning algorithm is universally good (“no free lunch”)

Different learning algorithms work with different assumptions

Generalization is particularly important for supervised learning
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Supervised Learning: Problem Settings

f : x → y

Classification: when y is a
discrete variable

Discrete variable: takes a
value from a discrete set

y ∈ {1, . . . ,K}
Example: Category of a
webpage (sports, politics,
business, science, etc.)

Regression: when y is a
real-valued variable

Example: Price of a stock
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Supervised Learning: Classification

Problem Types:

Binary Classification: y is binary (two classes: 0/1 or -1/+1)

Example: Spam Filtering (tell whether this email is spam or legitimate)
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Example: Spam Filtering (tell whether this email is spam or legitimate)

Multi-class Classification: y is discrete with one of K > 2 possible values

Example: Predicting your CS5350 grade (e.g., A,A−,B+,B,B−, other)

Multi-label Classification: When y is a vector of discrete variables

Each input x has multiple labels
Each element of y is one label (individual labels can be binary/multi-class)
Example: Image annotation (each image can have multiple labels)

Structured Prediction: When y is a vector with a structure

Elements of y are not independent but related to each-other
Example: Predicting parts-of-speech (POS) tags for a sentence
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Supervised Learning: Regression

Problem Types:

Univariate Regression: y is a single real-valued number

Example: Predicting the future price of a stock
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Supervised Learning: Regression

Problem Types:

Univariate Regression: y is a single real-valued number

Example: Predicting the future price of a stock

Multivariate Regression: y is a real-valued vector

Each element of y tells the value of one response variable

Example: Torque values in multiple joints of a robotic arm

Akin to multi-label classification
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Supervised Learning: Pictorially

Classification is about finding separation boundaries (linear/non-linear):
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Supervised Learning: Pictorially

Classification is about finding separation boundaries (linear/non-linear):

Regression is more like fitting a curve/surface to the data:
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Unsupervised Learning

Unsupervised Learning: learning without a teacher

Given: a set of unlabeled inputs {x1, . . . , xN}
Goal: learn some intrinsic structure in the data

Some Examples: Data Clustering, Dimensionality Reduction
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Unsupervised Learning: learning without a teacher

Given: a set of unlabeled inputs {x1, . . . , xN}
Goal: learn some intrinsic structure in the data

Some Examples: Data Clustering, Dimensionality Reduction
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Unsupervised Learning: learning without a teacher

Given: a set of unlabeled inputs {x1, . . . , xN}
Goal: learn some intrinsic structure in the data

Some Examples: Data Clustering, Dimensionality Reduction

Data Clustering

Grouping a given set of inputs based on their similarities

Example: clustering new stories based on their topics (e.g., Google News)

Clustering sometimes is also referred to as (probability) density estimation

Dimensionality Reduction

Often, real-world data is high dimensional

Reducing dimensionality helps in several ways

Computational benefits: speeding up learning algorithms

Better input representations for supervised learning tasks

Used for data visualization by reducing data to smaller dimensions
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Unsupervised Learning: Data Clustering
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Unsupervised Learning: Dimensionality Reduction

Data high-dimensional in ambient space, but intrinsically lower dimensional

2-D data lying close to 1-D space
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Unsupervised Learning: Dimensionality Reduction

Data high-dimensional in ambient space, but intrinsically lower dimensional

2-D data lying close to 1-D space

3-D data living on a manifold, instrinsically 2-D
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Reinforcement Learning

Unlike supervised/unsupervised learning, RL does not recieve examples

Rather, it learns (gathers experience) by interacting with the world
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Reinforcement Learning

Unlike supervised/unsupervised learning, RL does not recieve examples

Rather, it learns (gathers experience) by interacting with the world

Defined by an agent and an environment the agent acts in

Agent has a set A of actions, environment has a set S of states

Goal: Find a sequence of actions by the agent that maximizes its reward

Output: A policy which maps states to actions

RL problems always include time as a variable

Example problems: Chess, Robot control, autonomous driving

In RL, the key trade-off is exploration versus exploitation
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Other Paradigms: Semi-supervised Learning

Supervised Learning requires labeled data (the more, the better!)

Problem 1: Labeling is expensive (usually done by humans)

Problem 2: Sometimes labels are really hard to get

Speech-analysis: transcribing an hour of speech can take several hundred
hours!
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Other Paradigms: Semi-supervised Learning

Supervised Learning requires labeled data (the more, the better!)

Problem 1: Labeling is expensive (usually done by humans)

Problem 2: Sometimes labels are really hard to get

Speech-analysis: transcribing an hour of speech can take several hundred
hours!

How can we learn well even with small amounts of labeled data?

