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Mathematical Tools for Multivariate

Character Analysis

This chapter introduces a variety of tools from matrix algebra and multivariate
statistics useful in the analysis of selection on multiple characters. Our primary
intent is to introduce the reader to the idea of vectors and matrices as geomet-
ric structures, viewing matrix operations as transformations converting a vector
into a new vector by a change in geometry (rotation and scaling). The eigenvalues
and their associated eigenvectors of a matrix describe the geometry of the trans-
formation associated with that matrix. Using the multivariate normal, we then
develop the multivariate breeders’ equation and examine properties of Gaussian
fitness functions. We conclude with some elementary concepts in vector calcu-
lus, focusing on derivatives of vectors and finding local extrema of vector-valued
functions. The reader should be aware that this chapter is rather dense in terms of
mathematical machinery and focus on getting an overview of the various meth-
ods during the first reading, referring back to relevant sections for specific details
as applications arise. Readers who feel a little uncomfortable with matrices might
wish to review Chapter 7 before proceeding further.

THE GEOMETRY OF VECTORS AND MATRICES

There are numerous excellent texts on matrix algebra, so we will make little ef-
fort to prove most of the results given below. For statistical applications, concise
introductions can be found in the chapters on matrix methods in Johnson and
Wichern (1988) and Morrison (1976), while Dhrymes (1978) and Searle (1982) pro-
vide a more extended treatment. Wilf’s (1978) short chapter on matrix methods
provides a very nifty review of methods useful in applied mathematics. Franklin
(1968), Horn and Johnson (1985), and Gantmacher (1960), respectively, give in-
creasingly sophisticated treatments of matrix analysis.

Comparing Vectors: Lengths and Angles

As Figure 15.1 shows, a vector x can be treated as a geometric object, an arrow
leading from the origin to thendimensional point whose coordinates are given by
the elements of x. By changing coordinate systems, we change the resulting vector,

333



334 CHAPTER 15

potentially changing both its direction (rotating the vector) and length (scaling
the vector). This geometric interpretation suggests several ways for comparing
vectors, such as the angle between two vectors and the projection of one vector
onto another.

Figure 15.1. Some basic geometric concepts of vectors. While we use examples
from two dimensions, these concepts easily extend tondimensions. A: A vector x
can be thought of as an arrow from the origin to a point in space whose coordinates
are given by the elements of x. B: Multiplying a vector by−1 results in a reflection
about the origin. C: One measure of the difference in direction between two vectors
is the angle θ between them. D: Proj(b on A) is the vector resulting from the
projection of b on A. Note that the resulting projection vector is either in the same
direction as A or in the direction of the reflection of A, as seen for Proj(c on A).

Consider first the length (or norm) of a vector. The most common length
measure is the Euclidean distance of the vector from the origin, ||x||, which is
defined by

||x|| =
√
x2

1 + x2
2 + · · ·+ x2

n =
√

xTx (15.1a)

Hence for any scalar a, ||ax|| = |a| ||x||. If a < 0, the vector ax is scaled by |a|
and reflected about the origin as is shown in Figure 15.1. Similarly, the Euclidean
distance between x and y is

||x− y||2 =
n∑
i=1

(xi − yi)2 = (x− y)T (x− y) = (y− x)T (y− x) (15.1b)

Vectors can differ by length, direction, or both. The angle θ between two vec-
tors x and y provides a measure of how much they differ in direction (Figure 15.1).
If the vectors satisfy ax = y where a > 0 they point in exactly the same direction,
and they are defined to be zero degrees apart. If a < 0, they are exactly 180 degrees
apart and differ in direction only by a reflection of the axes about the origin. At the
other extreme, two vectors can be at right angles to each other (θ = 90◦ or 270◦),
in which case the vectors are said to be orthogonal. Orthogonal vectors of unit
length are further said to be orthonormal. For any two n dimensional vectors, θ
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satisfies

cos(θ) =
xTy
||x|| ||y|| =

yTx
||x|| ||y|| (15.2)

Note that since cos(90◦) = cos(270◦) = 0, two vectors are orthogonal if and only
if their inner product is zero, xTy = 0.

Another way to compare vectors, illustrated in Figure 15.1, is to consider
the projection of one vector on another. For any two n dimensional vectors, the
projection of x on y generates a vector defined by

Proj(x on y) =
xTy
yTy

y =
xTy
||y||2 y =

(
cos(θ)

||x||
||y||

)
y (15.3 a)

If ||y|| = 1, then
Proj(x on y) = (xTy) y = (cos(θ) ||x|| ) y (15.3b)

Note that since the term involving cosines in Equations 15.3a/b is a scalar, the
vector resulting from the projection of x on y is in the same direction as y, unless
90◦ < θ < 270◦ in which case cos(θ) < 0 and the projection vector is in exactly
the opposite direction (the reflection of y about the origin). The length of the
projection vector is

||Proj(x on y)|| = | cos(θ)| ||x|| (15.3c)

If two vectors lie in exactly the same direction, the projection of one on the other
just recovers the vector (Proj(x on y) = x). Conversely, if two vectors are orthog-
onal, then the projection of one on the other yields a vector of length zero. An
important use of projection vectors is that if y1,y2, · · · ,yn is any set of mutu-
ally orthogonal n dimensional vectors, then any n dimensional vector x can be
represented as the sum of projections of x onto the members of this set,

x =
n∑
i=1

Proj(x on yi) (15.4)

Matrices Describe Vector Transformations

When we multiply a vector x by a matrix A to create a new vector y = Ax, A
rotates and scales the original vector x to give y. Thus A describes a transformation
of the original coordinate system of x into a new coordinate system y (which has
a different dimensions than x unless A is square).

