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Parameter Estimation in Probabilistic Models

Assume data generated via a probabilistic model

d ∼ P(d | θ)

P(d | θ): Probability distribution underlying the data
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Parameter Estimation in Probabilistic Models

Assume data generated via a probabilistic model

d ∼ P(d | θ)

P(d | θ): Probability distribution underlying the data

θ: fixed but unknown distribution parameter

Given: N independent and identically distributed (i.i.d.) samples of the data

D = {d1, . . . ,dN}

Independent and Identically Distributed:

Given θ, each sample dn is independent of all other samples
All samples dn drawn from the same distribution

Goal: Estimate parameter θ that best models/describes the data

Several ways to define the “best”
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Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE): Choose the parameter θ that
maximizes the probability of the data, given that parameter
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Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE): Choose the parameter θ that
maximizes the probability of the data, given that parameter

Probability of the data, given the parameters is called the Likelihood, a
function of θ and defined as:

L(θ) = P(D | θ) = P(d1, . . . ,dN | θ)
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function of θ and defined as:
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Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE): Choose the parameter θ that
maximizes the probability of the data, given that parameter

Probability of the data, given the parameters is called the Likelihood, a
function of θ and defined as:

L(θ) = P(D | θ) = P(d1, . . . ,dN | θ) =
N
∏

n=1

P(dn | θ)

MLE typically maximizes the Log-likelihood instead of the likelihood

Log-likelihood:

logL(θ) = logP(D | θ) = log

N
∏

n=1

P(dn | θ) =
N
∑

n=1

logP(dn | θ)

Maximum Likelihood parameter estimation

θ̂MLE = argmax
θ

logL(θ) = argmax
θ

N
∑

n=1

logP(dn | θ)
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori Estimation (MAP): Choose θ that maximizes the
posterior probability of θ (i.e., probability in the light of the observed data)
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Maximum-a-Posteriori Estimation (MAP): Choose θ that maximizes the
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Posterior probability of θ is given by the Bayes Rule

P(θ | D) =
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori Estimation (MAP): Choose θ that maximizes the
posterior probability of θ (i.e., probability in the light of the observed data)

Posterior probability of θ is given by the Bayes Rule

P(θ | D) =
P(θ)P(D | θ)

P(D)

P(θ): Prior probability of θ (without having seen any data)

P(D | θ): Likelihood
P(D): Probability of the data (independent of θ)

P(D) =
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori Estimation (MAP): Choose θ that maximizes the
posterior probability of θ (i.e., probability in the light of the observed data)

Posterior probability of θ is given by the Bayes Rule

P(θ | D) =
P(θ)P(D | θ)

P(D)

P(θ): Prior probability of θ (without having seen any data)

P(D | θ): Likelihood
P(D): Probability of the data (independent of θ)

P(D) =

∫

P(θ)P(D | θ)dθ (sum over all θ’s)

The Bayes Rule lets us update our belief about θ in the light of observed data
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori Estimation (MAP): Choose θ that maximizes the
posterior probability of θ (i.e., probability in the light of the observed data)

Posterior probability of θ is given by the Bayes Rule

P(θ | D) =
P(θ)P(D | θ)

P(D)

P(θ): Prior probability of θ (without having seen any data)

P(D | θ): Likelihood
P(D): Probability of the data (independent of θ)

P(D) =

∫

P(θ)P(D | θ)dθ (sum over all θ’s)

The Bayes Rule lets us update our belief about θ in the light of observed data

While doing MAP, we usually maximize the log of the posterior probability
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D)
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D) = argmax
θ

P(θ)P(D | θ)
P(D)

= argmax
θ

P(θ)P(D | θ)
= argmax

θ
logP(θ)P(D | θ)
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D) = argmax
θ

P(θ)P(D | θ)
P(D)

= argmax
θ

P(θ)P(D | θ)
= argmax

θ
logP(θ)P(D | θ)

= argmax
θ

{logP(θ) + logP(D | θ)}
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D) = argmax
θ