One answer: Semi-supervised Learning

Using small amount of labeled + plenty of (freely available) unlabeled data
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Other Paradigms: Semi-supervised Learning

Often unlabeled data can give a good idea about class separation

One intuition: Class boundary is expected to lie in a low-density region
Low density region: region that has very few examples
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Other Paradigms: Active Learning

Similar motivation as semi-supervised learning (saving data labeling cost)
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Not all labeled examples are really informative

Spending labeling efforts on uninformative examples isn’t really worth it
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.. the ones it considers the most informative
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Other Paradigms: Active Learning

Similar motivation as semi-supervised learning (saving data labeling cost)

Standard supervised learning is passive

Learner has no choice for the data it has to learn from

Not all labeled examples are really informative

Spending labeling efforts on uninformative examples isn’t really worth it

Active Learning: allows the learner to ask for specific labeled examples

.. the ones it considers the most informative

Active Learning can lead to several benefits:

Less labeled data needed to learn

Better classifiers
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Other Paradigms: Transfer Learning

Let’s assume we have two related learning tasks ’A’ and ’B’

Plenty of labeled training data for ’A’: Can learn ’A’ well

Little or no labeled data for ’B’: Little or no hope of learning ’B’
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Other Paradigms: Transfer Learning

Let’s assume we have two related learning tasks ’A’ and ’B’

Plenty of labeled training data for ’A’: Can learn ’A’ well

Little or no labeled data for ’B’: Little or no hope of learning ’B’

Transfer Learning: allows ’B’ to leverage the data from task ’A’

Under suitable task-relatedness assumptions, transfer learning may help

Caution: Incorrect/inappropriate assumptions can hurt learning

Several variants/names of Transfer Learning

Multitask Learning

Domain Adaptation

Co-variate Shift
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Bayesian Learning

Not really a different learning paradigm

Rather, a way of doing machine learning (can be used for any learning
paradigm - supervised, unsupervised, etc.)
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Most ML algorithms: Provide them data, get a model out of it

No way to know how confident your model parameters are
No way to know how confident your predictions are

But in some problem domains, confidence estimates are important
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But in some problem domains, confidence estimates are important

Bayesian Learning gives a way to quantify confidence/uncertainty

By maintaining a probability distribution over the parameters/predictions
So we also have mean and variance estimates of the parameters/predictions
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Bayesian Learning

Not really a different learning paradigm

Rather, a way of doing machine learning (can be used for any learning
paradigm - supervised, unsupervised, etc.)

Most ML algorithms: Provide them data, get a model out of it

No way to know how confident your model parameters are
No way to know how confident your predictions are

But in some problem domains, confidence estimates are important

Bayesian Learning gives a way to quantify confidence/uncertainty

By maintaining a probability distribution over the parameters/predictions
So we also have mean and variance estimates of the parameters/predictions

Another advantage: Incorporating prior knowledge about the problem,
Bayesian methods can automatically control overfitting (and can learn well
with small amounts of data)
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Machine Learning vs Statistics

Traditionally, Statistics mainly cares about fitting a model over the data

Main focus is on explaining the data
Issues such as generalization are typically ignored
Note: There may be some exceptions

ML focuses more on the prediction aspect (generalization is important)

Although knowing about the data generating model can help prediction, such
modeling can sometimes be expensive. ML therefore often goes easy on the
modeling aspect and focuses directly on the prediction task

Statistics traditionally does not focus much on computational issues

Most ML algorithms nowadays consider the computational issues

For some discussion, see:
http://brenocon.com/blog/2008/12/statistics-vs-machine-learning-fight/
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Data Representation

Data has form: {(x1, y1), . . . , (xN , yN)} (labeled), or {x1, . . . , xN} (unlabeled)

What the label y looks like is task-specific (as we saw)

What about x which denotes a real-world object (e.g., image or text
document)?
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Data Representation

Data has form: {(x1, y1), . . . , (xN , yN)} (labeled), or {x1, . . . , xN} (unlabeled)

What the label y looks like is task-specific (as we saw)

What about x which denotes a real-world object (e.g., image or text
document)?

Each example x is a set of (numeric) features/attributes/dimensions

Features encode properties of the object which x represents

x is commonly represented as a D × 1 vector

Representing a 28× 28 image: x can be a 784× 1 vector of pixel values

Representing a text document: x can be a vector of word-counts of words
appearing in that document

For some problems, non-vectorial representations may be more appropriate
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Some Notations

R
D denotes the set of all D × 1 real-valued column vectors

x ∈ R
D denotes a D × 1 real-valued column vector

xT denotes the transpose of x, a 1× D row vector

R
N×D denotes the set of all N × D real-valued matrices

X ∈ R
N×D denotes an N × D real-valued matrix

Supervised Learning: Often, we write {(x1, y1), . . . , (xN , yN)} as (X,Y)

X is an N × D matrix

Each row of X denotes an example,
each column denotes a feature

xij denotes the j-th feature of the
i-th example

Y is an N × 1 vector. Row i denotes
the label of the i-th example

X =







x1
...
xN






=







x11 · · · x1D
...
. . .

...
xN1 · · · xND







Y =







y1
...
yN
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Next class..

Two supervised learning algorithms

K -Nearest Neighbors

Decision Trees

Both based more on intuition and less on maths :)
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