Orthonormal Matrices

Matrix transformations consist of two basic operations, rotations (changes in the
direction of a vector) and scalings (changes in its length). We can partition a matrix
transformation into these two basic operations by using orthonormal matrices.
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Writing a square matrix U as U = (u1,u2, · · · ,un) where each ui is an n dimen-
sional column vector, U is orthonormal if

uiTuj =
{

1 if i = j

0 if i 6= j

In other words, each column of U is independent from every other column and
has unit length. Matrices with this property are also referred to as unitary, or
orthogonal and satisfy

UT U = U UT = I (15.5a)

Hence,
UT = U−1 (15.5b)

The coordinate transformation induced by an orthonormal matrix has a very sim-
ple geometric interpretation in that it is a rigid rotation of the original coordinate
system — all axes of the original coordinate are simply rotated by the same an-
gle to create the new coordinate system. To see this, note first that orthonormal
matrices preserve all innerproducts. Taking y1 = Ux1 and y2 = Ux2,

y1
Ty2 = x1

T (UTU)x2 = x1
Tx2

A special case of this is that orthonormal matrices do not change the length of
vectors, as ||y1|| = y1

Ty1 = x1
Tx1 = ||x1||. If θ is the angle between vectors x1

and x2, then following transformation by an orthonormal matrix,

cos(θ |y1,y2) =
y1
Ty2√

||y1|| ||y2||
=

x1
Tx2√

||x1|| ||x2||
= cos(θ |x1,x2)

and the angle between any two vectors remains unchanged following their trans-
formation by the same orthonormal matrix.

Eigenvalues and Eigenvectors

The eigenvalues and their associated eigenvectors of a square matrix describe
the geometry of the transformation induced by that matrix. Eigenvalues describe
how the original coordinate axes are scaled in the new coordinate system while
eigenvectors describe how the original axes are rotated.

Suppose that the vector y satisfies the matrix equation

Ay = λy (15.6)

for some scalar value λ. Geometrically, this means that the new vector resulting
from transformation of y by A points in the same direction (or is exactly reflected
about the origin if λ < 0) as y. For such vectors, the only action of the matrix
transformation is to scale them by some amount λ. Hence, it is natural that the
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system of such vectors along with their corresponding scalar multipliers com-
pletely describes the geometry of the transformation associated with A. Vectors
satisfying Equation 15.6 are referred to as eigenvectors and their associated scal-
ing factors are eigenvalues. If y is an eigenvector, then ay is also an eigenvector as
A(ay) = a(Ay) = λ(ay). Note, however, that the associated eigenvalue remains
unchanged. Hence, we typically scale eigenvectors to be of unit length to give unit
or normalized eigenvectors. In particular, if ui is the eigenvector associated with
the ith eigenvalue, then the associated normalized eigenvector is ei = ui/||ui||.

The eigenvalues of square matrix A of dimension n are solution of Equation
15.6, which is usually expressed as the characteristic equation |A− λI| = 0. This
can be also be expressed using the Laplace expansion as

|A− λI| = (−λ)n + S1(−λ)n−1 + · · ·+ Sn−1(−λ)1 + Sn = 0 (15.7)

where Si is the sum of all principal minors (minors including diagonal elements
of the original matrix) of order i. Minors were defined in Chapter 7. Finding the
eigenvalues thus requires solving a polynominal equation of order n. In practice,
for n > 2 this is usually done numerically, and most statistical and numerical
analysis packages offer routines to accomplish this task.

Two of these principal minors are easily obtained and provide some informa-
tion on the nature of the eigenvalues. The only principal minor having the same
order of the matrix is the full matrix itself, so that Sn = |A |, the determinant of
A. S1 is also related to an important matrix quantity, the trace. This is denoted by
tr(A) and is the sum of the diagonal elements of the matrix,

tr(A) =
n∑
i=1

aii

Observe thatS1 = tr(A) as the only principal minors of order one are the diagonal
elements themselves, the sum of which equals the trace. The trace and determinant
can be expressed as functions of the eigenvalues,

tr(A) =
n∑
i=1

λi and |A| =
n∏
i=1

λi (15.8)

Hence A is singular (|A| = 0) if and only if at least one eigenvalue is zero.
Let ei be the (unit-length) eigenvector associated with eigenvalue λi. If the

eigenvectors of A can be chosen to be mutually orthogonal, e.g., eTi ej = 0 for
i 6= j, we can express A as

A = λ1e1e
T
1 + λ2e2e

T
2 + · · ·+ λneneTn ((15.9b))

This decomposition is called the spectral decomposition of A. Hence,

Ax = λ1e1e
T
1 x+ λ2e2e

T
2 x+ · · ·+ λneneTnx

= λ1Proj(x on e1) + λ2Proj(x on e2) + · · ·+ λnProj(x on en) (15.9b)
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The last equality follows since ei(eTi x) = (eTi x)ei as eiTx is a scalar.

