Linear Dimensionality Reduction

Piyush Rai

CS5350/6350: Machine Learning
October 20, 2011

High-Dimensional Datasets Abound..

documents

MEG readings
gene expression data

High-Dimensional Datasets Abound..

documents

MEG readings
gene expression data

Goal: Find a low-dimensional, yet useful representation of the data

Why Dimensionality Reduction?

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
- Most algorithms scale badly with increasing data dimensionality

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
- Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
- Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)
- Note: Dimensionality Reduction is different from Feature Selection
- .. although the goals are kind of the same

Why Dimensionality Reduction?

- Insights into the low-dimensional structures in the data (visualization)
- Fewer dimensions \Rightarrow Less chances of overfitting \Rightarrow Better generalization
- Speeding up learning algorithms
- Most algorithms scale badly with increasing data dimensionality
- Less storage requirements (data compression)
- Note: Dimensionality Reduction is different from Feature Selection
- .. although the goals are kind of the same
- Dimensionality reduction is more like "Feature Extraction"
- Constructing a small set of new features from the original features

Linear Dimensionality Reduction

- Based on the idea of doing a linear projection of the data

Linear Dimensionality Reduction

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace

Linear Dimensionality Reduction

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^{D}$
- We want to project it down to a K-dimensional vector $\mathbf{z}(K \ll D)$

$$
\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}
$$

- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- \mathbf{U} is the $D \times K$ projection matrix (defining K projection directions)

Linear Dimensionality Reduction

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^{D}$
- We want to project it down to a K-dimensional vector $\mathbf{z}(K \ll D)$

$$
\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}
$$

- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- \mathbf{U} is the $D \times K$ projection matrix (defining K projection directions)
- Can also think of \mathbf{U} as defining a K-dimensional subspace

Linear Dimensionality Reduction

- Based on the idea of doing a linear projection of the data
- Works well if the data lies close to a linear subspace
- Consider a high dimensional example $\mathbf{x} \in \mathbb{R}^{D}$
- We want to project it down to a K-dimensional vector $\mathbf{z}(K \ll D)$

$$
\mathbf{z}=\mathbf{U}^{\top} \mathbf{x}
$$

- $\mathbf{z} \in \mathbb{R}^{K}$ is the projection
- \mathbf{U} is the $D \times K$ projection matrix (defining K projection directions)
- Can also think of \mathbf{U} as defining a K-dimensional subspace

- Different methods differ in how \mathbf{U} is defined/learned
- The differences depend on what properties of data we want to capture

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$
- Are we losing much information by throwing away x_{2} ?

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$
- Are we losing much information by throwing away x_{2} ?
- No. Most of the data spread is along x_{1} (very little variance along x_{2})

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$
- Are we losing much information by throwing away x_{2} ?

Dimensionality Reduction: A Simple Illustration

- Consider this 2 dimensional data
- Each example \mathbf{x} has 2 features $\left\{x_{1}, x_{2}\right\}$
- Consider ignoring the feature x_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{x_{1}\right\}$
- Are we losing much information by throwing away x_{2} ?
- Yes. The data has substantial variance along both features (i.e., both axes)

Dimensionality Reduction: A Simple Illustration

- Now consider a change of axes (the co-ordinate system)

Dimensionality Reduction: A Simple Illustration

- Now consider a change of axes (the co-ordinate system)
- Each example \mathbf{x} has 2 features $\left\{u_{1}, u_{2}\right\}$

Dimensionality Reduction: A Simple Illustration

- Now consider a change of axes (the co-ordinate system)
- Each example \mathbf{x} has 2 features $\left\{u_{1}, u_{2}\right\}$
- Consider ignoring the feature u_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{u_{1}\right\}$

Dimensionality Reduction: A Simple Illustration

- Now consider a change of axes (the co-ordinate system)
- Each example \mathbf{x} has 2 features $\left\{u_{1}, u_{2}\right\}$
- Consider ignoring the feature u_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{u_{1}\right\}$
- Are we losing much information by throwing away u_{2} ?

