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What is Data Clustering?

Data Clustering is an unsupervised learning problem
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What is Data Clustering?

Data Clustering is an unsupervised learning problem

Given: N unlabeled examples {x1, . . . , xN}; the number of partitions K

Goal: Group the examples into K partitions

The only information clustering uses is the similarity between examples

Clustering groups examples based of their mutual similarities

A good clustering is one that achieves:
High within-cluster similarity

Low inter-cluster similarity
Picture courtesy: “Data Clustering: 50 Years Beyond K-Means”, A.K. Jain (2008)
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Notions of Similarity

Choice of the similarity measure is very important for clustering

Similarity is inversely related to distance
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Notions of Similarity

Choice of the similarity measure is very important for clustering

Similarity is inversely related to distance

Different ways exist to measure distances. Some examples:

Euclidean distance: d(x, z) = ||x− z|| =
√

∑D

d=1(xd − zd)2

Manhattan distance: d(x, z) =
∑D

d=1 |xd − zd |

Kernelized (non-linear) distance: d(x, z) = ||φ(x)− φ(z)||
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Notions of Similarity

Choice of the similarity measure is very important for clustering

Similarity is inversely related to distance

Different ways exist to measure distances. Some examples:

Euclidean distance: d(x, z) = ||x− z|| =
√

∑D

d=1(xd − zd)2

Manhattan distance: d(x, z) =
∑D

d=1 |xd − zd |

Kernelized (non-linear) distance: d(x, z) = ||φ(x)− φ(z)||

For the left figure above, Euclidean distance may be reasonable

For the right figure above, kernelized distance seems more reasonable
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Similarity is Subjective

Similarity is often hard to define

Different similarity criteria can lead to different clusterings

(CS5350/6350) Data Clustering October 4, 2011 4 / 24



Data Clustering: Some Real-World Examples

Clustering images based on their perceptual similarities

Image segmentation (clustering pixels)

Clustering webpages based on their content

Clustering web-search results

Clustering people in social networks based on user properties/preferences

.. and many more..

Picture courtesy: http://people.cs.uchicago.edu/∼pff/segment/
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Types of Clustering

1 Flat or Partitional clustering (K -means, Gaussian mixture models, etc.)
Partitions are independent of each other
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Types of Clustering

1 Flat or Partitional clustering (K -means, Gaussian mixture models, etc.)
Partitions are independent of each other

2 Hierarchical clustering (e.g., agglomerative clustering, divisive clustering)
Partitions can be visualized using a tree structure (a dendrogram)
Does not need the number of clusters as input
Possible to view partitions at different levels of granularities (i.e., can
refine/coarsen clusters) using different K
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Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN} (xn ∈ R
D); the number of partitions K
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Initialize: K cluster centers µ1, . . . , µK . Several initialization options:

Randomly initialized anywhere in R
D

Choose any K examples as the cluster centers
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Input: N examples {x1, . . . , xN} (xn ∈ R
D); the number of partitions K

Initialize: K cluster centers µ1, . . . , µK . Several initialization options:

Randomly initialized anywhere in R
D

Choose any K examples as the cluster centers

Iterate:

Assign each of example xn to its closest cluster center

Ck = {n : k = argmin
k

||xn − µk ||
2}

(Ck is the set of examples closest to µk)
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Flat Clustering: K -means algorithm (Lloyd, 1957)

Input: N examples {x1, . . . , xN} (xn ∈ R
D); the number of partitions K

Initialize: K cluster centers µ1, . . . , µK . Several initialization options:

Randomly initialized anywhere in R
D

Choose any K examples as the cluster centers

Iterate:

Assign each of example xn to its closest cluster center

Ck = {n : k = argmin
k

||xn − µk ||
2}

(Ck is the set of examples closest to µk)
Recompute the new cluster centers µk (mean/centroid of the set Ck)