Properties of Symmetric Matrices

Many of the matrices we will encounter are symmetric, satisfying A = AT .
Examples include variance-covariance matrices and the γ matrix of quadratic
coefficients in the Pearson-Lande-Arnold fitness regression. Here we give some of
the more useful properties of symmetric matrices. Proofs can be found in Dhrymes
(1978), Horn and Johnson (1985), and Wilf (1978).

1. If A is symmetric, then if A−1 exists, it is also symmetric.

2. The eigenvalues and eigenvectors of a symmetric matrix are all real.

3. For any n-dimensional symmetric matrix, a corresponding set of orthonormal
eigenvectors can be constructed, i.e., we can obtain a set of eigenvalues ei
for 1 ≤ i ≤ n that satisfies

eiTej =
{

1 if i = j

0 if i 6= j

In particular, this guarantees that a spectral decomposition of A exists.
This can be restated as:

4. A symmetric matrix A can be diagonalized as

A = UΛUT (15.10a)

where Λ is a diagonal matrix, and U is an orthonormal matrix (U−1 =
UT ). If λi and ei are the ith eigenvalue and its associated unit eigenvector
of A, then

Λ = diag(λ1, λ2, · · · , λn) =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 · · · · · · λn

 (15.10b)

and
U = ( e1, e2, · · · , en ) (15.10c)

Geometrically, U describes a rigid rotation of the original coordinate system
whileΛ is the amount by which unit lengths in the original coordinate system
are scaled in the transformed system. Using Equation 15.10a, it is easy to show
that

A−1 = UΛ−1UT (15.11a)

A1/2 = UΛ1/2UT (15.11b)
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where the square root matrix A1/2 (which is also symmetric) satisfies

A1/2A1/2 = A

Since Λ is diagonal, the ith diagonal elements of Λ−1 and Λ1/2 are λ−1
i and

λ
1/2
i respectively, implying that if λi is an eigenvalue of A, then λ−1

i and
√
λi

are eigenvalues of A−1 and A1/2. Note that Equations 15.11a/b imply that A,
A−1 and A1/2 all have the same eigenvectors. Finally, using Equation 15.10a
we see that premultiplying A by UT and then postmultiplying by U gives a
diagonal matrix whose elements are the eigenvalues of A,

UTAU = UT (UΛUT )U = (UTU)Λ(UTU)
= Λ (15.12)

5. The Rayleigh-Ritz theorem gives useful bounds on quadratic products
associated with the symmetric matrix A: if the eigenvalues of A are
ordered as λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin, then for any vector of
constants c,

λ1 ||c|| ≥ cTAc ≥ λn ||c|| (15.13a)

Alternatively, if c is of unit length

max
||c||=1

cTAc = λ1 (15.13b)

min
||c||=1

cTAc = λn (15.13c)

Where the maximum and minimum occur when c = e1 and c = en, the
eigenvectors associated with λ1 and λn. This is an especially useful result
for bounding variances. Consider a univariate random variable y = cTx
formed by a linear combination of the elements of a random vector x.
From Equation 7.20, σ2(y) = cTΣxc and applying Equation 15.13a,

λ1||c||2 ≥ σ2(y) ≥ λn||c||2 (15.14)

where λ1 is the largest (leading or dominant) and λn the smallest eigen-
value ofΣx.

Correlations can be Removed by a Matrix Transformation

A particularly powerful use of diagonalization is that it allows us to extract
a set of n uncorrelated variables when the variance-covariance matrix Σx is
nonsingular and of dimension n. Consider the transformation

y = UTx (15.15a)
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where U = (e1, e2, · · · , en) contains the normalized eigenvectors of Σx. Since
U is an orthonormal matrix, this transformation is a rigid rotation of the
axes of the original (x1, · · · , xn) coordinate system to a new system given by
(y1, · · · , yn). Applying Equations 7.22b and 15.12, the variance-covariance ma-
trix for y is

Σy = UTΣx U = Λ (15.15b)

where Λ is a diagonal matrix whose elements are the eigenvalues of Σx, so
that

σ(yi, yj) =
{
λi if i = j

0 if i 6= j

The rigid rotation introduced by U thus creates a set ofnuncorrelated variables,
the ith of which is

yi = eiTx (15.15c)

Since ei are defined to be of unit length, from Equation 15.3b we have yi =
eiTx = Proj(x on ei), so that this new variable is the projection of x onto the ith
eigenvector ofΣx, implying that the axes of new coordinate system are given
by the orthogonal set of eigenvectors ofΣx.