Dimensionality Reduction: A Simple Illustration

- Now consider a change of axes (the co-ordinate system)
- Each example \mathbf{x} has 2 features $\left\{u_{1}, u_{2}\right\}$
- Consider ignoring the feature u_{2} for each example
- Each 2-dimensional example \mathbf{x} now becomes 1-dimensional $\mathbf{x}=\left\{u_{1}\right\}$
- Are we losing much information by throwing away u_{2} ?
- No. Most of the data spread is along u_{1} (very little variance along u_{2})

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)
- Note: All principal components are orthogonal to each other

Principal Component Analysis (PCA)

- Used when we want projections capturing maximum variance directions
- Based on identifying the Principal Components in the data
- Principal Components (PC): Directions of maximum variability in the data
- Roughly speaking, PCA does a change of axes that represent the data

- First PC: Direction of the highest variability
- Second PC: Direction of next highest variability (orthogonal to the first PC)
- Subsequent PCs: Other directions of highest variability (in decreasing order)
- Note: All principal components are orthogonal to each other
- PCA: Take top K PC's and project the data along those

PCA: Finding the Principal Components

- Given: N examples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, each example $\mathbf{x}_{n} \in \mathbb{R}^{D}$
- Goal: Project the data from D dimensions to K dimensions $(K<D)$
- Want to capture the maximum possible variance in the projected data

PCA: Finding the Principal Components

- Given: N examples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, each example $\mathbf{x}_{n} \in \mathbb{R}^{D}$
- Goal: Project the data from D dimensions to K dimensions $(K<D)$
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{D}$ be the principal components, assumed to be:
- Orthogonal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{j}=0$ if $i \neq j$, Orthonormal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{i}=1$

PCA: Finding the Principal Components

- Given: N examples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, each example $\mathbf{x}_{n} \in \mathbb{R}^{D}$
- Goal: Project the data from D dimensions to K dimensions $(K<D)$
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{D}$ be the principal components, assumed to be:
- Orthogonal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{j}=0$ if $i \neq j$, Orthonormal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{i}=1$
- Each principal component is a vector of size $D \times 1$

PCA: Finding the Principal Components

- Given: N examples $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$, each example $\mathbf{x}_{n} \in \mathbb{R}^{D}$
- Goal: Project the data from D dimensions to K dimensions $(K<D)$
- Want to capture the maximum possible variance in the projected data
- Let $\mathbf{u}_{1}, \ldots, \mathbf{u}_{D}$ be the principal components, assumed to be:
- Orthogonal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{j}=0$ if $i \neq j$, Orthonormal: $\mathbf{u}_{i}^{\top} \mathbf{u}_{i}=1$
- Each principal component is a vector of size $D \times 1$
- We want only the first K principal components

PCA: Finding the Principal Components

- Projection of a data point \mathbf{x}_{n} along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \mathbf{x}_{n}$

PCA: Finding the Principal Components

- Projection of a data point \mathbf{x}_{n} along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \mathbf{x}_{n}$
- Projection of the mean $\overline{\mathbf{x}}$ along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \overline{\mathbf{x}}$ (where $\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$)

PCA: Finding the Principal Components

- Projection of a data point \mathbf{x}_{n} along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \mathbf{x}_{n}$
- Projection of the mean $\overline{\mathbf{x}}$ along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \overline{\mathbf{x}}$ (where $\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$)
- Variance of the projected data (along projection direction \mathbf{u}_{1}):

$$
\frac{1}{N} \sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\top} \mathbf{x}_{n}-\mathbf{u}_{1}^{\top} \overline{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}
$$

where \mathbf{S} is the data covariance matrix defined as

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\top}
$$

PCA: Finding the Principal Components

- Projection of a data point \mathbf{x}_{n} along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \mathbf{x}_{n}$
- Projection of the mean $\overline{\mathbf{x}}$ along $\mathbf{u}_{1}: \mathbf{u}_{1}^{\top} \overline{\mathbf{x}}$ (where $\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}$)
- Variance of the projected data (along projection direction \mathbf{u}_{1}):

$$
\frac{1}{N} \sum_{n=1}^{N}\left\{\mathbf{u}_{1}^{\top} \mathbf{x}_{n}-\mathbf{u}_{1}^{\top} \overline{\mathbf{x}}\right\}^{2}=\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}
$$

where \mathbf{S} is the data covariance matrix defined as

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\top}
$$

- Want to have \mathbf{u}_{1} that maximizes the projected data variance $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}$
- Subject to the constraint: $\mathbf{u}_{1}^{\top} \mathbf{u}_{1}=1$
- We will introduce a Lagrange multiplier λ_{1} for this constraint

PCA: Finding the Principal Components

- Objective function: $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right)$
- Taking derivative w.r.t. \mathbf{u}_{1} and setting it to zero gives:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

PCA: Finding the Principal Components

- Objective function: $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right)$
- Taking derivative w.r.t. \mathbf{u}_{1} and setting it to zero gives:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

- This is the eigenvalue equation
- \mathbf{u}_{1} must be an eigenvector of \mathbf{S} (and λ_{1} the corresponding eigenvalue)

PCA: Finding the Principal Components

- Objective function: $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right)$
- Taking derivative w.r.t. \mathbf{u}_{1} and setting it to zero gives:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

- This is the eigenvalue equation
- \mathbf{u}_{1} must be an eigenvector of \mathbf{S} (and λ_{1} the corresponding eigenvalue)
- But there are multiple eigenvectors of \mathbf{S}. Which one is \mathbf{u}_{1} ?

