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Parameter Estimation in Probabilistic Models

@ Assume data generated via a probabilistic model
d~P(d]0)

o P(d | #): Probability distribution underlying the data
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@ Assume data generated via a probabilistic model
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Parameter Estimation in Probabilistic Models

@ Assume data generated via a probabilistic model
d~P(d]0)

o P(d | #): Probability distribution underlying the data
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Parameter Estimation in Probabilistic Models

@ Assume data generated via a probabilistic model
d~P(d]0)

o P(d | #): Probability distribution underlying the data

o 0: fixed but unknown distribution parameter
@ Given: N independent and identically distributed (i.i.d.) samples of the data

D={dy,...,dn}

@ Independent and ldentically Distributed:
@ Given 6, each sample d, is independent of all other samples
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Parameter Estimation in Probabilistic Models

@ Assume data generated via a probabilistic model
d~P(d]0)

o P(d | #): Probability distribution underlying the data

o 0: fixed but unknown distribution parameter
@ Given: N independent and identically distributed (i.i.d.) samples of the data

D={dy,...,dn}

@ Independent and ldentically Distributed:

@ Given 6, each sample d, is independent of all other samples
@ All samples d, drawn from the same distribution
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Parameter Estimation in Probabilistic Models

@ Assume data generated via a probabilistic model

d~ P(d | 0)

©

P(d | 8): Probability distribution underlying the data

o 0: fixed but unknown distribution parameter

©

Given: N independent and identically distributed (i.i.d.) samples of the data

D={dy,...,dn}

(]

Independent and Identically Distributed:

@ Given 6, each sample d, is independent of all other samples
@ All samples d, drawn from the same distribution

(]

Goal: Estimate parameter 6 that best models/describes the data

(]

Several ways to define the “best”
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Maximum Likelihood Estimation (MLE)

o Maximum Likelihood Estimation (MLE): Choose the parameter 6 that
maximizes the probability of the data, given that parameter
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Maximum Likelihood Estimation (MLE)

o Maximum Likelihood Estimation (MLE): Choose the parameter 6 that
maximizes the probability of the data, given that parameter

@ Probability of the data, given the parameters is called the Likelihood, a
function of 6 and defined as:

£(0) = P(D | 6) = P(dy,...,dy | 0)
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Maximum Likelihood Estimation (MLE)

o Maximum Likelihood Estimation (MLE): Choose the parameter 6 that
maximizes the probability of the data, given that parameter

@ Probability of the data, given the parameters is called the Likelihood, a

function of 8 and defined as: N

L(0) =P(D | 0)=P(dy,...,dy | 0) = H d, | 0)

9@ MLE typically maximizes the Log-likelihood mstead of the likelihood
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Maximum Likelihood Estimation (MLE)

o Maximum Likelihood Estimation (MLE): Choose the parameter 6 that
maximizes the probability of the data, given that parameter

@ Probability of the data, given the parameters is called the Likelihood, a

function of 8 and defined as: N

L(0) =P(D | 0)=P(dy,...,dy | 0) = H d, | 0)

9@ MLE typically maximizes the Log-likelihood mstead of the likelihood

9 Log-likelihood: N
log £(6) = log P(D | 6) IogHP n|0)=> logP(d, | 0)
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Maximum Likelihood Estimation (MLE)

o Maximum Likelihood Estimation (MLE): Choose the parameter 6 that
maximizes the probability of the data, given that parameter

@ Probability of the data, given the parameters is called the Likelihood, a

function of 8 and defined as: N

L(0) =P(D | 0)=P(dy,...,dy | 0) = H d, | 0)

9@ MLE typically maximizes the Log-likelihood mstead of the likelihood

9 Log-likelihood: N
log £(6) = log P(D | 6) IogHP n|0)=> logP(d, | 0)

@ Maximum Likelihood parameter estimation

OmLe = arg mﬁaxlog L(0) = arg meaxZ1 log P(d, | 6)
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5

@ P(0): Prior probability of 6 (without having seen any data)
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5

(]