Canonical Axes of Quadratic Forms

The transformation y = UTx given by Equation 15.15a applies to any sym-
metric matrix, and is referred to as the canonical transformation associated
with that matrix. The canonical transformation simplifies the interpretation of
the quadratic form xTAx as rotation of the original axes to align them with
the eigenvalues of A removes all cross-product terms on this new coordinate
system. Applying Equations 15.15a and 15.12 transforms the quadratic form
to one in which the square matrix is diagonal,

xT A x = (Uy)TAUy = yT (UTAU)y
= yT Λy

=
n∑
i=1

λiy
2
i (15.16)

where λi and ei are the eigenvalues and associated (normalized) eigenvectors
of A and yi = eiTx. The new axes defined by ei are the canonical (or princi-
pal) axes. Since the y2

i ≥ 0, Equation 15.16 immediately shows the connection
between the signs of the eigenvalues of a matrix and whether that matrix is
positive definite, negative definite, or indefinite. If all eigenvalues are positive
(allλi > 0), then the quadratic form is always positive (unless all the yi are zero)
and hence A is positive definite. If all eigenvalues are negative (all λi < 0), then
A is negative definite as the quadratic form is always negative. If at least one
eigenvalue is zero, then A is at most semidefinite, while if A has both positive
and negative eigenvalues it is indefinite.
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Equations of the form

xTAx =
n∑
i=1

n∑
j=1

aijxixj = c2 (15.17a)

arise fairly frequently. For example, they describe surfaces of constant variance
(tracing out the surface created by vectors b such that bTx has constant variance
c2, see Figure 15.5) or surfaces of constant fitness in quadratic fitness regressions
(those vectors of phenotypic values z such that w(z) = a + (z − µ)Tγ(z −
µ) is constant). Solutions to Equation 15.17a describe quadratic surfaces —
for two dimensions these are the familiar conic sections (ellipses, parabolas,
or hyperbolas). Equation 15.16 greatly simplifies the interpretation of these
surfaces by removing all cross product terms, giving

xT A x =
n∑
i=1

λiy
2
i = c2 (15.17b)

Since (yi)2 and (−yi)2 have the same value, the canonical axes of A are also
the axes of symmetry for the quadratic surface generated by quadratic forms
involving A. When all the eigenvalues of A are positive (as occurs with non-
singular variance-covariance and other positive definite matrices), Equation
15.17b describes an ellipsoid whose axes of symmetry are given by the eigen-
vectors of A. The distance from the origin to the surface along the axis given by
ei is λiy2

i = c2 or yi = cλ
−1/2
i , as can been seen by setting all the yk equal to zero

except for yi, giving xT A x = λiy
2
i = c2. Figure 15.5 shows an example of a

two-dimensional constant-variance surface: if we plot the entire set of vectors
b such that the variable y = bT x has variance c2 = bT Σx b, the tips of these
vectors sweep out the ellipse.

Figure 15.5. The general shape of surfaces of constant variance for the additive
genetic variance-covariance matrix G given in Example 1. Defining a new com-
posite character y = az1 + bz2, the rotated ellipse represents the set of (a, b)

Latecki
Highlight

Latecki
Highlight

Latecki
Highlight



342 CHAPTER 15

values that give y the same additive genetic variance c2. The major axis of the
ellipse is along e2, the eigenvector associated with the smallest eigenvalue of

G, where λ2 ' 0.765, giving λ−1/2
2 ' 1.143. The minor axis of the ellipse

is along e1, the eigenvector associated with the largest eigenvalue of G, where

λ1 ' 5.241, giving λ−1/2
1 ' 0.437.

Principal Components of the Variance-Covariance Matrix

We are very interested in how the variance of a random vector can be decomposed
into independent components. For example, even though we may be measuring
n variables, only one or two of these may account for the majority of the varia-
tion. If this is the case we may wish to exclude those variables contributing very
little variation from further analysis. More generally, if the random variables are
correlated, then certain linear combinations of the elements of x may account
for most of the variance. The procedure of principal component analysis extracts
these combinations by decomposing the variance of x into a series of orthogonal
vectors, the first of which explains the most variation possible for any single vec-
tor, the second the next possible amount, and so on until the entire variance of x
has been accounted for.

Consider Figure 15.5. Since the set of points comprising the ellipse represents
those linear combinations of the random variables of z giving equal variance,
we see that the closer a point on this curve is to the origin, the more variance
there is in that direction. The points closest to the origin are those that lie along
the axis defined by e1, while those furthest away lie along the axis define by
e2. Here e1 and e2 are the principal components of G, with the first principal
component accounting for most of the variation of G. In particular, the ratio of
additive variances for the characters y1 = e1

T z and y2 = e2
T z is σ2(y1)/σ2(y2) =

σ2(e1
T z)/σ2(e2

T z) = e1
T G e1/e2

T G e2 = λ1/λ2 ' 5.241/0.765 ' 6.85, so that
a character in the direction of e1 has almost seven times as much additive variance
as a character lying in the direction of e2.