P(θ)P(D | θ)
P(D)

= argmax
θ

P(θ)P(D | θ)
= argmax

θ
logP(θ)P(D | θ)

= argmax
θ

{logP(θ) + logP(D | θ)}

θ̂MAP = argmax
θ

{logP(θ)+
N
∑

n=1

logP(dn | θ)}
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D) = argmax
θ

P(θ)P(D | θ)
P(D)

= argmax
θ

P(θ)P(D | θ)
= argmax

θ
logP(θ)P(D | θ)

= argmax
θ

{logP(θ) + logP(D | θ)}

θ̂MAP = argmax
θ

{logP(θ)+
N
∑

n=1

logP(dn | θ)}

Same as MLE except the extra log-prior-distribution term!
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Maximum-a-Posteriori Estimation (MAP)

Maximum-a-Posteriori parameter estimation

θ̂MAP = argmax
θ

P(θ | D) = argmax
θ

P(θ)P(D | θ)
P(D)

= argmax
θ

P(θ)P(D | θ)
= argmax

θ
logP(θ)P(D | θ)

= argmax
θ

{logP(θ) + logP(D | θ)}

θ̂MAP = argmax
θ

{logP(θ)+
N
∑

n=1

logP(dn | θ)}

Same as MLE except the extra log-prior-distribution term!

MAP allows incorporating our prior knowledge about θ in its estimation
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Linear Regression: The Probabilistic Formulation

Each response generated by a linear model plus some Gaussian noise

y = w⊤x+ ǫ
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Linear Regression: The Probabilistic Formulation

Each response generated by a linear model plus some Gaussian noise

y = w⊤x+ ǫ

Noise ǫ is drawn from a Gaussian distribution:

ǫ ∼ Nor(0, σ2)

Each response y then becomes a draw from the following Gaussian:

y ∼ Nor(w⊤x, σ2)

Probability of each response variable

P(y | x,w) = Nor(y | w⊤x, σ2) =
1√
2πσ2

exp

[

− (y −w⊤x)2

2σ2

]
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Linear Regression: The Probabilistic Formulation

Each response generated by a linear model plus some Gaussian noise

y = w⊤x+ ǫ

Noise ǫ is drawn from a Gaussian distribution:

ǫ ∼ Nor(0, σ2)

Each response y then becomes a draw from the following Gaussian:

y ∼ Nor(w⊤x, σ2)

Probability of each response variable

P(y | x,w) = Nor(y | w⊤x, σ2) =
1√
2πσ2

exp

[

− (y −w⊤x)2

2σ2

]

Given data D = {(x1, y1), (x2, y2), . . . , (xN , yN)}, we want to estimate the
weight vector w
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Linear Regression: Maximum Likelihood Solution

Log-likelihood:

logL(w) = log P(D | w)
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Linear Regression: Maximum Likelihood Solution

Log-likelihood:
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∑

n=1

log P(yn | xn,w)

=

N
∑

n=1

log
1√
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exp

[
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log(2πσ

2
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2
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Linear Regression: Maximum Likelihood Solution

Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log

N
∏

n=1

P(yn | xn,w)

=
N

∑

n=1

log P(yn | xn,w)

=

N
∑

n=1

log
1√
2πσ2

exp

[

− (yn − w⊤xn)
2

2σ2

]

=

N
∑

n=1

{

− 1

2
log(2πσ

2
) − (yn − w⊤xn)

2

2σ2

}

Maximum Likelihood Solution: ŵMLE = argmaxw logP(D | w)
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Maximum Likelihood Solution: ŵMLE = argmaxw logP(D | w)

= arg max
w

− 1
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N
∑
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(yn − w
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2

= arg min
w

1

2σ2

N
∑
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(yn − w
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2

For σ = 1 (or some constant) for each input, it’s equivalent to the
least-squares objective for linear regression
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

{

− 1

2
log(2πσ

2
) − (yn − w⊤xn)

