Nonlinear Dimensionality Reduction

Piyush Rai

CS5350/6350: Machine Learning

October 25, 2011
Recap: Linear Dimensionality Reduction

- Linear Dimensionality Reduction: Based on a linear projection of the data
- Assumes that the data lives close to a lower dimensional linear subspace

The data is projected onto that subspace
Recap: Linear Dimensionality Reduction

- Linear Dimensionality Reduction: Based on a linear projection of the data
- Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace

- Data \mathbf{X} is $N \times D$, Projection Matrix \mathbf{U} is $D \times K$, Projection \mathbf{Z} is $N \times K$

$$\mathbf{Z} = \mathbf{XU}$$
Recap: Linear Dimensionality Reduction

- Linear Dimensionality Reduction: Based on a linear projection of the data
- Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace

Data \mathbf{X} is $N \times D$, Projection Matrix \mathbf{U} is $D \times K$, Projection \mathbf{Z} is $N \times K$

\[\mathbf{Z} = \mathbf{XU} \]

Using $\mathbf{UU}^\top = \mathbf{I}$ (orthonormality of eigenvectors), we have:

\[\mathbf{X} = \mathbf{ZU}^\top \]
Recap: Linear Dimensionality Reduction

- Linear Dimensionality Reduction: Based on a linear projection of the data
- Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace

Data \mathbf{X} is $N \times D$, Projection Matrix \mathbf{U} is $D \times K$, Projection \mathbf{Z} is $N \times K$

$$\mathbf{Z} = \mathbf{XU}$$

Using $\mathbf{UU}^\top = \mathbf{I}$ (orthonormality of eigenvectors), we have:

$$\mathbf{X} = \mathbf{ZU}^\top$$

Linear dimensionality reduction does a matrix factorization of \mathbf{X}
Dimensionality Reduction as Matrix Factorization

- Matrix Factorization view helps reveal latent aspects about the data
 - In PCA, each principal component corresponds to a latent aspect
Examples: Netflix Movie-Ratings Data

- K principal components corresponds to K underlying genres
- Z denotes the extent each user likes different movie genres
Examples: Amazon Book-Ratings Data

- K principal components corresponds to K underlying genres
- Z denotes the extent each user likes different book genres
Examples: Identifying Topics in Document Collections

- K principal components corresponds to K underlying topics
- Z denotes the extent each topic is represented in a document
K principal components corresponds to K image templates (dictionary).

Z denotes the extent each dictionary element is represented in an image.
Nonlinear Dimensionality Reduction

Given: Low-dim. surface embedded nonlinearily in high-dim. space

Such a structure is called a **Manifold**
Nonlinear Dimensionality Reduction

- Given: Low-dim. surface embedded \textbf{nonlinearly} in high-dim. space
 - Such a structure is called a \textbf{Manifold}

- Goal: Recover the low-dimensional surface
Linear Projection may not be good enough..

- Consider the swiss-roll dataset (points lying close to a manifold)

- Linear projection methods (e.g., PCA) can't capture intrinsic nonlinearities
We want to do nonlinear projections
Different criteria could be used for such projections
Most nonlinear methods try to preserve the neighborhood information
- Locally linear structures (locally linear \Rightarrow globally nonlinear)
- Pairwise distances (along the nonlinear manifold)
Roughly translates to “unrolling” the manifold
Nonlinear Dimensionality Reduction

Two ways of doing it:
Nonlinear Dimensionality Reduction

Two ways of doing it:

- **Nonlinearize** a linear dimensionality reduction method. E.g.:
 - Kernel PCA (nonlinear PCA)
Nonlinear Dimensionality Reduction

Two ways of doing it:

- **Nonlinearize** a linear dimensionality reduction method. E.g.:
 - Kernel PCA (nonlinear PCA)

- Using **manifold based methods**. E.g.:
 - Locally Linear Embedding (LLE)
 - Isomap
 - Maximum Variance Unfolding
 - Laplacian Eigenmaps
 - And several others (Hessian LLE, Hessian Eigenmaps, etc.)
Given \(N \) observations \(\{x_1, \ldots, x_N\} \), \(\forall x_n \in \mathbb{R}^D \), define the \(D \times D \) covariance matrix (assuming centered data \(\sum_n x_n = 0 \))

\[
S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T
\]