In general, suppose we have an n-dimensional variance-covariance matrix
Σx. Ordering the eigenvalues of Σx as λ1 ≥ λ2 ≥ · · · ≥ λn then from Equation
15.13b the maximum variance for any linear combination y = c1

Tx (subject to the
constraint that ||c1|| = 1) is

max σ2(y) = max
||c1||=1

σ2(c1
Tx) = c1

TΣxc1 = λ1

which occurs when c1 = e1. This vector the first principal component (often
abbreviated as PC1). Excluding PC1, consider how the remaining variance can be
explained. The vector c2 orthogonal to PC1 (e.g., c2

T c1 = 0) that maximizes the
remaining variance, e.g., maximizes σ2(c2

T x), can be shown to be e2 and that the
amount of the remaining variation it explains is λ2 (e.g., Morrison 1976, Johnson
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and Wichern 1988). Proceeding in this fashion, we see that the ith PC is given by
ei and that the amount of variation it accounts for is

λi

/ n∑
k=1

λk =
λi

tr(Σx)
(15.18)

Example 5. Again consider the additive genetic variance-covariance matrix G
as given in Example 1. Since λ1 ' 5.241, λ2 ' 0.765 and tr(G) = 4 + 2 = 6,
the first PC explains 5.241/6 ' 0.8735 or 87 percent of the variance in G.
Note, however, that although the first PC accounts for the majority of variation,
the amount of variation explained by PC1 for any particular variable y = bTx
depends on the projection of b onto PC1. For example, if b = e2, then the
projection of b onto PC1 has length zero and hence PC1 accounts for no variation
of y.

Example 6. Jolicoeur and Mosimann (1960) measured three carapace characters
in 24 males of the painted turtle Chrysemys picta marginata. Letting z1 be carapace
length, z2 maximun carapace width, and z3 carapace height, the resulting sample
variance-covariance matrix (Sz, the sample estimate ofΣz) for these data is

Sz =

 13.77 79.15 37.13.
79.15 50.04 21.65
37.13. 21.65 13.26


Hence, tr(Sz) = 13.77 + 50.04 + 13.26 = 200.07. The eigenvalues for this
matrix are found to be

λ1 = 195.281, λ2 = 3.687, λ3 = 1.103

and the associated normalized eigenvectors are

e1 =

 0.840
0.492
0.229

 , e2 =

 0.488
−0.870

0.079

 , e3 =

 0.213.
0.043
−0.971


PC1 accounts for 97.6% of the variation (as 195.281/200.07 = 0.976), while
PC2 and PC3 account for 1.84% and 0.55%, respectively. Jolicoeur and Mosimann
interpret PC1 as measuring overall size as the new variable is

y1 = e1
T z = 0.840z1 + 0.492z2 + 0.229z3
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which corresponds to a simultaneous change in all three variables, as is expected
to occur as individuals change their overall size. Likewise PC2 and PC3 are

y2 = e2
T z = 0.488z1 − 0.870z2 + 0.079z3

y3 = e3
T z = 0.213.z1 + 0.043z2 − 0.971z3

which Jolicoeur and Mosimann interpret as measures of shape. Since the coeffi-
cient on z3 is small relative to the others in PC2, they interpret PC2 as measuring
the tradeoff between length (z1) and width (z2). After removing the variation in
size, 1.84% of the remaining variation can be accounted for by differences in the
shape measured by length versus width. Likewise, since the coefficient in z2 is
very small in PC3, it measures shape differences due to length (z1) versus height
(z3).

This example points out some of the advantages, and possible pitfalls, of
using principal components analysis to reduce the data. Essentially all (over 97
percent) of the variance in the three measured characters is accounted for by vari-
ation in overall size, with the remaining variation accounted for by differences
in shape. While the temptation is strong to simply consider overall size and ig-
nore all shape information, it might be the case that selection is largely ignoring
variation in size and instead is focusing on (size-independent) shape differences.
In this case, an analysis ignoring shape (such as would occur if only the new
character generated by PC1 is considered) would be very misleading. A further
complication with principal component analysis is that it can often be very dif-
ficult to give biological interpretations to the new characters resulting from the
rotation of the coordinate system. This example serves as a brief introduction to
the important field of morphometrics, which is concerned with how to quantify
and compare the size and shape of organisms. The reader is referred to Pimentel
(1979), Reyment et al. (1984), and especially Bookstein et al. (1985), Rohlf and
Bookstein (1990), and Reyment (1991) for detailed treatments.

THE MULTIVARIATE NORMAL DISTRIBUTION

Recall the density of the multivariate normal distribution,

φ(x) = (2π)−n/2 |Σx|−1/2 exp
[
−1

2
(x− µ)T Σ -1

x (x− µ)
]

(15.19a)

Thus surfaces of equal probability for MVN distributed vectors satisfy

(x− µ)T Σ -1
x (x− µ) = c2 (15.19b)
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From the discussion following Equation 15.17b, these surfaces are n-dimensional
ellipsoids centered at µwhose axes of symmetry are given by the principal com-
ponents (the eigenvectors) ofΣx. The length of the ellipsoid along the ith axis is
c
√
λi where λi is the eigenvalue associated with the eigenvector ei (Figure 15.6).

Figure 15.6. Left: Surfaces of equal probability assuming that the additive ge-
netic values associated with the charactersz1 andz2 in Example 1 are MVN(µ,G).
These surfaces are ellipses centered at µ, with the major axis of the ellipse along
e1 and the minor axis along e2. Right: A plot of the associated probability den-
sity. Slicing along either the major or minor axis gives a normal curve. Since the
variance in the major axis is greater, the curve is much broader along this axis.
The covariance between the breeding values of z1 and z2 rotates the distribution
so that the principal axes do not coincide with the (z1, z2) axes.