2

2σ2
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(CS5350/6350) Probabilistic Models September 20, 2011 8 / 16



Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

{

− 1

2
log(2πσ

2
) − (yn − w⊤xn)

2

2σ2

}}

= arg min
w

1

2σ2

N
∑

n=1

(yn − w
⊤
xn)

2
+

λ

2
w

⊤
w (ignoring constants and changing max to min)
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Linear Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Log posterior probability:

log P(w | D) = log
P(w)P(D | w)

P(D)
= log P(w) + log P(D | w) − log P(D)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

{

− 1

2
log(2πσ

2
) − (yn − w⊤xn)

2

2σ2

}}

= arg min
w

1

2σ2

N
∑

n=1

(yn − w
⊤
xn)

2
+

λ

2
w

⊤
w (ignoring constants and changing max to min)

For σ = 1 (or some constant) for each input, it’s equivalent to the regularized
least-squares objective
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
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ŵMAP = argmin
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2 +

λ

2
w⊤w
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w
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∑

n=1

(yn −w⊤xn)
2

MAP solution:

ŵMAP = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2 +

λ

2
w⊤w

Take-home messages:

MLE estimation of a parameter leads to unregularized solutions
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Take-home messages:

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2

MAP solution:

ŵMAP = argmin
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∑
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(yn −w⊤xn)
2 +

λ

2
w⊤w

Take-home messages:

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation

Note: For MAP, different prior distributions lead to different regularizers
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2

MAP solution:

ŵMAP = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2 +

λ

2
w⊤w

Take-home messages:

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation

Note: For MAP, different prior distributions lead to different regularizers

Gaussian prior on w regularizes the ℓ2 norm of w
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Linear Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2

MAP solution:

ŵMAP = argmin
w

1

2σ2

N
∑

n=1

(yn −w⊤xn)
2 +

λ

2
w⊤w

Take-home messages:

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation

Note: For MAP, different prior distributions lead to different regularizers

Gaussian prior on w regularizes the ℓ2 norm of w

Laplace prior exp (−C ||w||1) on w regularizes the ℓ1 norm of w
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Probabilistic Classification: Logistic Regression

Often we don’t just care about predicting the label y for an example

Rather, we want to predict the label probabilities P(y | x,w)
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Probabilistic Classification: Logistic Regression

Often we don’t just care about predicting the label y for an example

Rather, we want to predict the label probabilities P(y | x,w)

E.g., P(y = +1 | x,w): the probability that the label is +1
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Probabilistic Classification: Logistic Regression

Often we don’t just care about predicting the label y for an example

Rather, we want to predict the label probabilities P(y | x,w)

E.g., P(y = +1 | x,w): the probability that the label is +1
In a sense, it’s our confidence in the predicted label
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Probabilistic Classification: Logistic Regression

Often we don’t just care about predicting the label y for an example

Rather, we want to predict the label probabilities P(y | x,w)

E.g., P(y = +1 | x,w): the probability that the label is +1
In a sense, it’s our confidence in the predicted label

Probabilistic classification models allow us do that

Consider the following function (y = −1/+1):

P(y | x,w) = σ(yw
⊤
x) =

1

1 + exp(−yw⊤x)

σ is the logistic function which maps all real
number into (0,1)

−4 −3 −2 −1 0 1 2 3 4
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0.2

0.4

0.6

0.8

1

z

1/(1+exp(−z))
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Probabilistic Classification: Logistic Regression

Often we don’t just care about predicting the label y for an example

Rather, we want to predict the label probabilities P(y | x,w)

E.g., P(y = +1 | x,w): the probability that the label is +1
In a sense, it’s our confidence in the predicted label

Probabilistic classification models allow us do that

Consider the following function (y = −1/+1):

P(y | x,w) = σ(yw
⊤
x) =

1

1 + exp(−yw⊤x)

σ is the logistic function which maps all real
number into (0,1)

−4 −3 −2 −1 0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

z

1/(1+exp(−z))