P(0): Prior probability of 6 (without having seen any data)
P(D | 6): Likelihood

(]
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5

(]

P(0): Prior probability of 6 (without having seen any data)
P(D | 6): Likelihood
P(D): Probability of the data (independent of )

(]

©

P(D) = /P(G)P(D | 0)d (sum over all §'s)
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5

@ P(0): Prior probability of 6 (without having seen any data)

@ P(D | 6): Likelihood
@ P(D): Probability of the data (independent of 6)

P(D) = /P(G)P(D | 0)d (sum over all §'s)

@ The Bayes Rule lets us update our belief about 6 in the light of observed data
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Maximum-a-Posteriori Estimation (MAP)

o Maximum-a-Posteriori Estimation (MAP): Choose 6 that maximizes the
posterior probability of 6 (i.e., probability in the light of the observed data)

@ Posterior probability of 8 is given by the Bayes Rule

PO)P(D | 9)

P 1 D)= =5

@ P(0): Prior probability of 6 (without having seen any data)
@ P(D | 6): Likelihood
@ P(D): Probability of the data (independent of 6)

P(D) = /P(G)P(D | 0)d (sum over all §'s)

@ The Bayes Rule lets us update our belief about 6 in the light of observed data
@ While doing MAP, we usually maximize the log of the posterior probability
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

Oiap = arg max P(6 | D)
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 0)

Oiap = arg max PO | D) = arg max P(D)
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 0)
P(D)

= argmax P(O)P(D | 6)

Oiap = arg max PO | D) = arg max
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 0)
P(D)
arg max P(O)P(D | 6)

arg mgaxlog P(O)P(D | 6)

Oiap = arg max PO | D) = arg max
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 9)
P(D)
= argmax P(O)P(D | 6)

= arg mgaxlog P(O)P(D | 6)
= arg mgax{log P(0) + log P(D | 0)}

Oiap = arg max P(6 | D) arg max
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 9)
P(D)
= argmax P(O)P(D | 6)

= arg mgaxlog P(O)P(D | 6)
= arg mgax{log P(0) + log P(D | 0)}

Oiap = arg max P(6 | D) arg max

N
Opap = arg mgax{log P(0)+ ; log P(d, | 6)}
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 9)
P(D)
= argmax P(O)P(D | 6)

= arg mgaxlog P(O)P(D | 6)
= arg mgax{log P(0) + log P(D | 0)}

Oiap = arg max P(6 | D) arg max

N
Opap = arg mgax{log P(0)+ ; log P(d, | 6)}

@ Same as MLE except the extra log-prior-distribution term!
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Maximum-a-Posteriori Estimation (MAP)

@ Maximum-a-Posteriori parameter estimation

PO)P(D | 9)
P(D)
= argmax P(O)P(D | 6)

= arg mgaxlog P(O)P(D | 6)
= arg mgax{log P(0) + log P(D | 0)}

Oiap = arg max P(6 | D) arg max

N
Opap = arg mgax{log P(0)+ ; log P(d, | 0)}

@ Same as MLE except the extra log-prior-distribution term!

@ MAP allows incorporating our prior knowledge about 6 in its estimation
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Linear Regression: The Probabilistic Formulation

@ Each response generated by a linear model plus some Gaussian noise

y:wa—l—e
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Linear Regression: The Probabilistic Formulation

@ Each response generated by a linear model plus some Gaussian noise

y:wa—l—e

@ Noise € is drawn from a Gaussian distribution:

€ ~ Nor(0,0?)
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Linear Regression: The Probabilistic Formulation

@ Each response generated by a linear model plus some Gaussian noise
y = wix+e
@ Noise € is drawn from a Gaussian distribution:

€ ~ Nor(0,0?)

9 Each response y then becomes a draw from the following Gaussian:

y ~ Nor(w"x, 5?)
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Linear Regression: The Probabilistic Formulation

@ Each response generated by a linear model plus some Gaussian noise
y = wix+e
@ Noise € is drawn from a Gaussian distribution:

€ ~ Nor(0,0?)