Applying the canonical transformation (Equation 15.15a), we can change
coordinate systems by a rigid rotation to remove any correlations between the
variables in x. Taking y = UT (x− µ),

y ∼MVN(0,Λ) (15.20a)

whereΛ and U are the matrices defined by Equations 15.10b/c for the diagonal-
ization ofΣx. In particular,

yi = eiT (x− µ) where yi ∼ N(0, λi) (15.20b)

Note from Equation 15.19 that since the yi are uncorrelated, they are independent
as the joint probability density is the product of n individual univariate normal
densities. We can further transform the original vector by taking

yi =
eiT (x− µ)√

λi
giving yi ∼ N(0, 1) (15.20c)

Thus, the transformation

y = Λ−1/2UT (x− µ) (15.20d)
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implies that y ∼ MVN(0, I), the elements of y being n independent unit normal
random variables.

TESTING FOR MULTIVARIATE NORMALITY

While multivariate normality is often assumed, it is rarely tested. In Chapter 10 we
briefly discussed two approaches for testing univariate normality, one graphical
and the other based on if the observed skewness and/or kurtosis exceeds that
expected for a Gaussian. Both of these can be extended to testing for multivariate
normality. Additional methods are reviewed by Gnanadesikan (1977) and Seber
(1984).

Graphical Tests: Chi-square Plots

A fairly simple graphical test can be developed by extending the notion of the nor-
mal probability plot used to check univariate normality (Chapter 10). Recall that
in this case the observations are ranked and then plotted against their expected
values under normality. Departures from linearity signify departures from nor-
mality.

We can apply this same approach to check for multivariate normality. From
Equation 15.20d, if z ∼MVN(µ,Σz), then each element of the vector

y = Λ−1/2UT (z− µ)

is an independent unit normal (y ∼MVN(0, I) ). Solving for z gives

(z− µ) = UΛ1/2y

Using this and recalling Equation 15.11a,

(z− µ)T Σ -1
z (z− µ) =

(
UΛ1/2y

)T (
UΛ−1UT

)(
UΛ1/2y

)
= yTΛ1/2

(
UTU

)
Λ−1

(
UTU

)
Λ1/2y

= yTy =
n∑
i=1

y2
i (15.21)

Thus if z ∼ MVN, the quadratic form given by Equation 15.21 is the sum of n
independent squared unit normal random variables. By definition, this sum is a
χ2 random variable with n degrees of freedom (e.g., Morrison 1976), suggesting
that one test for multivariate normality is to compare the goodness of fit of the
scaled distances

d 2
i = (zi − z)TS−1

z (zi − z) (15.22)
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to a χ2
n. Here zi is the vector of observations from the ith individual, z the vector

of sample means, and S−1
z the inverse of the sample variance-covariance matrix.

(We use the term distance because Σy = I, giving the variance of any linear
combination cTy as cTΣyc = cT Ic = ||c||2. Thus, regardless of orientation, any
two y vectors having the same length also have the same variance, which equals
their squared Euclidean distance.) We can order these distances as

d 2
(1) ≤ d 2

(2) ≤ · · · ≤ d 2
(m)

where m is the number of individuals sampled. Note that d 2
(i) is the ith smallest

distance, whereas d 2
i is the distance associated with the vector of observations

for the ith individual. Let χ2
n(α) correspond to the value of a chi-square random

variable x with n degrees of freedom that satisfies Prob(x ≤ χ2
n(α) ) = α. Under

multivariate normality, we expect the points(
d 2

(i), χ
2
n

(
i− 1/2
m

))
to fall along a line, as the ith ordered distance has i/m observations less than
or equal to it (the factor of 1/2 is added as a correction for continuity). As with
normal probability plots, departures from multivariate normality are indicated
by departures from linearity. Complete tables of the χ2 may be difficult to locate,
in which case the appropriate χ2

n(α) values can be numerically obtained using
the incomplete gamma function (see Press et al. 1986 for details).

Example 7. Consider again the data of Jolicoeur and Mosimann (1960) on cara-
pace characters in 24 male turtles. Are the characters z1 (carapace length) and z2

(maximun carapace width) jointly bivariate normally distributed? Here n = 2
and m = 24 and

z =
(

113.13.
88.29

)
, Sz =

(
13.77 79.15
79.15 50.04

)
, S−1

z =
(

0.0737 −0.1165
−0.1165 0.2043

)
where Sz is the sample covariance matrix. A partial list of the 24 vectors of
observations are

z1 =
(

93
74

)
, · · · , z11 =

(
113
88

)
, · · · , z24 =

(
135
106

)
Applying Equation 15.22, these observations translate into the distances

d 2
1 = 4.45, · · · , d 2

11 = 0.002, · · · , d 2
24 = 9.277
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After rank ordering, these correspond to d 2
(23), d 2

(1), and d 2
(24), respectively. For

d 2
(23), the matching value when distances are chi-squared distributed is

χ2
2

(
23− 1/2

24

)
= χ2

2 (0.913.)

From chi-square tables, we find Prob(χ2
2 ≤ 5.561) = 0.913. so that the data

point generated from z1 is (4.45, 5.561). Likewise, the chi-square values for d 2
(1)

and d 2
(24) are 0.043 and 7.727, respectively. Proceeding similarly for the other

values, we obtain the curve plotted in Figure 15.7. This curve departs somewhat
from linearity. Further, under the assumption of multivariate normality, the line is
expected to pass through the origin, while the best linear fit of these data departs
from the origin. Transforming the data by taking logs gives a slightly better fit to
a MVN (Figure 15.7).