This is the Logistic Regression model

Misnomer: Logistic Regression is a classification model :-)
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Logistic Regression

What does the decision boundary look like for Logistic Regression?
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What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable
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Logistic Regression

What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable

P(y = +1 | x,w) = P(y = −1 | x,w)
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Logistic Regression

What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable

P(y = +1 | x,w) = P(y = −1 | x,w)

1

1 + exp(−w⊤x)
=

1

1 + exp(w⊤x)
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Logistic Regression

What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable

P(y = +1 | x,w) = P(y = −1 | x,w)

1

1 + exp(−w⊤x)
=

1

1 + exp(w⊤x)

exp(−w
⊤
x) = exp(w

⊤
x)
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Logistic Regression

What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable

P(y = +1 | x,w) = P(y = −1 | x,w)

1

1 + exp(−w⊤x)
=

1

1 + exp(w⊤x)

exp(−w
⊤
x) = exp(w

⊤
x)

w
⊤
x = 0
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Logistic Regression

What does the decision boundary look like for Logistic Regression?

At the decision boundary labels +1/-1 becomes equiprobable

P(y = +1 | x,w) = P(y = −1 | x,w)

1

1 + exp(−w⊤x)
=

1

1 + exp(w⊤x)

exp(−w
⊤
x) = exp(w

⊤
x)

w
⊤
x = 0

The decision boundary is therefore linear ⇒ Logistic Regression is a linear
classifier (note: it’s possible to kernelize and make it nonlinear)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)

=
N

∑

n=1

− log[1 + exp(−ynw
⊤
xn)]
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)

=
N

∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

Maximum Likelihood Solution: ŵMLE = argminw logL(w)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)

=
N

∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

Maximum Likelihood Solution: ŵMLE = argminw logL(w)

No closed-form solution exists but we can do gradient descent on w

∇w logL(w)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)

=
N

∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

Maximum Likelihood Solution: ŵMLE = argminw logL(w)

No closed-form solution exists but we can do gradient descent on w

∇w logL(w) =

N
∑

n=1

− 1

1 + exp(−ynw⊤xn)
exp(−ynw

⊤
xn)(−ynxn)
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Logistic Regression: Maximum Likelihood Solution

Goal: Want to estimate w from the data D = {(x1, y1), . . . , (xN , yn)}
Log-likelihood:

logL(w) = log P(D | w) = log P(Y | X,w) = log
N
∏

n=1

P(yn | xn,w)

=

N
∑

n=1

log P(yn | xn,w)

=
N

∑

n=1

log
1

1 + exp(−ynw⊤xn)

=
N

∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

Maximum Likelihood Solution: ŵMLE = argminw logL(w)

No closed-form solution exists but we can do gradient descent on w

∇w logL(w) =

N
∑

n=1

− 1

1 + exp(−ynw⊤xn)
exp(−ynw

⊤
xn)(−ynxn)

=
N

∑

n=1

1

1 + exp(ynw⊤xn)
ynxn
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

}
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

}

= arg min
w

N
∑

n=1

log[1 + exp(−ynw
⊤
xn)] +

λ

2
w

⊤
w (ignoring constants and changing max to min)
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w
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= arg max
w
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N
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⊤
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}
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N
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⊤
xn)] +

λ

2
w
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w (ignoring constants and changing max to min)

No closed-form solution exists but we can do gradient descent on w
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Logistic Regression: Maximum-a-Posteriori Solution

Let’s assume a Gaussian prior distribution over the weight vector w

P(w) = Nor(w | 0, λ−1
I) =

1

(2π)D/2
exp

(

−λ

2
w

⊤
w

)

Maximum-a-Posteriori Solution: ŵMAP = argmaxw logP(w | D)

= arg max
w

{log P(w) + log P(D | w) − log P(D)}

= arg max
w

{log P(w) + log P(D | w)}

= arg max
w

{

−D

2
log(2π) − λ

2
w

⊤
w +

N
∑

n=1

− log[1 + exp(−ynw
⊤
xn)]