9 Each response y then becomes a draw from the following Gaussian:

y ~ Nor(w"x, 5?)

@ Probability of each response variable

P(y | x,w) = Nor(y | w'x,0%) = (V_WX)}

2mo? P {_ 202
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Linear Regression: The Probabilistic Formulation

@ Each response generated by a linear model plus some Gaussian noise

y:wa—l—e

@ Noise € is drawn from a Gaussian distribution:

€ ~ Nor(0,0?)
9 Each response y then becomes a draw from the following Gaussian:

y ~ Nor(w"x, 5?)
@ Probability of each response variable
1 (y —w'x)?
P x,w) = No w'x, 0% = exp | —
(v | x,w) = Nor(y | ,0%) i XP[ 57

@ Given data D = {(x1, 1), (X2, ¥2),- ., (Xn, ¥n)}, we want to estimate the

weight vector w
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

log £(w) = log P(D | w)
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

log L(w) = log P(D | w) = log P(Y | X,w)
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1

N
Z log P(yn | Xn,w)
n=1
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1

N
= Z|ng(y,, | xn, w)
n=1

_ i o 1 ext _ (Yn - WTXn)2
pry € V2ro? P 202
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

log L(w) = log P(D | w) =

(CS5350/6350)

N
log [ [ P(yn | xn, w)
n=1

N
ZlogP Yn | Xn, W)

n=1
i o 1 ext _ (Yn - WTXn)2
- € V2ro? P 202

n:

N Ty )2
z{_,bgzm) 02#}

n=1

-
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

log L(w) = log P(D | w) = log P(Y | X,w)

N
log [ [ P(yn | xn, w)
n=1

N

Z log P(yn | Xn,w)

log 1 exp | — (Yn - WTXn)2
V2ro? 202

3
HY

M=

Il
-

n:

M=

202

{_ % og(2mo?) — Yo =W x0)’ }

n=1

@ Maximum Likelihood Solution: W g = arg maxy, log P(D | w)
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:
N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1

N

= Z|ng(y,, | xn, w)

log 1 exp | — (Yn - WTXn)2
V2ro? 202

3
HY

Il
M=

Il
-

n:

M=

202

{_ % og(2mo?) — Yo =W x0)’ }

n=1

@ Maximum Likelihood Solution: W g = arg maxy, log P(D | w)

N
1 T 32
= argm“e’)x—ﬁ El(y,,—w Xp)
=
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Linear Regression: Maximum Likelihood Solution

@ Log-likelihood:

N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1

N

= Z|ng(y,, | xn, w)

log 1 exp | — (Yn - WTXn)2
V2ro? 202

3
HY

Il
M=

Il
-

n:

M=

202

{_ % og(2mo?) — Yo =W x0)’ }

n=1

@ Maximum Likelihood Solution: W g = arg maxy, log P(D | w)

(CS5350/6350)

N
1 T 32
argm“e’)x—ﬁ E (Yn — W xp,)
n=1
N

1 T, \2
argmin 392 Z(y,, — W Xp)

n=1
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Linear Regression: Maximum Likelihood Solution
@ Log-likelihood:
N
log L(w) = log P(D | w) =log P(Y | X,w) = log]]P(yn| xn,w)
n=1
N
= ZlOg ’D(yn | me)

I 1 (¥n — WTXn)2
O, €X| —
1 € V2ro? P 202

3
Il
HY

Il
M=

n:

M=

{_ % og(2mo?) — Yo =W x0)’ }

202

I
-

n:

@ Maximum Likelihood Solution: W g = arg maxy, log P(D | w)

N
1 T 32
argm“e’)x—ﬁ El(y,,—w Xp)
n=

N
1 T, \2
argmin 392 E (vn — W xp)

n=1

@ For o =1 (or some constant) for each input, it's equivalent to the
least-squares objective for linear regression
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW)
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EWTW)
@ Log posterior probability:

(W)P(D | w)

log P(w | D) = log P (D) = log P(w) + log P(D | w) — log P(D)
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EWTW)
@ Log posterior probability:

(W)P(D | w)

log P(w | D) = log P (D) = log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EWTW)
@ Log posterior probability:

(W)P(D | w)

log P(w | D) = log P (D) = log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)

= argmax {log P(w) + log P(D | w) — log P(D)}
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EWTW)
@ Log posterior probability:

(W)P(D | w)

log P(w | D) = log P (D) = log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)
= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EWTW)
@ Log posterior probability:

(W)P(D | w)

log P(w | D) = log P (D) = log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)
= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

D A N 1 —w ' x,)?
= argmax {75 log(27) — EWTW + ; {75 log(2mc?) — W
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EwTw>

@ Log posterior probability:

PW)P(D | w) _

log P(w | D) = log (D)

log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)
= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

D A N 1 —w ' x,)?
= argmax {75 log(27) — EWTW + ; {75 log(2mc?) — W

N
1 A

= argmin — E (vn — wa,,)2 +Zw'w (ignoring constants and changing max to min)
v 202 n=1 2
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Linear Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
_ 1 A
P(w) = Nor(w | 0, A 'I) = @np exp <7EwTw>

@ Log posterior probability:

PW)P(D | w) _

log P(w | D) = log (D)

log P(w) + log P(D | w) — log P(D)

@ Maximum-a-Posteriori Solution: Wyap = arg max, log P(w | D)
= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

D A N 1 —w ' x,)?
= argmax {75 log(27) — EWTW + ; {75 log(2mc?) — W

N
1 A

= argmin — E (vn — wa,,)2 +Zw'w (ignoring constants and changing max to min)
v 202 n=1 2

@ For 0 =1 (or some constant) for each input, it's equivalent to the regularized
least-squares objective
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mi E —w' x,,
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mi E —w' x,,

@ MAP solution:

1 A
Wyap = argml 2—2 —w' x,, —|— §WTW
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg min E —w' x,,

@ MAP solution:

1 A
Wyap = argml 2—2 —w' x,, —|— EWTW

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mvj E —w' x,,

@ MAP solution:

1 A
Wyap = argml 2—2 —w' x,, —|— EWTW

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions

o MAP estimation of a parameter leads to regularized solutions
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mvj Z —w' Xp) 2
@ MAP solution:
N
wMAp—argml 2—2 —w' x,, —|—§w w

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions
o MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mvj Z —w' Xp) 2
@ MAP solution:
N
wMAp—argml 2—2 —w' x,, —|—§w w

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions
o MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation

@ Note: For MAP, different prior distributions lead to different regularizers
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mvj Z —w' Xp) 2
@ MAP solution:
N
wMAp—argml 2—2 —w' x,, —|—§w w

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions
o MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation

@ Note: For MAP, different prior distributions lead to different regularizers
o Gaussian prior on w regularizes the ¢, norm of w
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Linear Regression: MLE vs MAP (summary)

@ MLE solution:

N
WL = arg mvj Z —w' Xp) 2
@ MAP solution:
N
wMAp—argml 2—2 —w' x,, —|—§w w

@ Take-home messages:

o MLE estimation of a parameter leads to unregularized solutions
o MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation

@ Note: For MAP, different prior distributions lead to different regularizers
o Gaussian prior on w regularizes the ¢, norm of w

o Laplace prior exp (—C||w||1) on w regularizes the ¢; norm of w
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Probabilistic Classification: Logistic Regression

@ Often we don't just care about predicting the label y for an example

o Rather, we want to predict the label probabilities P(y | x, w)
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Probabilistic Classification: Logistic Regression
@ Often we don't just care about predicting the label y for an example

o Rather, we want to predict the label probabilities P(y | x, w)
e E.g., P(y =41 | x,w): the probability that the label is +1
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Probabilistic Classification: Logistic Regression

@ Often we don't just care about predicting the label y for an example
o Rather, we want to predict the label probabilities P(y | x, w)

o E.g., P(y = +1 | x,w): the probability that the label is +1
o In a sense, it's our confidence in the predicted label
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Probabilistic Classification: Logistic Regression