PCA: Finding the Principal Components

- Objective function: $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right)$
- Taking derivative w.r.t. \mathbf{u}_{1} and setting it to zero gives:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

- This is the eigenvalue equation
- \mathbf{u}_{1} must be an eigenvector of \mathbf{S} (and λ_{1} the corresponding eigenvalue)
- But there are multiple eigenvectors of \mathbf{S}. Which one is \mathbf{u}_{1} ?
- Consider $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}=\mathbf{u}_{1}^{\top} \lambda_{1} \mathbf{u}_{1}=\lambda_{1}$ (using $\mathbf{u}_{1}^{\top} \mathbf{u}_{1}=1$)
- We know that the projected data variance $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}=\lambda_{1}$ is maximum
- Thus λ_{1} should be the largest eigenvalue
- Thus \mathbf{u}_{1} is the first (top) eigenvector of \mathbf{S} (with eigenvalue λ_{1}) \Rightarrow the first principal component (direction of highest variance in the data)

PCA: Finding the Principal Components

- Objective function: $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}+\lambda_{1}\left(1-\mathbf{u}_{1}^{\top} \mathbf{u}_{1}\right)$
- Taking derivative w.r.t. \mathbf{u}_{1} and setting it to zero gives:

$$
\mathbf{S} \mathbf{u}_{1}=\lambda_{1} \mathbf{u}_{1}
$$

- This is the eigenvalue equation
- \mathbf{u}_{1} must be an eigenvector of \mathbf{S} (and λ_{1} the corresponding eigenvalue)
- But there are multiple eigenvectors of \mathbf{S}. Which one is \mathbf{u}_{1} ?
- Consider $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}=\mathbf{u}_{1}^{\top} \lambda_{1} \mathbf{u}_{1}=\lambda_{1}$ (using $\mathbf{u}_{1}^{\top} \mathbf{u}_{1}=1$)
- We know that the projected data variance $\mathbf{u}_{1}^{\top} \mathbf{S} \mathbf{u}_{1}=\lambda_{1}$ is maximum
- Thus λ_{1} should be the largest eigenvalue
- Thus \mathbf{u}_{1} is the first (top) eigenvector of \mathbf{S} (with eigenvalue λ_{1}) \Rightarrow the first principal component (direction of highest variance in the data)
- Subsequent PC's are given by the subsequent eigenvectors of \mathbf{S}

PCA: The Algorithm

- Compute the mean of the data

$$
\overline{\mathrm{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathrm{x}_{n}
$$

- Compute the sample covariance matrix (using the mean subtracted data)

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\top}
$$

- Do the eigenvalue decomposition of the $D \times D$ matrix \mathbf{S}
- Take the top K eigenvectors (corresponding to the top K eigenvalues)
- Call these $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$ (s.t. $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{K-1} \geq \lambda_{K}$)
- $\mathbf{U}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{K}\end{array}\right]$ is the projection matrix of size $D \times K$

PCA: The Algorithm

- Compute the mean of the data

$$
\overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}
$$

- Compute the sample covariance matrix (using the mean subtracted data)

$$
\mathbf{S}=\frac{1}{N} \sum_{n=1}^{N}\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{n}-\overline{\mathbf{x}}\right)^{\top}
$$

- Do the eigenvalue decomposition of the $D \times D$ matrix \mathbf{S}
- Take the top K eigenvectors (corresponding to the top K eigenvalues)
- Call these $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$ (s.t. $\lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{K-1} \geq \lambda_{K}$)
- $\mathbf{U}=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{K}\end{array}\right]$ is the projection matrix of size $D \times K$
- Projection of each example \mathbf{x}_{n} is computed as $\mathbf{z}_{n}=\mathbf{U}^{\top} \mathbf{x}_{n}$
- \mathbf{z}_{n} is a $K \times 1$ vector (also called the embedding of \mathbf{x}_{n})

PCA: Pictorially

- For a single example \mathbf{x}_{n} :

PCA: Pictorially

- For a single example \mathbf{x}_{n} :

- For a set of N examples:

PCA Example: Eigenfaces

- Principal Components learned using a face image dataset

PCA: Approximate Reconstruction

- Given the principal components $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$, the PCA approximation of an example \mathbf{x}_{n} is:

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{K}\left(\mathbf{x}_{n}^{\top} \mathbf{u}_{i}\right) \mathbf{u}_{i}=\sum_{i=1}^{K} z_{n i} \mathbf{u}_{i}
$$

where $\mathbf{z}_{n}=\left[z_{n 1}, \ldots, z_{n K}\right]$ is the low-dimensional projection of \mathbf{x}_{n}

PCA: Approximate Reconstruction

- Given the principal components $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$, the PCA approximation of an example \mathbf{x}_{n} is:

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{K}\left(\mathbf{x}_{n}^{\top} \mathbf{u}_{i}\right) \mathbf{u}_{i}=\sum_{i=1}^{K} z_{n i} \mathbf{u}_{i}
$$

where $\mathbf{z}_{n}=\left[z_{n 1}, \ldots, z_{n K}\right]$ is the low-dimensional projection of \mathbf{x}_{n}

- This gives us a way of compressing data
- To compress a dataset $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]$, all we need is the set of $K \ll D$ principal components, and the projections $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right]$ of each example

PCA: Approximate Reconstruction

- Given the principal components $\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}$, the PCA approximation of an example \mathbf{x}_{n} is:

$$
\tilde{\mathbf{x}}_{n}=\sum_{i=1}^{K}\left(\mathbf{x}_{n}^{\top} \mathbf{u}_{i}\right) \mathbf{u}_{i}=\sum_{i=1}^{K} z_{n i} \mathbf{u}_{i}
$$

where $\mathbf{z}_{n}=\left[z_{n 1}, \ldots, z_{n K}\right]$ is the low-dimensional projection of \mathbf{x}_{n}

- This gives us a way of compressing data
- To compress a dataset $\mathbf{X}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right]$, all we need is the set of $K \ll D$ principal components, and the projections $\mathbf{Z}=\left[\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right]$ of each example

X (DxN)
 U (DxK)

$($? \ldots 国 $) \approx($?

PCA for Very High Dimensional Data

- In many cases, $N<D$
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large

PCA for Very High Dimensional Data

- In many cases, $N<D$
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If $N<D$, at most $N-1$ eigenvalues are non-zero
- The remaining $D-N+1$ eigenvalues are zero

PCA for Very High Dimensional Data

- In many cases, $N<D$
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If $N<D$, at most $N-1$ eigenvalues are non-zero
- The remaining $D-N+1$ eigenvalues are zero
- Fact: $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ has the same $N-1$ non-zero eigenvalues as that of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$ (for which eigen-decomposition is cheaper if $N<D$)

PCA for Very High Dimensional Data

- In many cases, $N<D$
- Recall: PCA requires eigen-decomposition of $D \times D$ covariance matrix $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (assuming centered data, and \mathbf{X} being $D \times N$)
- Eigen-decomposition can be expensive if D is very large
- Fact: If $N<D$, at most $N-1$ eigenvalues are non-zero
- The remaining $D-N+1$ eigenvalues are zero
- Fact: $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ has the same $N-1$ non-zero eigenvalues as that of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$ (for which eigen-decomposition is cheaper if $N<D$)
- The eigenvectors aren't exactly the same (but still related)
- The relationship is $\mathbf{u}_{i}=\frac{1}{\left(N \lambda_{i}\right)^{2}} \mathbf{X} \mathbf{v}_{i}$
- $\left\{\lambda_{i}, \mathbf{v}_{i}\right\}$ is an eigenvalue-eigenvector pair of the $N \times N$ matrix $\frac{1}{N} \mathbf{X}^{\top} \mathbf{X}$, and \mathbf{u}_{i} is the corresponding eigenvector of $\mathbf{S}=\frac{1}{N} \mathbf{X} \mathbf{X}^{\top}$ (that we want)

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
- Only chooses directions of maximum variance

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
- Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
- It's also called Linear Discriminant Analysis (LDA)

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
- Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
- It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
- Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
- It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation
- Examples from same class are put closely together by the projection

Supervised Dimensionality Reduction

- Dimensionality reduction with label information (when the ultimate goal is classification/regression)
- PCA ignores label information even if it is available
- Only chooses directions of maximum variance
- Fisher Discriminant Analysis (FDA) takes into account the label information
- It's also called Linear Discriminant Analysis (LDA)
- FDA/LDA projects data while preserving class separation
- Examples from same class are put closely together by the projection
- Examples from different classes are placed far apart by the projection

PCA vs FDA/LDA

- PCA: magenta line, FDA: green line

- PCA based projection makes the classes overlap (which is bad)
- LDA/FDA is often better if the final goal is classification