Linear PCA: Compute eigenvectors \(u_i \) satisfying: \(Su_i = \lambda_i u_i \) \(\forall i = 1, \ldots, D \)
Kernel PCA

- Given N observations $\{\mathbf{x}_1, \ldots, \mathbf{x}_N\}$, $\forall \mathbf{x}_n \in \mathbb{R}^D$, define the $D \times D$ covariance matrix (assuming centered data $\sum_n x_n = 0$)

$$
\mathbf{S} = \frac{1}{N} \sum_{n=1}^N \mathbf{x}_n \mathbf{x}_n^\top
$$

- Linear PCA: Compute eigenvectors \mathbf{u}_i satisfying: $\mathbf{S}\mathbf{u}_i = \lambda_i \mathbf{u}_i \ \forall i = 1, \ldots, D$
- Consider a nonlinear transformation $\phi(\mathbf{x})$ of \mathbf{x} into an M dimensional space
Kernel PCA

Given \(N \) observations \(\{x_1, \ldots, x_N\} \), \(\forall x_n \in \mathbb{R}^D \), define the \(D \times D \) covariance matrix (assuming centered data \(\sum_n x_n = 0 \))

\[
S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^T
\]

Linear PCA: Compute eigenvectors \(u_i \) satisfying: \(Su_i = \lambda_i u_i \ \forall i = 1, \ldots, D \)

Consider a nonlinear transformation \(\phi(x) \) of \(x \) into an \(M \) dimensional space

\(M \times M \) covariance matrix in this space (assume centered data \(\sum_n \phi(x_n) = 0 \))

\[
C = \frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^T
\]
Kernel PCA

- Given N observations $\{x_1, \ldots, x_N\}$, $\forall x_n \in \mathbb{R}^D$, define the $D \times D$ covariance matrix (assuming centered data $\sum_n x_n = 0$)

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^\top$$

- Linear PCA: Compute eigenvectors u_i satisfying: $Su_i = \lambda_i u_i \ \forall i = 1, \ldots, D$

- Consider a nonlinear transformation $\phi(x)$ of x into an M dimensional space

- $M \times M$ covariance matrix in this space (assume centered data $\sum_n \phi(x_n) = 0$)

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^\top$$

- Kernel PCA: Compute eigenvectors v_i satisfying: $Cv_i = \lambda_i v_i \ \forall i = 1, \ldots, M$
Kernel PCA

- Given N observations $\{x_1, \ldots, x_N\}$, $\forall x_n \in \mathbb{R}^D$, define the $D \times D$ covariance matrix (assuming centered data $\sum_n x_n = 0$)

$$S = \frac{1}{N} \sum_{n=1}^{N} x_n x_n^\top$$

- Linear PCA: Compute eigenvectors u_i satisfying: $Su_i = \lambda_i u_i \ \forall i = 1, \ldots, D$

- Consider a nonlinear transformation $\phi(x)$ of x into an M dimensional space

- $M \times M$ covariance matrix in this space (assume centered data $\sum_n \phi(x_n) = 0$)

$$C = \frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^\top$$

- Kernel PCA: Compute eigenvectors v_i satisfying: $Cv_i = \lambda_i v_i \ \forall i = 1, \ldots, M$

- Ideally, we would like to do this without having to compute the $\phi(x_n)$'s
Kernel PCA

Kernel PCA: Compute eigenvectors v_i satisfying: $Cv_i = \lambda_i v_i$
Kernel PCA

- **Kernel PCA:** Compute eigenvectors \mathbf{v}_i satisfying: $\mathbf{C}\mathbf{v}_i = \lambda_i \mathbf{v}_i$
- Plugging in the expression for \mathbf{C}, we have the eigenvector equation:

$$\frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \{ \phi(x_n)^\top \mathbf{v}_i \} = \lambda_i \mathbf{v}_i$$
Kernel PCA

- **Kernel PCA**: Compute eigenvectors v_i satisfying: $Cv_i = \lambda_i v_i$

- Plugging in the expression for C, we have the eigenvector equation:

 $$
 \frac{1}{N} \sum_{n=1}^{N} \phi(x_n)\{\phi(x_n)\top v_i\} = \lambda_i v_i
 $$