[

Often we don't just care about predicting the label y for an example

o Rather, we want to predict the label probabilities P(y | x, w)

o E.g., P(y = +1 | x,w): the probability that the label is +1
o In a sense, it's our confidence in the predicted label

@ Probabilistic classification models allow us do that oo
+exp(-z,
@ Consider the following function (y = —1/+1):
P = Tx) = !
| xw)=0c(yw x)= m
@ o is the logistic function which maps all real
number into (0,1) I
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Probabilistic Classification: Logistic Regression

[

Often we don't just care about predicting the label y for an example

o Rather, we want to predict the label probabilities P(y | x, w)

o E.g., P(y = +1 | x,w): the probability that the label is +1
o In a sense, it's our confidence in the predicted label

@ Probabilistic classification models allow us do that oo
+exp(-z,
@ Consider the following function (y = —1/+1):
P = Tx) = !
| xw)=0c(yw x)= m
@ o is the logistic function which maps all real
number into (0,1) I

©

This is the Logistic Regression model
o Misnomer: Logistic Regression is a classification model :-)
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Logistic Regression

@ What does the decision boundary look like for Logistic Regression?
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@ What does the decision boundary look like for Logistic Regression?
@ At the decision boundary labels +1/-1 becomes equiprobable
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@ What does the decision boundary look like for Logistic Regression?

@ At the decision boundary labels +1/-1 becomes equiprobable

Ply=+11xw) = Ply=-1]xw)
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Logistic Regression

@ What does the decision boundary look like for Logistic Regression?
@ At the decision boundary labels +1/-1 becomes equiprobable

Ply=+11xw) = Ply=-1]|xw)
1 B 1
1+exp(—wTx) 14+ exp(wTx)
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Logistic Regression

@ What does the decision boundary look like for Logistic Regression?
@ At the decision boundary labels +1/-1 becomes equiprobable

Ply=+11xw) = Ply=-1]xw)
1 B 1
1+exp(—wTx) 14+ exp(wTx)
exp(—w'x) = exp(w ' x)
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Logistic Regression

@ What does the decision boundary look like for Logistic Regression?
@ At the decision boundary labels +1/-1 becomes equiprobable

Ply=41]x,w) = Ply=-1]|x,w)
1 B 1
1+ exp(—wTx) 1+ exp(w T x)
exp(—w'x) = exp(w ' x)
wx = 0
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Logistic Regression

@ What does the decision boundary look like for Logistic Regression?
@ At the decision boundary labels +1/-1 becomes equiprobable

Ply=41]x,w) = Ply=-1]|x,w)
1 B 1
1+ exp(—wTx) 1+ exp(w T x)
exp(—w'x) = exp(w ' x)
wx = 0

@ The decision boundary is therefore linear = Logistic Regression is a linear
classifier (note: it's possible to kernelize and make it nonlinear)
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood: N
log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)
n=1
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood: N
log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)
n=1

N
= ZIOEP(Yn | xn, w)
n=1
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

N
log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)
ogP (Vn | %n,w)

1
g1+ exp(—ynw ' x,)

o
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)

N
= ZlogPy,,\x,7 w)

1
g1+ exp(—ynw ' x,)

— log[1 + exp(—y,w ' x,)]

3 0s
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)

N
= ZlogPy,,\x,7 w)

1
g1+ exp(—ynw ' x,)

— log[1 + exp(—y,w ' x,)]

3 0s

@ Maximum Likelihood Solution: Wy g = arg min,, log £(w)
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)

N
= ZlogPy,,\x,7 w)

1
g1+ exp(—ynw ' x,)

— log[1 + exp(—y,w ' x,)]

3 0s

@ Maximum Likelihood Solution: Wy g = arg min,, log £(w)

@ No closed-form solution exists but we can do gradient descent on w

Vw log L(w)
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

N
log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)
N
= ZlogPy,,\x,7 w)

1
1+ exp(—y.w T x,)

N
2 s
N
> —log[1 + exp(—ynw ' x5)]
n=1

@ Maximum Likelihood Solution: Wy g = arg min,, log £(w)

