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High-Dimensional Datasets Abound..
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High-Dimensional Datasets Abound..

Goal: Find a low-dimensional, yet useful representation of the data
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Why Dimensionality Reduction?

Insights into the low-dimensional structures in the data (visualization)

Fewer dimensions ⇒ Less chances of overfitting ⇒ Better generalization

Speeding up learning algorithms

Most algorithms scale badly with increasing data dimensionality

Less storage requirements (data compression)

Note: Dimensionality Reduction is different from Feature Selection

.. although the goals are kind of the same

Dimensionality reduction is more like “Feature Extraction”

Constructing a small set of new features from the original features
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Linear Dimensionality Reduction

Based on the idea of doing a linear projection of the data
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Linear Dimensionality Reduction

Based on the idea of doing a linear projection of the data

Works well if the data lies close to a linear subspace

Consider a high dimensional example x ∈ R
D

We want to project it down to a K -dimensional vector z (K ≪ D)
z = U⊤x

z ∈ R
K is the projection

U is the D × K projection matrix (defining K projection directions)
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Linear Dimensionality Reduction

Based on the idea of doing a linear projection of the data

Works well if the data lies close to a linear subspace

Consider a high dimensional example x ∈ R
D

We want to project it down to a K -dimensional vector z (K ≪ D)
z = U⊤x

z ∈ R
K is the projection

U is the D × K projection matrix (defining K projection directions)

Can also think of U as defining a K -dimensional subspace

Different methods differ in how U is defined/learned

The differences depend on what properties of data we want to capture
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Dimensionality Reduction: A Simple Illustration

Consider this 2 dimensional data

Each example x has 2 features {x1, x2}
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Dimensionality Reduction: A Simple Illustration

Consider this 2 dimensional data

Each example x has 2 features {x1, x2}

Consider ignoring the feature x2 for each example

Each 2-dimensional example x now becomes 1-dimensional x = {x1}

Are we losing much information by throwing away x2?

Yes. The data has substantial variance along both features (i.e., both axes)
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Dimensionality Reduction: A Simple Illustration

Now consider a change of axes (the co-ordinate system)
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Principal Component Analysis (PCA)

Used when we want projections capturing maximum variance directions
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Principal Component Analysis (PCA)

Used when we want projections capturing maximum variance directions

Based on identifying the Principal Components in the data

Principal Components (PC): Directions of maximum variability in the data

Roughly speaking, PCA does a change of axes that represent the data

First PC: Direction of the highest variability

Second PC: Direction of next highest variability (orthogonal to the first PC)

Subsequent PCs: Other directions of highest variability (in decreasing order)

Note: All principal components are orthogonal to each other

PCA: Take top K PC’s and project the data along those
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PCA: Finding the Principal Components

Given: N examples x1, . . . , xN , each example xn ∈ R
D

Goal: Project the data from D dimensions to K dimensions (K < D)

Want to capture the maximum possible variance in the projected data
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i ui = 1
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PCA: Finding the Principal Components

Given: N examples x1, . . . , xN , each example xn ∈ R
D

Goal: Project the data from D dimensions to K dimensions (K < D)

Want to capture the maximum possible variance in the projected data

Let u1, . . . ,uD be the principal components, assumed to be:

Orthogonal: u⊤

i uj = 0 if i 6= j , Orthonormal: u⊤

i ui = 1

Each principal component is a vector of size D × 1

We want only the first K principal components
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PCA: Finding the Principal Components

Projection of a data point xn along u1: u
⊤

1 xn
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PCA: Finding the Principal Components

Projection of a data point xn along u1: u
⊤

1 xn

Projection of the mean x̄ along u1: u
⊤

1 x̄ (where x̄ = 1
N

∑N

n=1 xn)

Variance of the projected data (along projection direction u1):

1

N

N
∑

n=1

{

u⊤1 xn − u⊤1 x̄

}2

= u⊤1 Su1

where S is the data covariance matrix defined as

S =
1

N

N
∑

n=1

(xn − x̄)(xn − x̄)⊤
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PCA: Finding the Principal Components

Projection of a data point xn along u1: u
⊤

1 xn

Projection of the mean x̄ along u1: u
⊤

1 x̄ (where x̄ = 1
N

∑N

n=1 xn)

Variance of the projected data (along projection direction u1):

1

N

N
∑

n=1

{

u⊤1 xn − u⊤1 x̄

}2

= u⊤1 Su1

where S is the data covariance matrix defined as

S =
1

N

N
∑

n=1

(xn − x̄)(xn − x̄)⊤

Want to have u1 that maximizes the projected data variance u⊤1 Su1
Subject to the constraint: u⊤

1 u1 = 1
We will introduce a Lagrange multiplier λ1 for this constraint
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PCA: Finding the Principal Components

Objective function: u⊤1 Su1 + λ1(1− u⊤1 u1)

Taking derivative w.r.t. u1 and setting it to zero gives:

Su1 = λ1u1
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Taking derivative w.r.t. u1 and setting it to zero gives:
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This is the eigenvalue equation

u1 must be an eigenvector of S (and λ1 the corresponding eigenvalue)
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PCA: Finding the Principal Components

Objective function: u⊤1 Su1 + λ1(1− u⊤1 u1)

Taking derivative w.r.t. u1 and setting it to zero gives:

Su1 = λ1u1

This is the eigenvalue equation

u1 must be an eigenvector of S (and λ1 the corresponding eigenvalue)

But there are multiple eigenvectors of S. Which one is u1?