- Using the above, we can write v_i as: $v_i = \sum_{n=1}^{N} a_{in} \phi(x_n)$
Kernel PCA

- **Kernel PCA**: Compute eigenvectors \(\mathbf{v}_i \) satisfying: \(\mathbf{C} \mathbf{v}_i = \lambda_i \mathbf{v}_i \)

- Plugging in the expression for \(\mathbf{C} \), we have the eigenvector equation:

\[
\frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \{ \phi(x_n)^\top \mathbf{v}_i \} = \lambda_i \mathbf{v}_i
\]

- Using the above, we can write \(\mathbf{v}_i \) as: \(\mathbf{v}_i = \sum_{n=1}^{N} a_{in} \phi(x_n) \)

- Plugging this back in the eigenvector equation:

\[
\frac{1}{N} \sum_{n=1}^{N} \phi(x_n) \phi(x_n)^\top \sum_{m=1}^{N} a_{im} \phi(x_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(x_n)
\]
Kernel PCA

- **Kernel PCA**: Compute eigenvectors \(\mathbf{v}_i \) satisfying: \(\mathbf{C} \mathbf{v}_i = \lambda_i \mathbf{v}_i \)
- Plugging in the expression for \(\mathbf{C} \), we have the eigenvector equation:

\[
\frac{1}{N} \sum_{n=1}^{N} \phi(x_n)\{\phi(x_n)^\top \mathbf{v}_i\} = \lambda_i \mathbf{v}_i
\]

Using the above, we can write \(\mathbf{v}_i \) as: \(\mathbf{v}_i = \sum_{n=1}^{N} a_{in} \phi(x_n) \)
- Plugging this back in the eigenvector equation:

\[
\frac{1}{N} \sum_{n=1}^{N} \phi(x_n)\phi(x_n)^\top \sum_{m=1}^{N} a_{im} \phi(x_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(x_n)
\]

- Pre-multiplying both sides by \(\phi(x_l)^\top \) and re-arranging:

\[
\frac{1}{N} \sum_{n=1}^{N} \phi(x_l)^\top \phi(x_n) \sum_{m=1}^{N} a_{im} \phi(x_n)^\top \phi(x_m) = \lambda_i \sum_{n=1}^{N} a_{in} \phi(x_l)^\top \phi(x_n)
\]
Using $\phi(x_n)^T \phi(x_m) = k(x_n, x_m)$, the eigenvector equation becomes:

$$\frac{1}{N} \sum_{n=1}^{N} k(x_l, x_n) \sum_{m=1}^{N} a_{im} k(x_n, x_m) = \lambda_i \sum_{n=1}^{N} a_{in} k(x_l, x_n)$$
Kernel PCA

Using $\phi(x_n)^T \phi(x_m) = k(x_n, x_m)$, the eigenvector equation becomes:

$$\frac{1}{N} \sum_{n=1}^{N} k(x_l, x_n) \sum_{m=1}^{N} a_{im} k(x_n, x_m) = \lambda_i \sum_{n=1}^{N} a_{in} k(x_l, x_n)$$

Define K as the $N \times N$ kernel matrix with $K_{nm} = k(x_n, x_m)$

- K is the similarity of two examples x_n and x_m in the ϕ space
- ϕ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define a_i as the $N \times 1$ vector with elements a_{in}
Kernel PCA

- Using $\phi(x_n)^\top \phi(x_m) = k(x_n, x_m)$, the eigenvector equation becomes:

$$\frac{1}{N} \sum_{n=1}^N k(x_l, x_n) \sum_{m=1}^N a_{im} k(x_n, x_m) = \lambda_i \sum_{n=1}^N a_{in} k(x_l, x_n)$$

- Define K as the $N \times N$ kernel matrix with $K_{nm} = k(x_n, x_m)$
 - K is the similarity of two examples x_n and x_m in the ϕ space
 - ϕ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

- Define a_i as the $N \times 1$ vector with elements a_{in}

- Using K and a_i, the eigenvector equation becomes:

$$K^2 a_i = \lambda_i N K a_i \quad \Rightarrow \quad K a_i = \lambda_i N a_i$$
Kernel PCA