Figure 15.7. Plots of ranked distance data (d 2
(j) being the jth smallest distance)

versus the expected corresponding χ2 value for the data in Example 7. Left:
The untransformed data does not appear to depart significantly from linearity.
Right: Log-transforming the data gives a slightly better linear fit (r2 = 0.983
versus r2 = 0.952 for the untransformed data), with the best-fitting line passing
through the origin as expected if the distance data follow a χ2 distribution.

Mardina’s Test: Multivariate Skewness and Kurtosis

As was the case for univariate normality, we can test for multivariate normality
by examining the skewness and kurtosis of the sample. Mardina (1970) proposed
multivariate extensions of skewness and kurtosis and suggested a large sample
test based on the asymptotic distribution of these statistics. Let zi be the i-th vector
of observations, z the vector of sample means, and Sz sample covariance matrix.
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If there are m vectors of observations (with each vector measuring n characters),
then the multivariate skewness is estimated by

b1,n =
1
m2

m∑
i=1

m∑
j=1

(
(zi − z)T S−1

z (zj − z)
)3

(15.23a)

while the multivariate kurtosis is estimated by

b2,n =
1
m

m∑
i=1

(
(zi − z)T S−1

z (zi − z)
)2

(15.23b)

If z ∼MVN, then b1,n and b2,n have expected values 0 and n(n+ 2). For large m,
Mardina (1970) showed that the (scaled) multivariate skewness is asymptotically
distributed as a chi-square random variable with f degrees of freedom, viz.,

m

6
b1,n ∼ χ2

f , where f =
n(n+ 1)(n+ 2)

6
(15.24a)

Likewise for large m, the multivariate kurtosis (following appropriate scaling) is
distributed as a unit-normal, viz.,

b2,n − n(n+ 2)√
8n(n+ 2)/m

∼ N(0, 1) (15.24b)

If either Equation 15.24a or 15.24b is significant, then multivariate normality is
rejected.

Example 8. Again, let us examine the data of Jolicoeur and Mosimann (1960).
Does the data considered in Example 7 display significant skewness or kurtosis?
Here n = 2 and m = 24. Applying Equations 15.24a/b gives b1,2 = 0.6792,
b2,2 = 7.6043. Considering skewness first,

m

6
b1,2 =

24
6

0.6792 = 2.717

is approximately chi-square distributed with f = 2(2+1)(2+2)/6 = 4 degrees
of freedom. Since Prob(χ2

4 ≥ 2.717) ' 0.606, this is not significant. Turning to
kurtosis, Equation 15.24b gives

b2,n − n(n+ 2)√
8n(n+ 2)/m

=
7.6043− 8

1.633
' −0.2423
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which is also not significant as Prob(|N(0, 1)| ≥ 0.2423) ' 0.81. Transforming
the data by taking logs gives b1,2 = 0.2767 and b2,2 = 7.1501, improving the
departure from skewness but increasing the departure from kurtosis. Applying
Equations 15.24a/b gives 1.068 and −0.5204, again these are not significant.
Reyment (1971) gives a number of other biological examples using Mardina’s
test.

Derivatives of Vectors and Vector-valued Functions

The gradient (or gradient vector) of a scalar function of a vector variable is ob-
tained by taking partial derivatives of the function with respect to each variable.
In matrix notation, the gradient operator is

∇x[ f ] =
∂ f

∂ x
=



∂ f

∂ x1

∂ f

∂ x2
...

∂ f

∂ xn


The gradient at point xo corresponds to a vector indicating the direction of steepest
ascent of the function at that point (the multivariate slope of f at the point xo). For
example f(x) = xTx has gradient vector 2x. At the point xo, xTx locally increases
most rapidly if we change x in the same the direction as the vector going from
point xo to point xo + 2δ xo, where δ is a small positive value.

For a vector A and matrix A of constants, it can easily be shown (e.g., Mor-
rison 1976, Graham 1981, Searle 1982) that

∇x
[
aTx

]
= ∇x

[
xTa

]
= A (15.39a)

∇x [ Ax ] = AT (15.39b)

Turning to quadratic forms, if A is symmetric, then

∇x
[
xTAx

]
= 2 ·Ax (15.39c)

∇x
[

(x−A)TA(x−A)
]

= 2 ·A(x−A) (15.39 d)

∇x
[

(A− x)TA(A− x)
]

= −2 ·A(A− x) (15.39e)

Taking A = I, Equation 15.39c implies

∇x
[
xTx

]
= ∇x

[
xT I x

]
= 2 · I x = 2 · x (15.39f)
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Two final useful identities follow from the chain rule of differentiation,

∇x [ exp[ f(x) ] ] = exp[ f(x) ] · ∇x [ f(x) ] (15.39g)

∇x [ ln[ f(x) ] ] =
1

f(x)
· ∇x [ f(x) ] (15.39h)

Example 10. Writing the MVN distribution as

ϕ(x) = a exp
(
−1

2
· (x− µ)T V−1

x (x− µ)
)

where a = π−n/2 |Vx|−1/2, then from Equation 15.39g,

∇x [ϕ(x) ] = ϕ(x) · ∇x

[(
−1

2

)
· (x− µ)T V−1

x (x− µ)
]