Consider u⊤1 Su1 = u⊤1 λ1u1 = λ1 (using u⊤1 u1 = 1)

We know that the projected data variance u⊤1 Su1 = λ1 is maximum

Thus λ1 should be the largest eigenvalue
Thus u1 is the first (top) eigenvector of S (with eigenvalue λ1)
⇒ the first principal component (direction of highest variance in the data)
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PCA: Finding the Principal Components

Objective function: u⊤1 Su1 + λ1(1− u⊤1 u1)

Taking derivative w.r.t. u1 and setting it to zero gives:

Su1 = λ1u1

This is the eigenvalue equation

u1 must be an eigenvector of S (and λ1 the corresponding eigenvalue)

But there are multiple eigenvectors of S. Which one is u1?

Consider u⊤1 Su1 = u⊤1 λ1u1 = λ1 (using u⊤1 u1 = 1)

We know that the projected data variance u⊤1 Su1 = λ1 is maximum

Thus λ1 should be the largest eigenvalue
Thus u1 is the first (top) eigenvector of S (with eigenvalue λ1)
⇒ the first principal component (direction of highest variance in the data)

Subsequent PC’s are given by the subsequent eigenvectors of S
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PCA: The Algorithm

Compute the mean of the data

x̄ =
1

N

N∑

n=1

xn

Compute the sample covariance matrix (using the mean subtracted data)

S =
1

N

N∑

n=1

(xn − x̄)(xn − x̄)
⊤

Do the eigenvalue decomposition of the D × D matrix S

Take the top K eigenvectors (corresponding to the top K eigenvalues)

Call these u1, . . . ,uK (s.t. λ1 ≥ λ2 ≥ . . . λK−1 ≥ λK )

U = [u1 u2 . . . uK ] is the projection matrix of size D × K
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PCA: The Algorithm

Compute the mean of the data

x̄ =
1

N

N∑

n=1

xn

Compute the sample covariance matrix (using the mean subtracted data)

S =
1

N

N∑

n=1

(xn − x̄)(xn − x̄)
⊤

Do the eigenvalue decomposition of the D × D matrix S

Take the top K eigenvectors (corresponding to the top K eigenvalues)

Call these u1, . . . ,uK (s.t. λ1 ≥ λ2 ≥ . . . λK−1 ≥ λK )

U = [u1 u2 . . . uK ] is the projection matrix of size D × K

Projection of each example xn is computed as zn = U⊤xn
zn is a K × 1 vector (also called the embedding of xn)
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PCA: Pictorially

For a single example xn:
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PCA: Pictorially

For a single example xn:

For a set of N examples:
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PCA Example: Eigenfaces

Principal Components learned using a face image dataset
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PCA: Approximate Reconstruction

Given the principal components u1, . . . ,uK , the PCA approximation of an
example xn is:

x̃n =

K
∑

i=1

(x⊤n ui )ui =

K
∑

i=1

zniui

where zn = [zn1, . . . , znK ] is the low-dimensional projection of xn
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where zn = [zn1, . . . , znK ] is the low-dimensional projection of xn

This gives us a way of compressing data

To compress a dataset X = [x1, . . . , xN ], all we need is the set of K ≪ D

principal components, and the projections Z = [z1, . . . , zN ] of each example
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PCA for Very High Dimensional Data

In many cases, N < D

Recall: PCA requires eigen-decomposition of D × D covariance matrix
S = 1

N
XX⊤ (assuming centered data, and X being D × N)

Eigen-decomposition can be expensive if D is very large
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Fact: If N < D, at most N − 1 eigenvalues are non-zero

The remaining D − N + 1 eigenvalues are zero

Fact: S = 1
N
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PCA for Very High Dimensional Data

In many cases, N < D

Recall: PCA requires eigen-decomposition of D × D covariance matrix
S = 1

N
XX⊤ (assuming centered data, and X being D × N)

Eigen-decomposition can be expensive if D is very large

Fact: If N < D, at most N − 1 eigenvalues are non-zero

The remaining D − N + 1 eigenvalues are zero

Fact: S = 1
N
XX⊤ has the same N − 1 non-zero eigenvalues as that of the

N × N matrix 1
N
X⊤X (for which eigen-decomposition is cheaper if N < D)

The eigenvectors aren’t exactly the same (but still related)

The relationship is ui =
1

(Nλi )2
Xvi

{λi , vi} is an eigenvalue-eigenvector pair of the N ×N matrix 1
N
X⊤X, and ui

is the corresponding eigenvector of S = 1
N
XX⊤ (that we want)
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Supervised Dimensionality Reduction

Dimensionality reduction with label information (when the ultimate goal is
classification/regression)
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Supervised Dimensionality Reduction

Dimensionality reduction with label information (when the ultimate goal is
classification/regression)

PCA ignores label information even if it is available

Only chooses directions of maximum variance

Fisher Discriminant Analysis (FDA) takes into account the label information

It’s also called Linear Discriminant Analysis (LDA)

FDA/LDA projects data while preserving class separation

Examples from same class are put closely together by the projection
Examples from different classes are placed far apart by the projection
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PCA vs FDA/LDA

PCA: magenta line, FDA: green line

PCA based projection makes the classes overlap (which is bad)

LDA/FDA is often better if the final goal is classification
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