Piyush Rai

CS5350/6350: Machine Learning

October 20, 2011

(CS5350/6350)

イロト イヨト イヨト イヨ

High-Dimensional Datasets Abound ...

face images

Zambian President Levy Mwanawasa has won a second term in office in an election his challenger Michael Sata accused him of rigging, official results showed on Monday. According to media reports, a pair of hackens said on Saturday that the Firefox Web browser, commonly perceived as the safer and more customizable alternative to market leader Internet Explorer, is critically flawed. A presentation on the flaw was shown during the ToorCon hacker conference in San Diego.

documents

MEG readings

イロト イヨト イヨト イヨト

gene expression data

High-Dimensional Datasets Abound ...

MEG readings

イロト イヨト イヨト イヨト

Goal: Find a low-dimensional, yet useful representation of the data

gene expression data

(CS5350/6350)

Linear Dimensionality Reduction

・ロト ・回ト ・ヨト ・ヨト

• Insights into the low-dimensional structures in the data (visualization)

・ロト ・回ト ・ヨト ・

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
 - Most algorithms scale badly with increasing data dimensionality

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
 - Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
 - Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)
- Note: Dimensionality Reduction is different from Feature Selection
 - .. although the goals are kind of the same

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
 - Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)
- Note: Dimensionality Reduction is different from Feature Selection
 ... although the goals are kind of the same
- Dimensionality reduction is more like "Feature Extraction"
 - Constructing a small set of new features from the original features

• Based on the idea of doing a linear projection of the data

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^D$
- We want to project it down to a K-dimensional vector \mathbf{z} (K \ll D) $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$
- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- **U** is the $D \times K$ projection matrix (defining K projection directions)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^D$
- We want to project it down to a K-dimensional vector \mathbf{z} (K \ll D) $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$
- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- **U** is the $D \times K$ projection matrix (defining K projection directions)
- Can also think of **U** as defining a K-dimensional subspace

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^D$
- We want to project it down to a K-dimensional vector \mathbf{z} (K \ll D) $\mathbf{z} = \mathbf{U}^{\top} \mathbf{x}$
- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- **U** is the $D \times K$ projection matrix (defining K projection directions)
- Can also think of **U** as defining a K-dimensional subspace

- $\bullet\,$ Different methods differ in how ${\bf U}$ is defined/learned
- The differences depend on what properties of data we want to capture

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x₂ for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$

- Consider this 2 dimensional data
- Each example **x** has 2 features {*x*₁, *x*₂}
- Consider ignoring the feature x₂ for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$
- Are we losing much information by throwing away x₂?

A D > A P > A B > A

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x₂ for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$
- Are we losing much information by throwing away x_2 ?
- No. Most of the data spread is along x_1 (very little variance along x_2)

(CS5350/6350)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x₂ for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x_2 for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$
- Are we losing much information by throwing away x₂?

A D > A P > A B > A

- Consider this 2 dimensional data
- Each example **x** has 2 features $\{x_1, x_2\}$
- Consider ignoring the feature x₂ for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{x_1\}$
- Are we losing much information by throwing away x_2 ?
- Yes. The data has substantial variance along both features (i.e., both axes)

A D > A P > A B > A

• Now consider a change of axes (the co-ordinate system)

・ロト ・回ト ・ヨト ・

- Now consider a change of axes (the co-ordinate system)
- Each example **x** has 2 features $\{u_1, u_2\}$

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Now consider a change of axes (the co-ordinate system)
- Each example **x** has 2 features $\{u_1, u_2\}$
- Consider ignoring the feature u_2 for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{u_1\}$

A D > A P > A B > A

- Now consider a change of axes (the co-ordinate system)
- Each example **x** has 2 features $\{u_1, u_2\}$
- Consider ignoring the feature u_2 for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{u_1\}$
- Are we losing much information by throwing away u_2 ?