- Using \(\phi(x_n)^T \phi(x_m) = k(x_n, x_m) \), the eigenvector equation becomes:

\[
\frac{1}{N} \sum_{n=1}^{N} k(x_l, x_n) \sum_{m=1}^{N} a_{im} k(x_n, x_m) = \lambda_i \sum_{n=1}^{N} a_{in} k(x_l, x_n)
\]

- Define \(K \) as the \(N \times N \) kernel matrix with \(K_{nm} = k(x_n, x_m) \)
 - \(K \) is the similarity of two examples \(x_n \) and \(x_m \) in the \(\phi \) space
 - \(\phi \) is implicitly defined by kernel function \(k \) (which can be, e.g., RBF kernel)
- Define \(a_i \) as the \(N \times 1 \) vector with elements \(a_{in} \)
- Using \(K \) and \(a_i \), the eigenvector equation becomes:

\[
K^2 a_i = \lambda_i N K a_i \quad \Rightarrow \quad K a_i = \lambda_i N a_i
\]

- This corresponds to the original Kernel PCA eigenvalue problem \(C v_i = \lambda_i v_i \)
- For a projection to \(K < D \) dimensions, top \(K \) eigenvectors of \(K \) are used
Kernel PCA: Centering the Data

- In PCA, we centered the data before computing the covariance matrix.
- For kernel PCA, we need to do the same.

\[\tilde{\phi}(x_n) = \phi(x_n) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l) \]
Kernel PCA: Centering the Data

- In PCA, we centered the data before computing the covariance matrix.
- For kernel PCA, we need to do the same.

\[\tilde{\phi}(x_n) = \phi(x_n) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l) \]

- How does it affect the kernel matrix \(K \) which is eigen-decomposed?

\[\tilde{K}_{nm} = \tilde{\phi}(x_n)^T \tilde{\phi}(x_m) \]
\[= \phi(x_n)^T \phi(x_m) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_n)^T \phi(x_l) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l)^T \phi(x_m) + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{l=1}^{N} \phi(x_j)^T \phi(x_l) \]
Kernel PCA: Centering the Data

- In PCA, we centered the data before computing the covariance matrix.
- For kernel PCA, we need to do the same.

\[\tilde{\phi}(x_n) = \phi(x_n) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l) \]

- How does it affect the kernel matrix \(K \) which is eigen-decomposed?

\[\tilde{K}_{nm} = \tilde{\phi}(x_n)^{\top} \tilde{\phi}(x_m) \]

\[= \phi(x_n)^{\top} \phi(x_m) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_n)^{\top} \phi(x_l) \]

\[- \frac{1}{N} \sum_{l=1}^{N} \phi(x_l)^{\top} \phi(x_m) + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{l=1}^{N} \phi(x_j)^{\top} \phi(x_l) \]

\[= k(x_n, x_m) - \frac{1}{N} \sum_{l=1}^{N} k(x_n, x_l) \]

\[- \frac{1}{N} \sum_{l=1}^{N} k(x_l, x_m) + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{l=1}^{N} k(x_j, x_l) \]
Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix.
For kernel PCA, we need to do the same.

$$\tilde{\phi}(x_n) = \phi(x_n) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l)$$

How does it affect the kernel matrix K which is eigen-decomposed?

$$\tilde{K}_{nm} = \tilde{\phi}(x_n)^T \tilde{\phi}(x_m)$$

$$= \phi(x_n)^T \phi(x_m) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_n)^T \phi(x_l) - \frac{1}{N} \sum_{l=1}^{N} \phi(x_l)^T \phi(x_m) + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{l=1}^{N} \phi(x_j)^T \phi(x_l)$$

$$= k(x_n, x_m) - \frac{1}{N} \sum_{l=1}^{N} k(x_n, x_l) - \frac{1}{N} \sum_{l=1}^{N} k(x_l, x_m) + \frac{1}{N^2} \sum_{j=1}^{N} \sum_{l=1}^{N} k(x_l, x_l)$$

In matrix notation, the centered $\tilde{K} = K - 1_N K - K 1_N + 1_N K 1_N$

1_N is the $N \times N$ matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix \tilde{K}.
Kernel PCA: The Projection

- Suppose \(\{a_1, \ldots, a_K\} \) are the top \(K \) eigenvectors of kernel matrix \(\tilde{K} \).
- The \(K \)-dimensional KPCA projection \(z = [z_1, \ldots, z_K] \) of a point \(x \):

\[
z_i = \phi(x)^\top v_i
\]
Kernel PCA: The Projection

Suppose \{a_1, \ldots, a_K\} are the top \(K\) eigenvectors of kernel matrix \(\tilde{K}\).