Applying Equation 15.39d gives

∇x [ϕ(x) ] = −ϕ(x) ·V−1
x (x− µ) (15.40a)

Note here that ϕ(x) is a scalar and hence its order of multiplication does not
matter, while the order of the other variables (being matrices) is critical. Similarly,
we can consider the MVN as a function of the mean vector µ, in which case
Equation 15.39e implies

∇µ [ϕ(x,µ) ] = ϕ(x,µ) ·V−1
x (x− µ) (15.40b)

Example 13. Consider obtaining the least-squares solution for the general linear
model, y = Xβ + e, where we wish to find the value of β that minimizes the
residual error given y and X. In matrix form,

n∑
i=1

e2
i = eT e = (y−Xβ)T (y− xβ)

= yTy− βTXTy− yTXβ+ βTXTXβ

= yTy− 2βTXTy + βTXTXβ

where the last step follows from Equation 7.18. To find the vectorβ that minimizes
eT e, taking the derivative with respect to β and using Equations 15.39a/c gives

∂ eT e
∂ β

= −2XTy + 2xTxβ
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Setting this equal to zero gives XTXβ = XTy giving

β =
(
XTX

)−1

XTy

The hessian matrix, local maxima/minima, and multidimensional Taylor series.
In univariate calculus, local extrema of a function occur when the slope (first
derivative) is zero. The multivariate extension of this is that the gradient vector is
zero, so that the slope of the function with respect to all variables is zero. A point
xe where this occurs is called a stationary or equilibrium point, and corresponds
to either a local maximum, minimum, saddle point or inflection point. As with
the calculus of single variables, determining which of these is true depends on the
second derivative. With n variables, the appropriate generalization is the hessian
matrix

Hx[ f ] = ∇x

[(
∇x [ f ]

)T ]
=

∂2 f

∂x ∂xT
=



∂2 f

∂x2
1

· · · ∂2 f

∂x1 ∂xn
...

. . .
...

∂2 f

∂x1 ∂xn
· · · ∂2 f

∂x2
n


(15.42)

This matrix is symmetric, as mixed partials are equal under suitable continuity
conditions, and measures the local curvature of the function.

Example 14. Compute Hx [ϕ(x) ], the hessian matrix for the multivariate nor-
mal distribution. Recalling from Equation 15.40a that ∇x [ϕ(x) ] = −ϕ(x) ·
V−1

x (x− µ), we have

Hx [ϕ(x) ] = ∇x

[(
∇x [ϕ(x) ]

)T ]
= −∇x

[
ϕ(x) · (x− µ)TV−1

x
]

= −∇x [ϕ(x) ] · (x− µ)TV−1
x − ϕ(x) · ∇x

[
(x− µ)TV−1

x
]

= ϕ(x)·
(

V−1
x (x− µ)(x− µ)TV−1

x −V−1
x

)
(15.43a)

Likewise,

Hµ [ϕ(x,µ) ] = ϕ(x,µ)·
(

V−1
x (x− µ)(x− µ)TV−1

x −V−1
x

)
(15.43b)
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To see how the hessian matrix determines the nature of equilibrium points,
a slight digression on the multidimensional Taylor series is needed. Consider the
Taylor series of a function of n variables f(x1, · · · , xn) expanded about the point
y,

f(x) ' f(y) +
n∑
i=1

(xi − yi)
∂f

∂xi
+

1
2

n∑
i=1

n∑
j=1

(xi − yi)(xj − yj)
∂2f

∂xi ∂xj
+ · · ·

where all partials are evaluated at y. In matrix form, the second-order Taylor
expansion of f(x) about xo is

f(x) ' f(xo) +∇T (x− xo) +
1
2

(x− xo)TH (x− xo) (15.44)

where ∇ and H are the gradient and hessian with respect to x evaluated at xo,
e.g.,

∇ ≡ ∇x[ f ]
∣∣
x=xo and H ≡ Hx[ f ]

∣∣
x=xo

At an equilibrium point x̂, all first partials are zero, so that (∇x[ f ])T at this
point is a vector of length zero. Whether this point is a maximum or minimum is
then determined by the quadratic product involving the hessian evaluated at x̂.
Considering vector d of a small change from the equilibrium point,

f(x̂ + d)− f(x̂) ' 1
2
· dT H d (15.45a)

Applying Equation 15.16, the canonical transformation of H, simplifies the
quadratic form to give

f(x̂ + d)− f(x̂) ' 1
2

n∑
i=1

λiy
2
i (15.45b)

where yi = eiTd, ei and λi being the eigenvectors and eigenvalues of the hessian
evaluated at x̂. Thus, if H is positive-definite (all eigenvalues of H are positive),
f increases in all directions around x̂ and hence x̂ is a local minimum of f . If
H is negative-definite (all eigenvalues are negative), f decreases in all directions
around x̂ and x̂ is a local maximum of f . If the eigenvalues differ in sign (H
is indefinite), x̂ corresponds to a saddle point (to see this, suppose λ1 > 0 and
λ2 < 0; any change along the vector e1 results in an increases in f , while any
change along e2 results in a decrease in f ).