µk =
1

|Ck |

∑

n∈Ck

xn

Repeat while not converged

A possible convergence criteria: cluster centers do not change anymore
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K -means: Initialization (assume K = 2)
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K -means iteration 1: Assigning points
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K -means iteration 1: Recomputing the cluster centers
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K -means iteration 2: Assigning points
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K -means iteration 2: Recomputing the cluster centers
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K -means iteration 3: Assigning points
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K -means iteration 3: Recomputing the cluster centers
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K -means iteration 4: Assigning points
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K -means iteration 4: Recomputing the cluster centers
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K -means: The Objective Function

The K -means objective function

Let µ1, . . . , µK be the K cluster centroids (means)

Let rnk ∈ {0, 1} be indicator denoting whether point xn belongs to cluster k

K -means objective minimizes the total distortion (sum of distances of points
from their cluster centers)

J(µ, r) =

N∑

n=1

K∑

k=1

rnk ||xn − µk ||
2
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K -means: The Objective Function

The K -means objective function

Let µ1, . . . , µK be the K cluster centroids (means)

Let rnk ∈ {0, 1} be indicator denoting whether point xn belongs to cluster k

K -means objective minimizes the total distortion (sum of distances of points
from their cluster centers)

J(µ, r) =

N∑

n=1

K∑

k=1

rnk ||xn − µk ||
2

Note: Exact optimization of the K -means objective is NP-hard

The K -means algorithm is a heuristic that converges to a local optimum
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K -means: Choosing the number of clusters K

One way to select K for the K -means algorithm is to try different values of
K , plot the K -means objective versus K , and look at the “elbow-point” in
the plot
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K -means: Choosing the number of clusters K

One way to select K for the K -means algorithm is to try different values of
K , plot the K -means objective versus K , and look at the “elbow-point” in
the plot

For the above plot, K = 2 is the elbow point

Picture courtesy: “Pattern Recognition and Machine Learning, Chris Bishop (2006)
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K -means: Initialization issues

K -means is extremely sensitive to cluster center initialization

Bad initialization can lead to

Poor convergence speed

Bad overall clustering
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K -means: Initialization issues

K -means is extremely sensitive to cluster center initialization

Bad initialization can lead to

Poor convergence speed

Bad overall clustering

Safeguarding measures:

Choose first center as one of the examples, second which is the farthest from
the first, third which is the farthest from both, and so on.
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K -means: Initialization issues

K -means is extremely sensitive to cluster center initialization

Bad initialization can lead to

Poor convergence speed

Bad overall clustering

Safeguarding measures:

Choose first center as one of the examples, second which is the farthest from
the first, third which is the farthest from both, and so on.

Try multiple initializations and choose the best result

Other smarter initialization schemes (e.g., look at the K -means++ algorithm
by Arthur and Vassilvitskii)
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K -means: Limitations

Makes hard assignments of points to clusters
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K -means: Limitations

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or not belongs at all

No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)
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No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Gaussian mixture models and Fuzzy K -means allow soft assignments

Sensitive to outlier examples (such examples can affect the mean by a lot)
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K -means: Limitations

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or not belongs at all

No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Gaussian mixture models and Fuzzy K -means allow soft assignments

Sensitive to outlier examples (such examples can affect the mean by a lot)

K -medians algorithm is a more robust alternative for data with outliers

Reason: Median is more robust than mean in presence of outliers
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K -means: Limitations

Makes hard assignments of points to clusters

A point either completely belongs to a cluster or not belongs at all

No notion of a soft assignment (i.e., probability of being assigned to each
cluster: say K = 3 and for some point xn, p1 = 0.7, p2 = 0.2, p3 = 0.1)

Gaussian mixture models and Fuzzy K -means allow soft assignments

Sensitive to outlier examples (such examples can affect the mean by a lot)