}

= arg min
w

N
∑

n=1

log[1 + exp(−ynw
⊤
xn)] +

λ

2
w

⊤
w (ignoring constants and changing max to min)

No closed-form solution exists but we can do gradient descent on w

See “A comparison of numerical optimizers for logistic regression” by Tom
Minka on optimization techniques (gradient descent and others) for logistic
regression (both MLE and MAP)
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)]
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)]

MAP solution:

ŵMAP = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)] +

λ

2
w⊤w
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)]

MAP solution:

ŵMAP = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)] +

λ

2
w⊤w

Take-home messages (we already saw these before :-) ):

MLE estimation of a parameter leads to unregularized solutions
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w
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MAP solution:
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MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)]

MAP solution:

ŵMAP = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)] +

λ

2
w⊤w

Take-home messages (we already saw these before :-) ):

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation
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Logistic Regression: MLE vs MAP (summary)

MLE solution:

ŵMLE = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)]

MAP solution:

ŵMAP = argmin
w

N
∑

n=1

log[1 + exp(−ynw
⊤xn)] +

λ

2
w⊤w

Take-home messages (we already saw these before :-) ):

MLE estimation of a parameter leads to unregularized solutions

MAP estimation of a parameter leads to regularized solutions

The prior distribution acts as a regularizer in MAP estimation

Note: For MAP, different prior distributions lead to different regularizers

Gaussian prior on w regularizes the ℓ2 norm of w

Laplace prior exp (−C ||w||1) on w regularizes the ℓ1 norm of w
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Logistic Regression: some notes

The objective function is very similar to the SVM
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Logistic Regression: some notes

The objective function is very similar to the SVM

.. except for the loss function part

Logistic regression uses the log-loss, SVM uses the hinge-loss

Generalization to more than 2 classes is straightforward

.. using the soft-max function instead of the logistic function

P(y = k | x,w) =
exp(w⊤

k x)∑
k
exp(w⊤

k x)
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.. using the soft-max function instead of the logistic function

P(y = k | x,w) =
exp(w⊤

k x)∑
k
exp(w⊤

k x)

We maintain a separator weight vector wk for each class k
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Logistic Regression: some notes

The objective function is very similar to the SVM

.. except for the loss function part

Logistic regression uses the log-loss, SVM uses the hinge-loss

Generalization to more than 2 classes is straightforward

.. using the soft-max function instead of the logistic function

P(y = k | x,w) =
exp(w⊤

k x)∑
k
exp(w⊤

k x)

We maintain a separator weight vector wk for each class k

Possible to kernelize it to learn nonlinear boundaries
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)

= argmax
w

{logP(D|w) + logP(w)}
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)

= argmax
w

{logP(D|w) + logP(w)}
= argmin

w
{− logP(D|w)− logP(w)}
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)

= argmax
w

{logP(D|w) + logP(w)}
= argmin

w
{− logP(D|w)− logP(w)}

Recall the regularized loss function minimization:

ŵ = argmin
w

{L(Y,X,w)+R(w)}
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)

= argmax
w

{logP(D|w) + logP(w)}
= argmin

w
{− logP(D|w)− logP(w)}

Recall the regularized loss function minimization:

ŵ = argmin
w

{L(Y,X,w)+R(w)}

Negative log likelihood − logP(D|w) corresponds to the loss L(Y,X,w)
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MAP and Regularized Loss Function Minimization

The MAP estimate:

ŵMAP = argmax
w

logP(w | D)

= argmax
w

{logP(D|w) + logP(w)}
= argmin

w
{− logP(D|w)− logP(w)}

Recall the regularized loss function minimization:

ŵ = argmin
w

{L(Y,X,w)+R(w)}

Negative log likelihood − logP(D|w) corresponds to the loss L(Y,X,w)

Negative log prior − logP(w) corresponds to the regularizer R(w)
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