@ No closed-form solution exists but we can do gradient descent on w

N
1 T

Vw log L(w = 7exp—yw Xn)(—YynX
wlog L(w) > ey P ) )
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Logistic Regression: Maximum Likelihood Solution

@ Goal: Want to estimate w from the data D = {(x1,y1), ..., (Xn, ¥n)}
@ Log-likelihood:

log L(w) =log P(D | w) =log P(Y | X,w) = IogH P(yn | Xn,w)

N
= ZlogPy,,\x,7 w)

1
g1+ exp(—ynw ' x,)

— log[1 + exp(—y,w ' x,)]

3 0s

@ Maximum Likelihood Solution: Wy g = arg min,, log £(w)

@ No closed-form solution exists but we can do gradient descent on w

Vw log L(w)

N 1
S e exp(—yaW | Xn)(—¥nXn)

7 1+ exp(—y,wTx,)

3

N
= 7yx
nz:; 1+ exp(yawTx,)
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Logistic Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW)
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Logistic Regression: Maximum-a-Posteriori Solution
@ Let's assume a Gaussian prior distribution over the weight vector w
P(w) = Nor(w | 0, A1) = ﬁ exp <7inw)

2

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

(CS5350/6350) Probabilistic Models September 20, 2011 13 /16



Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW)

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

= argmax {log P(w) + log P(D | w) — log P(D)}
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Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW)

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}
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Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW>

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)
= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

D A N
= argmax {_E log(2m) — EWTW + Z — log[1 + exp(—yanxn)]}

n=1
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Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW>

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

n=1

D A N
= argmax {_E log(2m) — EWTW + Z — log[1 + exp(—yanxn)]}
N

A
= argmin Z log[1 + exp(—ysw ' x,)] + EWTW (ignoring constants and changing max to min)

n=1
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Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW>

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

= argmax{log P(w) + log P(D | w) — log P(D)}
w
= argmax {log P(w) + log P(D | w)}
w
= argmax _b log(27) — iwTw + i — log[1 + exp(—y, w' x )
w 2 2 g A
N

A
= argmin Z log[1 + exp(—ysw ' x,)] + EWTW (ignoring constants and changing max to min)

n=1

@ No closed-form solution exists but we can do gradient descent on w
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Logistic Regression: Maximum-a-Posteriori Solution

@ Let's assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, A7) = ﬁ exp (7%WTW)

@ Maximum-a-Posteriori Solution: Wyap = arg maxy log P(w | D)

= argmax {log P(w) + log P(D | w) — log P(D)}

= argmax {log P(w) + log P(D | w)}

n=1

D A N
= argmax {_E log(2m) — EWTW + Z — log[1 + exp(—yanxn)]}
N A
= argmin Z log[1 + exp(—ysw ' x,)] + EWTW (ignoring constants and changing max to min)
n—=1
@ No closed-form solution exists but we can do gradient descent on w

@ See “A comparison of numerical optimizers for logistic regression” by Tom
Minka on optimization techniques (gradient descent and others) for logistic
regression (both MLE and MAP)
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Logistic Regression: MLE vs MAP (summary)

@ MLE solution:
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Logistic Regression: MLE vs MAP (summary)

@ MLE solution:

@ MAP solution:

N
Wy = arg min Z log[1 + exp(—y,w ' x,)]

n=1

N

A
Wpap = arg min E log[1 4 exp(—y,w  x,)] + =w'w
w 2

n=1

(CS5350/6350)

Probabilistic Models

September 20, 2011

14 / 16



Logistic Regression: MLE vs MAP (summary)

@ MLE solution:

@ MAP solution:

N
Wy = arg min Z log[1 + exp(—y,w ' x,)]

n=1

N

A
Wpap = arg min E log[1 4 exp(—y,w  x,)] + =w'w
w 2

n=1

@ Take-home messages (we already saw these before :-) ):

@ MLE estimation of a parameter leads to unregularized solutions
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@ MAP solution:
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N

A
Wpap = arg min E log[1 4 exp(—y,w  x,)] + =w'w
w 2

n=1
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Logistic Regression: MLE vs MAP (summary)

