Reinforcement Learning (1): Discrete MDP, Value Iteration, Policy Iteration

Piyush Rai

CS5350/6350: Machine Learning

November 29, 2011
Supervised Learning: Uses *explicit supervision* (input-output pairs)

Reinforcement Learning: No explicit supervision
Supervised Learning: Uses explicit supervision (input-output pairs)

Reinforcement Learning: No explicit supervision

Learning is modeled as interactions of an agent with an environment

Based on using a feedback mechanism (in form of a reward function)
Reinforcement Learning

- Supervised Learning: Uses explicit supervision (input-output pairs)

- **Reinforcement Learning**: No explicit supervision

- Learning is modeled as interactions of an agent with an environment
 - Based on using a feedback mechanism (in form of a reward function)

- Applications:
 - Robotics (autonomous driving, robot locomotion, etc.)
 - (Computer) Game Playing
 - Online Advertising
 - Information Retrieval (interactive search)
 - .. and many more
Markov Decision Processes (MDP)

Used for modeling the environment the agent is acting in
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R) \)
Markov Decision Processes (MDP)

Used for modeling the environment the agent is acting in

Defined by a tuple $(S, A, \{P_{sa}\}, \gamma, R)$

- S is a set of states (today’s class: finite state space)
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of **states** (today’s class: finite state space)
- \(A\) is a set of **actions**
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of **states** (today’s class: finite state space)
- \(A\) is a set of **actions**
- \(P_{sa}\) is a **probability distribution** over the state space
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of **states** (today’s class: finite state space)
- \(A\) is a set of **actions**
- \(P_{sa}\) is a **probability distribution** over the state space
 - i.e., probability of switching to some state \(s'\) if we took action \(a\) in state \(s\)
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of **states** (today’s class: finite state space)
- \(A\) is a set of **actions**
- \(P_{sa}\) is a **probability distribution** over the state space
 - i.e., probability of switching to some state \(s'\) if we took action \(a\) in state \(s\)
 - For finite state spaces, \(P_{sa}\) is a vector of size \(|S|\) (and sums to 1)
Markov Decision Processes (MDP)

Used for modeling the environment the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of states (today’s class: finite state space)
- \(A\) is a set of actions
- \(P_{sa}\) is a probability distribution over the state space
 - i.e., probability of switching to some state \(s'\) if we took action \(a\) in state \(s\)
 - For finite state spaces, \(P_{sa}\) is a vector of size \(|S|\) (and sums to 1)
- \(R : S \times A \mapsto \mathbb{R}\) is the reward function (function of state-action pairs)
 - Note: Often the reward is a function of the state only \(R : S \mapsto \mathbb{R}\)
Markov Decision Processes (MDP)

Used for **modeling the environment** the agent is acting in

Defined by a tuple \((S, A, \{P_{sa}\}, \gamma, R)\)

- \(S\) is a set of **states** (today’s class: finite state space)
- \(A\) is a set of **actions**
- \(P_{sa}\) is a **probability distribution** over the state space
 - i.e., probability of switching to some state \(s'\) if we took action \(a\) in state \(s\)
 - For finite state spaces, \(P_{sa}\) is a vector of size \(|S|\) (and sums to 1)
- \(R : S \times A \mapsto \mathbb{R}\) is the **reward function** (function of state-action pairs)
 - Note: Often the reward is a function of the state only \(R : S \mapsto \mathbb{R}\)
- \(\gamma \in [0, 1)\) is called **discount factor** for future rewards
Start in some state $s_0 \in S$
MDP Dynamics

- **Start** in some state $s_0 \in S$
- **Choose action** $a_0 \in A$ in state s_0
Start in some state \(s_0 \in S \)

Choose action \(a_0 \in A \) in state \(s_0 \)

New MDP state \(s_1 \in S \) chosen according to \(P_{s_0a_0} \): \(s_1 \sim P_{s_0a_0} \)
MDP Dynamics

- **Start** in some state $s_0 \in S$
- Choose action $a_0 \in A$ in state s_0
- New MDP state $s_1 \in S$ chosen according to $P_{s_0 a_0}: s_1 \sim P_{s_0 a_0}$
- Choose action $a_1 \in A$ in state s_1
MDP Dynamics

- **Start** in some state \(s_0 \in S \)
- **Choose action** \(a_0 \in A \) in state \(s_0 \)
- **New MDP state** \(s_1 \in S \) chosen according to \(P_{s_0a_0}: s_1 \sim P_{s_0a_0} \)
- **Choose action** \(a_1 \in A \) in state \(s_1 \)
- **New MDP state** \(s_2 \in S \) chosen according to \(P_{s_1a_1}: s_2 \sim P_{s_1a_1} \)
MDP Dynamics

- **Start** in some state $s_0 \in S$

- Choose action $a_0 \in A$ in state s_0

- New MDP state $s_1 \in S$ chosen according to $P_{s_0 a_0}: s_1 \sim P_{s_0 a_0}$

- Choose action $a_1 \in A$ in state s_1

- New MDP state $s_2 \in S$ chosen according to $P_{s_1 a_1}: s_2 \sim P_{s_1 a_1}$

- Choose action $a_2 \in A$ in state s_2, and so on...