- Now consider a change of axes (the co-ordinate system)
- Each example **x** has 2 features $\{u_1, u_2\}$
- Consider ignoring the feature u_2 for each example
- Each 2-dimensional example **x** now becomes 1-dimensional $\mathbf{x} = \{u_1\}$
- Are we losing much information by throwing away u_2 ?
- No. Most of the data spread is along u_1 (very little variance along u_2)

(CS5350/6350)

Used when we want projections capturing maximum variance directions

<ロト < 回 > < 回 > < 回 > < 回 >

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data

(日) (同) (日) (日)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data

(日) (同) (日) (日)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)

• • • • • • • • • • • •

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)

(日) (同) (日) (日)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)
- Note: All principal components are orthogonal to each other

(a)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)
- Note: All principal components are orthogonal to each other
- PCA: Take top K PC's and project the data along those

(a)

- Given: *N* examples $\mathbf{x}_1, \ldots, \mathbf{x}_N$, each example $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Project the data from D dimensions to K dimensions (K < D)
- Want to capture the maximum possible variance in the projected data

A D > A B > A B > A

- Given: *N* examples $\mathbf{x}_1, \ldots, \mathbf{x}_N$, each example $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Project the data from D dimensions to K dimensions (K < D)
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_D$ be the principal components, assumed to be:
 - Orthogonal: $\mathbf{u}_i^\top \mathbf{u}_j = 0$ if $i \neq j$, Orthonormal: $\mathbf{u}_i^\top \mathbf{u}_i = 1$

イロト イポト イヨト イヨト

- Given: *N* examples $\mathbf{x}_1, \ldots, \mathbf{x}_N$, each example $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Project the data from D dimensions to K dimensions (K < D)
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_1, \dots, \mathbf{u}_D$ be the principal components, assumed to be:
 - Orthogonal: $\mathbf{u}_i^\top \mathbf{u}_j = 0$ if $i \neq j$, Orthonormal: $\mathbf{u}_i^\top \mathbf{u}_i = 1$
- Each principal component is a vector of size $D \times 1$

(日) (同) (日) (日)

- Given: *N* examples $\mathbf{x}_1, \ldots, \mathbf{x}_N$, each example $\mathbf{x}_n \in \mathbb{R}^D$
- Goal: Project the data from D dimensions to K dimensions (K < D)
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_1, \ldots, \mathbf{u}_D$ be the principal components, assumed to be:
 - Orthogonal: $\mathbf{u}_i^\top \mathbf{u}_j = 0$ if $i \neq j$, Orthonormal: $\mathbf{u}_i^\top \mathbf{u}_i = 1$
- Each principal component is a vector of size $D \times 1$
- We want only the first K principal components

(日) (同) (日) (日)

• Projection of a data point \mathbf{x}_n along \mathbf{u}_1 : $\mathbf{u}_1^\top \mathbf{x}_n$

・ロト ・回ト ・ヨト ・

- Projection of a data point \mathbf{x}_n along \mathbf{u}_1 : $\mathbf{u}_1^\top \mathbf{x}_n$
- Projection of the mean $\bar{\mathbf{x}}$ along \mathbf{u}_1 : $\mathbf{u}_1^{\top} \bar{\mathbf{x}}$ (where $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$)

• • • • • • • • • • • •

- Projection of a data point \mathbf{x}_n along \mathbf{u}_1 : $\mathbf{u}_1^\top \mathbf{x}_n$
- Projection of the mean $\bar{\mathbf{x}}$ along \mathbf{u}_1 : $\mathbf{u}_1^{\top} \bar{\mathbf{x}}$ (where $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$)
- Variance of the projected data (along projection direction **u**₁):

$$\frac{1}{N}\sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\top}\mathbf{x}_{n}-\mathbf{u}_{1}^{\top}\bar{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{\top}\mathbf{S}\mathbf{u}_{1}$$

where \boldsymbol{S} is the data covariance matrix defined as

$$\mathbf{S} = rac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^{\top}$$

A D > A P > A B > A

- Projection of a data point \mathbf{x}_n along \mathbf{u}_1 : $\mathbf{u}_1^\top \mathbf{x}_n$
- Projection of the mean $\bar{\mathbf{x}}$ along \mathbf{u}_1 : $\mathbf{u}_1^{\top} \bar{\mathbf{x}}$ (where $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$)
- Variance of the projected data (along projection direction **u**₁):

$$\frac{1}{N}\sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\top}\mathbf{x}_{n}-\mathbf{u}_{1}^{\top}\bar{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{\top}\mathbf{S}\mathbf{u}_{1}$$

where \boldsymbol{S} is the data covariance matrix defined as

$$\mathbf{S} = rac{1}{N}\sum_{n=1}^{N}(\mathbf{x}_n-ar{\mathbf{x}})(\mathbf{x}_n-ar{\mathbf{x}})^{ op}$$

- Want to have **u**₁ that maximizes the projected data variance **u**₁⁺**Su**₁
 - Subject to the constraint: $\mathbf{u}_1^\top \mathbf{u}_1 = 1$
 - We will introduce a Lagrange multiplier λ_1 for this constraint