K -medians algorithm is a more robust alternative for data with outliers

Reason: Median is more robust than mean in presence of outliers

Works well only for round shaped, and of roughtly equal sizes/density clusters

Does badly if the clusters have non-convex shapes

Spectral clustering or kernelized K -means can be an alternative
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K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!
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K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24



Hierarchical Clustering

(CS5350/6350) Data Clustering October 4, 2011 22 / 24



Hierarchical Clustering

Agglomerative (bottom-up) Clustering
1 Start with each example in its own singleton cluster
2 At each time-step, greedily merge 2 most similar clusters
3 Stop when there is a single cluster of all examples, else go to 2
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Hierarchical Clustering

Agglomerative (bottom-up) Clustering
1 Start with each example in its own singleton cluster
2 At each time-step, greedily merge 2 most similar clusters
3 Stop when there is a single cluster of all examples, else go to 2

Divisive (top-down) Clustering
1 Start with all examples in the same cluster
2 At each time-step, remove the “outsiders” from the least cohesive cluster
3 Stop when each example is in its own singleton cluster, else go to 2
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Hierarchical Clustering

Agglomerative (bottom-up) Clustering
1 Start with each example in its own singleton cluster
2 At each time-step, greedily merge 2 most similar clusters
3 Stop when there is a single cluster of all examples, else go to 2

Divisive (top-down) Clustering
1 Start with all examples in the same cluster
2 At each time-step, remove the “outsiders” from the least cohesive cluster
3 Stop when each example is in its own singleton cluster, else go to 2

Agglomerative is more popular and simpler than divisive (but less accurarate)
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Hierarchical Clustering: (Dis)similarity between clusters

We know how to compute the dissimilarity d(xi , xj) between two examples

How to compute the dissimilarity between two clusters R and S?
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Hierarchical Clustering: (Dis)similarity between clusters

We know how to compute the dissimilarity d(xi , xj) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR∈R,xS∈S

d(xR , xS )

(CS5350/6350) Data Clustering October 4, 2011 23 / 24



Hierarchical Clustering: (Dis)similarity between clusters

We know how to compute the dissimilarity d(xi , xj) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR∈R,xS∈S

d(xR , xS )

Max-link or complete-link: results in small, round shaped clusters

d(R, S) = max
xR∈R,xS∈S

d(xR , xS )

(CS5350/6350) Data Clustering October 4, 2011 23 / 24



Hierarchical Clustering: (Dis)similarity between clusters

We know how to compute the dissimilarity d(xi , xj) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR∈R,xS∈S

d(xR , xS )

Max-link or complete-link: results in small, round shaped clusters

d(R, S) = max
xR∈R,xS∈S

d(xR , xS )

Average-link: compromise between single and complexte linkage

d(R, S) =
1

|R||S|

∑

xR∈R,xS∈S

d(xR , xS )

(CS5350/6350) Data Clustering October 4, 2011 23 / 24



Hierarchical Clustering: (Dis)similarity between clusters

We know how to compute the dissimilarity d(xi , xj) between two examples

How to compute the dissimilarity between two clusters R and S?

Min-link or single-link: results in chaining (clusters can get very large)

d(R, S) = min
xR∈R,xS∈S

d(xR , xS )

Max-link or complete-link: results in small, round shaped clusters

d(R, S) = max
xR∈R,xS∈S

d(xR , xS )

Average-link: compromise between single and complexte linkage

d(R, S) =
1

|R||S|

∑

xR∈R,xS∈S

d(xR , xS )

(CS5350/6350) Data Clustering October 4, 2011 23 / 24



Flat vs Hierarchical Clustering

Flat clustering produces a single partitioning

Hierarchical Clustering can give different partitionings depending on the
level-of-resolution we are looking at

Flat clustering needs the number of clusters to be specified

Hierarchical clustering doesn’t need the number of clusters to be specified

Flat clustering is usually more efficient run-time wise

Hierarchical clustering can be slow (has to make several merge/split
decisions)

No clear consensus on which of the two produces better clustering
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