@ MLE solution:

@ MAP solution:

N
Wy = arg min Z log[1 + exp(—y,w ' x,)]

n=1

N

A
Wpap = arg min E log[1 4 exp(—y,w  x,)] + =w'w
w 2

n=1

@ Take-home messages (we already saw these before :-) ):

@ MLE estimation of a parameter leads to unregularized solutions

@ MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation
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Logistic Regression: MLE vs MAP (summary)

@ MLE solution:

N
Wy = arg min Z log[1 + exp(—y,w ' x,)]
n=1
o MAP solution:
& A
Wpap = arg min Z log[1 4 exp(—y,w  x,)] + =w'w
" n=1 2

@ Take-home messages (we already saw these before :-) ):
@ MLE estimation of a parameter leads to unregularized solutions

@ MAP estimation of a parameter leads to regularized solutions

@ The prior distribution acts as a regularizer in MAP estimation

@ Note: For MAP, different prior distributions lead to different regularizers

@ Gaussian prior on w regularizes the ¢, norm of w

o Laplace prior exp (—C||w]|1) on w regularizes the ¢1; norm of w
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Logistic Regression: some notes

@ The objective function is very similar to the SVM
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Logistic Regression: some notes

@ The objective function is very similar to the SVM
9 .. except for the loss function part

o Logistic regression uses the log-loss, SVM uses the hinge-loss

@ Generalization to more than 2 classes is straightforward
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Logistic Regression: some notes

@ The objective function is very similar to the SVM
9 .. except for the loss function part

o Logistic regression uses the log-loss, SVM uses the hinge-loss

@ Generalization to more than 2 classes is straightforward
9 .. using the soft-max function instead of the logistic function

_ _ exp(wka)
P =kDow) = 5 exp(w] %)
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Logistic Regression: some notes

@ The objective function is very similar to the SVM
9 .. except for the loss function part

o Logistic regression uses the log-loss, SVM uses the hinge-loss

@ Generalization to more than 2 classes is straightforward
9 .. using the soft-max function instead of the logistic function

_ _ exp(wka)
P =kDow) = 5 exp(w] %)

@ We maintain a separator weight vector wy for each class k
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Logistic Regression: some notes

@ The objective function is very similar to the SVM
9 .. except for the loss function part

o Logistic regression uses the log-loss, SVM uses the hinge-loss

@ Generalization to more than 2 classes is straightforward
9 .. using the soft-max function instead of the logistic function

_ _ exp(wka)
P =kDow) = 5 exp(w] %)

@ We maintain a separator weight vector wy for each class k

@ Possible to kernelize it to learn nonlinear boundaries
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

A

Wpap = arg mvexlog P(w | D)
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

Wap arg max log P(w | D)

= argmax {log P(D|w) + log P(w)}
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

Wpap = arg mvexlog P(w | D)
= argmax {log P(D|w) + log P(w)}
= argmin {—log P(D|w)— log P(w)}
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

Wap arg max log P(w | D)
= argmax {log P(D|w) + log P(w)}

arg mvin {—log P(D|w)— log P(w)}

@ Recall the regularized loss function minimization:

W = arg min {L(Y, X, w)+R(w)}
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

Wap arg max log P(w | D)
= argmax {log P(D|w) + log P(w)}

arg mvin {—log P(D|w)— log P(w)}

@ Recall the regularized loss function minimization:

W = arg min {L(Y, X, w)+R(w)}

o Negative log likelihood — log P(D|w) corresponds to the loss L(Y, X, w)
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MAP and Regularized Loss Function Minimization

@ The MAP estimate:

Wap arg max log P(w | D)

= argmax {log P(D|w) + log P(w)}
= arg m“in {—log P(D|w)— log P(w)}

@ Recall the regularized loss function minimization:

W = arg min {L(Y, X, w)+R(w)}

o Negative log likelihood — log P(D|w) corresponds to the loss L(Y, X, w)

@ Negative log prior —log P(w) corresponds to the regularizer R(w)
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