(CS5350/6350)

イロト イポト イヨト イヨト

- Objective function: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Taking derivative w.r.t. **u**₁ and setting it to zero gives:

 $\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1$

(日) (同) (日) (日)

- Objective function: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Taking derivative w.r.t. **u**₁ and setting it to zero gives:

 $\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1$

- This is the eigenvalue equation
 - \mathbf{u}_1 must be an eigenvector of **S** (and λ_1 the corresponding eigenvalue)

イロト イポト イヨト イヨト

- Objective function: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Taking derivative w.r.t. **u**₁ and setting it to zero gives:

 $\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1$

- This is the eigenvalue equation
 - \mathbf{u}_1 must be an eigenvector of **S** (and λ_1 the corresponding eigenvalue)
- But there are multiple eigenvectors of S. Which one is u_1 ?

イロト イポト イヨト イヨト

- Objective function: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Taking derivative w.r.t. **u**₁ and setting it to zero gives:

$$\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1$$

- This is the eigenvalue equation
 - \mathbf{u}_1 must be an eigenvector of **S** (and λ_1 the corresponding eigenvalue)
- But there are multiple eigenvectors of S. Which one is u_1 ?
- Consider $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 = \mathbf{u}_1^{\top} \lambda_1 \mathbf{u}_1 = \lambda_1$ (using $\mathbf{u}_1^{\top} \mathbf{u}_1 = 1$)
- We know that the projected data variance $\mathbf{u}_1^\top \mathbf{S} \mathbf{u}_1 = \lambda_1$ is maximum
 - Thus λ_1 should be the largest eigenvalue
 - Thus \mathbf{u}_1 is the first (top) eigenvector of **S** (with eigenvalue λ_1)
 - \Rightarrow the first principal component (direction of highest variance in the data)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Objective function: $\mathbf{u}_1^{\top} \mathbf{S} \mathbf{u}_1 + \lambda_1 (1 \mathbf{u}_1^{\top} \mathbf{u}_1)$
- Taking derivative w.r.t. \mathbf{u}_1 and setting it to zero gives:

$$\mathbf{Su}_1 = \lambda_1 \mathbf{u}_1$$

- This is the eigenvalue equation
 - \mathbf{u}_1 must be an eigenvector of **S** (and λ_1 the corresponding eigenvalue)
- But there are multiple eigenvectors of **S**. Which one is **u**₁?
- Consider $\mathbf{u}_1^\top \mathbf{S} \mathbf{u}_1 = \mathbf{u}_1^\top \lambda_1 \mathbf{u}_1 = \lambda_1$ (using $\mathbf{u}_1^\top \mathbf{u}_1 = 1$)
- We know that the projected data variance $\mathbf{u}_1^\top \mathbf{S} \mathbf{u}_1 = \lambda_1$ is maximum
 - Thus λ_1 should be the largest eigenvalue
 - Thus u₁ is the first (top) eigenvector of S (with eigenvalue λ₁)
 ⇒ the first principal component (direction of highest variance in the data)
- Subsequent PC's are given by the subsequent eigenvectors of ${\boldsymbol{\mathsf{S}}}$

(a)

PCA: The Algorithm

• Compute the mean of the data

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• Compute the sample covariance matrix (using the mean subtracted data)

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^{\top}$$

- Do the eigenvalue decomposition of the $D \times D$ matrix **S**
- Take the top K eigenvectors (corresponding to the top K eigenvalues)
- Call these $\mathbf{u}_1, \ldots, \mathbf{u}_K$ (s.t. $\lambda_1 \ge \lambda_2 \ge \ldots \lambda_{K-1} \ge \lambda_K$)
- $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ is the projection matrix of size $D \times K$

(日) (同) (日) (日)

PCA: The Algorithm

• Compute the mean of the data

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$$

• Compute the sample covariance matrix (using the mean subtracted data)

$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^{\top}$$

- Do the eigenvalue decomposition of the $D \times D$ matrix **S**
- Take the top K eigenvectors (corresponding to the top K eigenvalues)
- Call these $\mathbf{u}_1, \ldots, \mathbf{u}_K$ (s.t. $\lambda_1 \ge \lambda_2 \ge \ldots \lambda_{K-1} \ge \lambda_K$)
- $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_K]$ is the projection matrix of size $D \times K$
- Projection of each example \mathbf{x}_n is computed as $\mathbf{z}_n = \mathbf{U}^\top \mathbf{x}_n$
 - \mathbf{z}_n is a $K \times 1$ vector (also called the embedding of \mathbf{x}_n)