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} s_3 \xrightarrow{a_3} \ldots$$
Payoff and Expected Payoff

- Payoff defines the cumulative reward
- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots$$
Payoff and Expected Payoff

- Payoff defines the cumulative reward

- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

 $$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots$$

- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards
Payoff and Expected Payoff

- Payoff defines the cumulative reward

- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots$$

- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards

- If rewards defined in terms of states only, then the payoff:

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots$$
Payoff and Expected Payoff

- Payoff defines the cumulative reward

- Upon visiting states s_0, s_1, \ldots with actions a_0, a_1, \ldots, the payoff:

 \[R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \ldots \]

- Reward at time t is discounted by γ^t (note: $\gamma < 1$)
 - We care more about immediate rewards, rather than the future rewards

- If rewards defined in terms of states only, then the payoff:

 \[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots \]

- We want to choose actions over time to maximize the expected payoff:

 \[\mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots] \]

- Expectation is w.r.t. all possibilities for the initial state
Policy is a function $\pi : S \mapsto A$, mapping from the states to the actions

For an agent with policy π, the action in state s: $a = \pi(s)$
Policy Function

- **Policy** is a function $\pi : S \mapsto A$, mapping from the states to the actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$
- **Value Function** for a policy π

$$V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$$

- $V^\pi(s)$ is the expected payoff **starting in state** s **and following policy** π
Policy Function

- **Policy** is a function $\pi : S \mapsto A$, mapping from the states to the actions.
- For an agent with policy π, the action in state s: $a = \pi(s)$.
- **Value Function** for a policy π:

 $V^\pi(s) = \mathbb{E}[R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \ldots | s_0 = s, \pi]$

 $V^\pi(s)$ is the expected payoff starting in state s and following policy π.

- **Bellman’s Equation**: Gives a recursive definition of the Value Function:

 $V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi}(s)(s') V^\pi(s')$

 $= R(s) + \mathbb{E}_{s' \sim P_{s\pi}(s)}[V^\pi(s')]$

 It’s the immediate reward + expected sum of future discounted rewards.
Computing the Value Function

- Bellman's equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s')$$

- For an MDP with finite many state, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable
Computing the Value Function

- Bellman's equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s')$$

- For an MDP with finite many state, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- **Optimal Value Function** is defined as:

$$V^*(s) = \max_\pi V^\pi(s)$$

- It’s the **best possible payoff** that any policy π can give
Computing the Value Function

- Bellman's equation can be used to compute the value function $V^\pi(s)$

$$V^\pi(s) = R(s) + \gamma \sum_{s' \in S} P_{s\pi(s)}(s') V^\pi(s')$$

- For an MDP with finite many state, it gives us $|S|$ equations with $|S|$ unknowns \Rightarrow Efficiently solvable

- **Optimal Value Function** is defined as:

$$V^*(s) = \max_\pi V^\pi(s)$$

- It's the best possible payoff that any policy π can give

- The Optimal Value Function can also be defined as:

$$V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')$$
Optimal Policy

- **Optimal Value Function**:

\[
V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s')
\]
Optimal Policy

- **The Optimal Value Function:**
 \[V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s') \]

- **Optimal Policy** \(\pi^* : S \mapsto A \):
 \[\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s') \]

- The optimal policy for state \(s \) gives the action \(a \) that maximizes the optimal value function for that state.
Optimal Policy

- **The Optimal Value Function:**

 \[V^*(s) = R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V^*(s') \]

- **Optimal Policy** \(\pi^* : S \mapsto A: \)

 \[\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s') \]

- The optimal policy for state \(s \) gives the action \(a \) that maximizes the optimal value function for that state.