The \(K\)-dimensional KPCA projection \(z = [z_1, \ldots, z_K]\) of a point \(x\):

\[
z_i = \phi(x)^\top v_i
\]

Recall the definition of \(v_i\):

\[
v_i = \sum_{n=1}^{N} a_{in} \phi(x_n)
\]
Kernel PCA: The Projection

- Suppose \(\{a_1, \ldots, a_K\} \) are the top \(K \) eigenvectors of kernel matrix \(\tilde{K} \)
- The \(K \)-dimensional KPCA projection \(z = [z_1, \ldots, z_K] \) of a point \(x \):

\[
z_i = \phi(x)^\top v_i
\]

- Recall the definition of \(v_i \):

\[
v_i = \sum_{n=1}^{N} a_{in} \phi(x_n)
\]

- Thus

\[
z_i = \phi(x)^\top v_i = \sum_{n=1}^{N} a_{in} k(x, x_n)
\]
Manifold Based Methods

- **Locally Linear Embedding (LLE)**
- **Isomap**
- **Maximum Variance Unfolding**
- **Laplacian Eigenmaps**
- And several others (Hessian LLE, Hessian Eigenmaps, etc.)
Locally Linear Embedding

- Based on a simple geometric intuition of local linearity
- Assume each example and its neighbors lie on or close to a locally linear patch of the manifold
- LLE assumption: Projection should preserve the neighborhood
 - Projected point should have the same neighborhood as the original point
Locally Linear Embedding: The Algorithm

- Given D dim. data $\{x_1, \ldots, x_N\}$, compute K dim. projections $\{z_1, \ldots, z_N\}$
- For each example x_i, find its L nearest neighbors
- Assume x_i to be a weighted linear combination of the L nearest neighbors
 \[x_i \approx \sum_{j \in \mathcal{N}_i} W_{ij} x_j \quad \text{(so the data is assumed locally linear)} \]
- Find the weights by solving the following least-squares problem:
 \[
 W = \arg\min_W \sum_{i=1}^N \|x_i - \sum_{j \in \mathcal{N}_i} W_{ij} x_j\|^2
 \quad \text{s.t. } \forall i \sum_j W_{ij} = 1
 \]
- \mathcal{N}_i are the L nearest neighbors of x_i (note: should choose $L \geq K + 1$)
Locally Linear Embedding: The Algorithm

- Given \(D \) dim. data \(\{x_1, \ldots, x_N\} \), compute \(K \) dim. projections \(\{z_1, \ldots, z_N\} \)
- For each example \(x_i \), find its \(L \) nearest neighbors
- Assume \(x_i \) to be a \textit{weighted linear combination} of the \(L \) nearest neighbors
 \[
x_i \approx \sum_{j \in N_i} W_{ij} x_j \quad \text{(so the data is assumed locally linear)}
 \]
- Find the weights by solving the following least-squares problem:
 \[
 W = \arg \min_W \sum_{i=1}^N \| x_i - \sum_{j \in N_i} W_{ij} x_j \|^2 \quad \text{s.t.} \forall i \sum_j W_{ij} = 1
 \]
 \(N_i \) are the \(L \) nearest neighbors of \(x_i \) (note: should choose \(L \geq K + 1 \))
- Use \(W \) to compute low dim. projections \(Z = \{z_1, \ldots, z_N\} \) by solving:
 \[
 Z = \arg \min_Z \sum_{i=1}^N \| z_i - \sum_{j \in N} W_{ij} z_j \|^2 \quad \text{s.t.} \forall i \sum_{j=1}^N z_i = 0, \quad \frac{1}{N} Z Z^\top = I
 \]
Locally Linear Embedding: The Algorithm