イロト イポト イヨト イヨト

PCA: Pictorially

• For a single example \mathbf{x}_n :

(CS5350/63	50)
------------	-----

◆□ > ◆□ > ◆臣 > ◆臣 >

PCA: Pictorially

• For a single example **x**_n:

• For a set of *N* examples:

October 20, 2011 13 / 18

PCA Example: Eigenfaces

• Principal Components learned using a face image dataset

・ロト ・ 日 ・ ・ 目 ・ ・

PCA: Approximate Reconstruction

Given the principal components u₁,..., u_K, the PCA approximation of an example x_n is:

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^K (\mathbf{x}_n^\top \mathbf{u}_i) \mathbf{u}_i = \sum_{i=1}^K z_{ni} \mathbf{u}_i$$

where $\mathbf{z}_n = [z_{n1}, \dots, z_{nK}]$ is the low-dimensional projection of \mathbf{x}_n

イロト イヨト イヨト イヨト

PCA: Approximate Reconstruction

Given the principal components u₁,..., u_K, the PCA approximation of an example x_n is:

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^K (\mathbf{x}_n^\top \mathbf{u}_i) \mathbf{u}_i = \sum_{i=1}^K z_{ni} \mathbf{u}_i$$

where $\mathbf{z}_n = [z_{n1}, \dots, z_{nK}]$ is the low-dimensional projection of \mathbf{x}_n

- This gives us a way of compressing data
- To compress a dataset $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, all we need is the set of $K \ll D$ principal components, and the projections $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N]$ of each example

(a)

PCA: Approximate Reconstruction

Given the principal components u₁,..., u_K, the PCA approximation of an example x_n is:

$$\tilde{\mathbf{x}}_n = \sum_{i=1}^K (\mathbf{x}_n^\top \mathbf{u}_i) \mathbf{u}_i = \sum_{i=1}^K z_{ni} \mathbf{u}_i$$

where $\mathbf{z}_n = [z_{n1}, \dots, z_{nK}]$ is the low-dimensional projection of \mathbf{x}_n

- This gives us a way of compressing data
- To compress a dataset $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_N]$, all we need is the set of $K \ll D$ principal components, and the projections $\mathbf{Z} = [\mathbf{z}_1, \dots, \mathbf{z}_N]$ of each example

<ロ> (日) (日) (日) (日) (日)

- In many cases, N < D
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large

< ロ > < 同 > < 三 > < 三

- In many cases, N < D
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If N < D, at most N 1 eigenvalues are non-zero
 - The remaining D N + 1 eigenvalues are zero

< ロ > < 同 > < 三 > < 三

- In many cases, N < D
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If N < D, at most N 1 eigenvalues are non-zero
 The remaining D N + 1 eigenvalues are zero
- Fact: $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ has the same N 1 non-zero eigenvalues as that of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$ (for which eigen-decomposition is cheaper if N < D)

イロト イポト イヨト イヨト

- In many cases, N < D
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If N < D, at most N 1 eigenvalues are non-zero
 The remaining D N + 1 eigenvalues are zero
- Fact: $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ has the same N 1 non-zero eigenvalues as that of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$ (for which eigen-decomposition is cheaper if N < D)
- The eigenvectors aren't exactly the same (but still related)
- The relationship is $\mathbf{u}_i = \frac{1}{(N\lambda_i)^2} \mathbf{X} \mathbf{v}_i$
- { λ_i , \mathbf{v}_i } is an eigenvalue-eigenvector pair of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$, and \mathbf{u}_i is the corresponding eigenvector of $\mathbf{S} = \frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (that we want)

(CS5350/6350)

(a)

• Dimensionality reduction with label information (when the ultimate goal is classification/regression)

イロト イヨト イヨト イヨ

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
 - Only chooses directions of maximum variance

• • • • • • • • • • • •

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
 - Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
 - It's also called Linear Discriminant Analysis (LDA)

< ロ > < 同 > < 三 > < 三

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
 - Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
 - It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
 - Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
 - It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation
 - Examples from same class are put closely together by the projection

イロト イポト イヨト イヨ

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
 - Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
 - It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation
 - Examples from same class are put closely together by the projection
 - Examples from different classes are placed far apart by the projection

イロト イヨト イヨト イヨト

• PCA: magenta line, FDA: green line

PCA based projection makes the classes overlap (which is bad)
LDA/FDA is often better if the final goal is classification

イロト イヨト イヨト イ