- For every state \(s \) and every policy \(\pi \)

 \[V^*(s) = V^{\pi^*}(s) \geq V^{\pi}(s) \]

- **Note:** \(\pi^* \) is the optimal policy function for all states \(s \)
 - Doesn’t matter what the initial MDP state is.
Finding the Optimal Policy

Optimal Policy $\pi^* : S \mapsto A$:

$$\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

Two standard methods to find it
Finding the Optimal Policy

- Optimal Policy $\pi^* : S \mapsto A$:

 $$\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

 (1)

- Two standard methods to find it

 - **Value Iteration**: Zero-initialize and iteratively refine $V(s)$ as it will converge towards $V^*(s)$. Finally use equation 1 to find the optimal policy π^*.
Finding the Optimal Policy

- Optimal Policy $\pi^* : S \mapsto A$:

 $$\pi^*(s) = \arg\max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$$

 (1)

- Two standard methods to find it

 - **Value Iteration**: Zero-initialize and iteratively refine $V(s)$ as it will converge towards $V^*(s)$. Finally use equation 1 to find the optimal policy π^*

 - **Policy Iteration**: Random-initialize and iteratively refine $\pi(s)$ by alternating between computing $V(s)$ and then $\pi(s)$ as per equation 1. π eventually converges to the optimal policy π^*
Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function V until convergence

1. For each state s, initialize $V(s) := 0$.

2. Repeat until convergence {
 For every state, update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s'} P_{sa}(s') V(s')$.
}

(CS5350/6350) Reinforcement Learning (1) November 29, 2011
Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function V until convergence

1. For each state s, initialize $V(s) := 0$.
2. Repeat until convergence {
 For every state, update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s'} P_{sa}(s') V(s')$.
}

Value Iteration property: V converges to V^*
Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function \(V \) until convergence

1. For each state \(s \), initialize \(V(s) := 0 \).
2. Repeat until convergence {
 For every state, update \(V(s) := R(s) + \max_{a \in A} \gamma \sum_{s'} P_{sa}(s') V(s') \).
}

- **Value Iteration property:** \(V \) converges to \(V^* \)

- **Upon convergence**, use \(\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s') \)
Finding the Optimal Policy: Value Iteration

Iteratively compute/refine the value function V until convergence

1. For each state s, initialize $V(s) := 0$.
2. Repeat until convergence {

 For every state, update $V(s) := R(s) + \max_{a \in A} \gamma \sum_{s' \in S} P_{sa}(s') V(s')$.

}\}

- **Value Iteration property:** V converges to V^*

- **Upon convergence,** use $\pi^*(s) = \arg \max_{a \in A} \sum_{s' \in S} P_{sa}(s') V^*(s')$

- **Note:** The inner loop can update $V(s)$ for all states simultaneously, or in some order
Finding the Optimal Policy: Policy Iteration

Iteratively compute/refine the policy π until convergence

1. Initialize π randomly.

2. Repeat until convergence {

 (a) Let $V := V^{\pi}$.

 (b) For each state s, let $\pi(s) := \arg \max_{a \in A} \sum_{s'} P_{sa}(s')V(s')$.

 }

Finding the Optimal Policy: Policy Iteration

Iteratively compute/refine the policy π until convergence

1. Initialize π randomly.

2. Repeat until convergence {

 (a) Let $V := V^\pi$.

 (b) For each state s, let $\pi(s) := \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$.

}

- Step (a) the computes the value function for the current policy π

- Can be done using Bellman’s equations (solving $|S|$ equations in $|S|$ unknowns)
Finding the Optimal Policy: Policy Iteration

Iteratively compute/refine the policy π until convergence

1. Initialize π randomly.

2. Repeat until convergence {
 (a) Let $V := V^\pi$.
 (b) For each state s, let $\pi(s) := \arg \max_{a \in A} \sum_{s'} P_{sa}(s') V(s')$.
}

- Step (a) computes the value function for the current policy π
 Can be done using Bellman’s equations (solving $|S|$ equations in $|S|$ unknowns)

- Step (b) gives the policy that is greedy w.r.t. V
Learning an MDP Model

So far we assumed:
- State transition probabilities \(\{P_{sa}\} \) are given
- Rewards \(R(s) \) at each state are known

Often we don’t know these and want to learn these
Learning an MDP Model

- So far we assumed:
 - State transition probabilities \(\{P_{sa}\} \) are given
 - Rewards \(R(s) \) at each state are known