- Given D dim. data $\{x_1, \ldots, x_N\}$, compute K dim. projections $\{z_1, \ldots, z_N\}$
- For each example x_i, find its L nearest neighbors
- Assume x_i to be a weighted linear combination of the L nearest neighbors
 \[x_i \approx \sum_{j \in \mathcal{N}_i} W_{ij} x_j \] \hspace{1cm} (so the data is assumed locally linear)
- Find the weights by solving the following least-squares problem:
 \[
 W = \arg \min_W \sum_{i=1}^N \left\| x_i - \sum_{j \in \mathcal{N}_i} W_{ij} x_j \right\|^2 \hspace{1cm} \text{s.t. } \forall i \sum_j W_{ij} = 1
 \]
- \mathcal{N}_i are the L nearest neighbors of x_i (note: should choose $L \geq K + 1$)
- Use W to compute low dim. projections $Z = \{z_1, \ldots, z_N\}$ by solving:
 \[
 Z = \arg \min_Z \sum_{i=1}^N \left\| z_i - \sum_{j \in \mathcal{N}} W_{ij} z_j \right\|^2 \hspace{1cm} \text{s.t. } \forall i \sum_{j=1}^N z_j = 0, \quad \frac{1}{N} ZZ^\top = I
 \]
- Refer to the LLE reading (appendix A and B) for the details of these steps
LLE: Examples
Isometric Feature Mapping (Isomap)

A graph based algorithm based on constructing a matrix of geodesic distances
Isometric Feature Mapping (Isomap)

A **graph based algorithm** based on constructing a matrix of **geodesic distances**

- Identify the L nearest neighbors for each data point (just like LLE)
- Connect each point to all its neighbors (an edge for each neighbor)
- Assign weight to each edge based on the Euclidean distance
- Estimate the geodesic distance d_{ij} between any two data points i and j
 - Approximated by the sum of arc lengths along the shortest path between i and j in the graph (can be computed using Djikstras algorithm)
Isometric Feature Mapping (Isomap)

A graph based algorithm based on constructing a matrix of geodesic distances

- Identify the L nearest neighbors for each data point (just like LLE)
- Connect each point to all its neighbors (an edge for each neighbor)
- Assign weight to each edge based on the Euclidean distance
- Estimate the geodesic distance d_{ij} between any two data points i and j
 - Approximated by the sum of arc lengths along the shortest path between i and j in the graph (can be computed using Dijkstra's algorithm)
- Construct the $N \times N$ distance matrix $D = \{d_{ij}^2\}$
Isomap (Contd.)

- Use the distance matrix \(D \) to construct the Gram Matrix

\[
G = -\frac{1}{2} HDH
\]

where \(G \) is \(N \times N \) and

\[
H = I - \frac{1}{N} 11^\top
\]

\(I \) is \(N \times N \) identity matrix, \(1 \) is \(N \times 1 \) vector of 1s
Isomap (Contd.)

- Use the distance matrix D to construct the Gram Matrix

$$G = -\frac{1}{2}HDH$$

where G is $N \times N$ and

$$H = I - \frac{1}{N}11^\top$$

I is $N \times N$ identity matrix, 1 is $N \times 1$ vector of 1s

- Do an eigen decomposition of G
- Let the eigenvectors be $\{v_1, \ldots, v_N\}$ with eigenvalues $\{\lambda_1, \ldots, \lambda_N\}$
 - Each eigenvector v_i is N-dimensional: $v_i = [v_{1i}, v_{2i}, \ldots, v_{Ni}]$
- Take the top K eigenvalue/eigenvectors
Isomap (Contd.)

- Use the distance matrix D to construct the Gram Matrix

$$G = -\frac{1}{2}HDH$$

where G is $N \times N$ and

$$H = I - \frac{1}{N}11^\top$$

I is $N \times N$ identity matrix, 1 is $N \times 1$ vector of 1s

- Do an eigen decomposition of G

- Let the eigenvectors be $\{v_1, \ldots, v_N\}$ with eigenvalues $\{\lambda_1, \ldots, \lambda_N\}$
 - Each eigenvector v_i is N-dimensional: $v_i = [v_{1i}, v_{2i}, \ldots, v_{Ni}]$

- Take the top K eigenvalue/eigenvectors

- The K dimensional embedding $z_i = [z_{i1}, z_{i2}, \ldots, z_{iK}]$ of a point x_i:

$$z_{ik} = \sqrt{\lambda_k}v_{ki}$$
Isomap: Example

Digit images projected down to 2 dimensions
Isomap: Example

Face images with varying poses