- Often we don’t know these and want to learn these

- These are learned using experience (i.e., a set of previous trials)

\[
\begin{align*}
S_0^{(1)} & \rightarrow a_0^{(1)} \rightarrow S_1^{(1)} & a_1^{(1)} \rightarrow S_2^{(1)} & a_2^{(1)} \rightarrow S_3^{(1)} & a_3^{(1)} \rightarrow \ldots \\
S_0^{(2)} & \rightarrow a_0^{(2)} \rightarrow S_1^{(2)} & a_1^{(2)} \rightarrow S_2^{(2)} & a_2^{(2)} \rightarrow S_3^{(2)} & a_3^{(2)} \rightarrow \ldots \\
& \ldots
\end{align*}
\]

- \(s_i^{(j)} \) is the state at time \(i \) of trial \(j \)
- \(a_i^{(j)} \) is the corresponding action at that state
Learning an MDP Model

- Given this experience, the MLE estimate of state transition probabilities:

\[
P_{sa}(s') = \frac{\# \text{ of times we took action } a \text{ in state } s \text{ and got to } s'}{\# \text{ of times we took action } a \text{ in state } s}
\]
Given this experience, the MLE estimate of state transition probabilities:

\[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

Note: if action \(a \) is never taken in state \(s \), the above ratio is 0/0

In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)
Learning an MDP Model

Given this experience, the MLE estimate of state transition probabilities:

\[
P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s}
\]

Note: if action \(a \) is never taken in state \(s \), the above ratio is 0/0

- In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)

- \(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials)
 - .. just add counts in the numerator and denominator
Learning an MDP Model

- Given this experience, the MLE estimate of state transition probabilities:

\[P_{sa}(s') = \frac{\text{# of times we took action } a \text{ in state } s \text{ and got to } s'}{\text{# of times we took action } a \text{ in state } s} \]

- Note: if action \(a \) is never taken in state \(s \), the above ratio is \(0/0 \)
 - In that case: \(P_{sa}(s') = 1/|S| \) (uniform distribution over all states)

- \(P_{sa} \) is easy to update if we gather more experience (i.e., do more trials)
 - .. just add counts in the numerator and denominator

- Likewise, the expected reward \(R(s) \) in state \(s \) can be computed
 - \(R(s) = \text{average reward in state } s \text{ across all the trials} \)
Alternate between learning the MDP (P_{sa} and R), and learning the policy. Policy learning step can be done using value iteration or policy iteration.
Alternate between learning the MDP (P_{sa} and R), and learning the policy
Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

- Randomly initialize policy π
Alternate between learning the MDP (P_{sa} and R), and learning the policy. Policy learning step can be done using value iteration or policy iteration.

The Algorithm (uses value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - Execute policy π in the MDP to generate a set of trials
Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

- Randomly initialize policy π
- Repeat until convergence
 - Execute policy π in the MDP to generate a set of trials
 - Use this “experience” to estimate P_{sa} and R
Alternate between learning the MDP \((P_{sa}\text{ and } R)\), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

- Randomly initialize policy \(\pi\)
- Repeat until convergence
 1. Execute policy \(\pi\) in the MDP to generate a set of trials
 2. Use this “experience” to estimate \(P_{sa}\) and \(R\)
 3. Apply value iteration with the estimated \(P_{sa}\) and \(R\)
 \(\Rightarrow\) Gives a new estimate of the value function \(V\)
MDP Learning + Policy Learning

Alternate between learning the MDP (P_{sa} and R), and learning the policy

Policy learning step can be done using value iteration or policy iteration

The Algorithm (uses value iteration)

- Randomly initialize policy π

- Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 ⇒ Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V
Alternate between learning the MDP (P_{sa} and R), and learning the policy. Policy learning step can be done using value iteration or policy iteration.

The Algorithm (uses value iteration)

- Randomly initialize policy π
- Repeat until convergence
 1. Execute policy π in the MDP to generate a set of trials
 2. Use this “experience” to estimate P_{sa} and R
 3. Apply value iteration with the estimated P_{sa} and R
 \Rightarrow Gives a new estimate of the value function V
 4. Update policy π as the greedy policy w.r.t. V

Note: Step 3 can be made more efficient by initializing V with values from the previous iteration.
Small state spaces: Policy Iteration typically very fast and converges quickly
Value Iteration vs Policy Iteration

- **Small state spaces:** Policy Iteration typically very fast and converges quickly

- **Large state spaces:** Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases
Value Iteration vs Policy Iteration

- **Small state spaces:** Policy Iteration typically very fast and converges quickly

- **Large state spaces:** Policy Iteration may be slow
 - Reason: Policy Iteration needs to solve a large system of linear equations
 - Value iteration is preferred in such cases

- **Very large state spaces:** Value function can be approximated using some regression algorithm
 - Optimality guarantee is lost however
Continuous state MDP

- State-space discretization
- Value function approximation