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Recap: Linear Dimensionality Reduction

Linear Dimensionality Reduction: Based on a linear projection of the data

Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace
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Recap: Linear Dimensionality Reduction

Linear Dimensionality Reduction: Based on a linear projection of the data

Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace

Data X is N × D, Projection Matrix U is D × K , Projection Z is N × K

Z = XU

Using UU⊤ = I (orthonormality of eigenvectors), we have:

X = ZU⊤
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Recap: Linear Dimensionality Reduction

Linear Dimensionality Reduction: Based on a linear projection of the data

Assumes that the data lives close to a lower dimensional linear subspace

The data is projected on to that subspace

Data X is N × D, Projection Matrix U is D × K , Projection Z is N × K

Z = XU

Using UU⊤ = I (orthonormality of eigenvectors), we have:

X = ZU⊤

Linear dimensionality reduction does a matrix factorization of X
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Dimensionality Reduction as Matrix Factorization

Matrix Factorization view helps reveal latent aspects about the data

In PCA, each principal component corresponds to a latent aspect
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Examples: Netflix Movie-Ratings Data

K principal components corresponds to K underlying genres

Z denotes the extent each user likes different movie genres
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Examples: Amazon Book-Ratings Data

K principal components corresponds to K underlying genres

Z denotes the extent each user likes different book genres
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Examples: Identifying Topics in Document Collections

K principal components corresponds to K underlying topics

Z denotes the extent each topic is represented in a document
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Examples: Image Dictionary (Template) Learning

K principal components corresponds to K image templates (dictionary)

Z denotes the extent each dictionary element is represented in an image
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Nonlinear Dimensionality Reduction

Given: Low-dim. surface embedded nonlinearly in high-dim. space

Such a structure is called a Manifold
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Nonlinear Dimensionality Reduction

Given: Low-dim. surface embedded nonlinearly in high-dim. space

Such a structure is called a Manifold

Goal: Recover the low-dimensional surface
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Linear Projection may not be good enough..

Consider the swiss-roll dataset (points lying close to a manifold)

Linear projection methods (e.g., PCA) can’t capture intrinsic nonlinearities
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Nonlinear Dimensionality Reduction

We want to do nonlinear projections

Different criteria could be used for such projections

Most nonlinear methods try to preserve the neighborhood information

Locally linear structures (locally linear ⇒ globally nonlinear)
Pairwise distances (along the nonlinear manifold)

Roughly translates to “unrolling” the manifold
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Nonlinear Dimensionality Reduction

Two ways of doing it:
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Nonlinear Dimensionality Reduction

Two ways of doing it:

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)
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Nonlinear Dimensionality Reduction

Two ways of doing it:

Nonlinearize a linear dimensionality reduction method. E.g.:

Kernel PCA (nonlinear PCA)

Using manifold based methods. E.g.:

Locally Linear Embedding (LLE)

Isomap

Maximum Variance Unfolding

Laplacian Eigenmaps

And several others (Hessian LLE, Hessian Eigenmaps, etc.)
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Kernel PCA

Given N observations {x1, . . . , xN}, ∀xn ∈ R
D , define the D × D covariance

matrix (assuming centered data
∑

n
xn = 0)

S =
1

N

N
∑

n=1

xnx
⊤
n

Linear PCA: Compute eigenvectors ui satisfying: Sui = λiui ∀i = 1, . . . ,D
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Kernel PCA

Given N observations {x1, . . . , xN}, ∀xn ∈ R
D , define the D × D covariance

matrix (assuming centered data
∑

n
xn = 0)

S =
1

N

N
∑
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xnx
⊤
n

Linear PCA: Compute eigenvectors ui satisfying: Sui = λiui ∀i = 1, . . . ,D

Consider a nonlinear transformation φ(x) of x into an M dimensional space
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Kernel PCA

Given N observations {x1, . . . , xN}, ∀xn ∈ R
D , define the D × D covariance

matrix (assuming centered data
∑

n
xn = 0)

S =
1

N

N
∑

n=1

xnx
⊤
n

Linear PCA: Compute eigenvectors ui satisfying: Sui = λiui ∀i = 1, . . . ,D

Consider a nonlinear transformation φ(x) of x into an M dimensional space

M ×M covariance matrix in this space (assume centered data
∑

n
φ(xn) = 0)

C =
1

N

N
∑

n=1

φ(xn)φ(xn)
⊤
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Kernel PCA

Given N observations {x1, . . . , xN}, ∀xn ∈ R
D , define the D × D covariance

matrix (assuming centered data
∑

n
xn = 0)

S =
1

N

N
∑

n=1

xnx
⊤
n

Linear PCA: Compute eigenvectors ui satisfying: Sui = λiui ∀i = 1, . . . ,D

Consider a nonlinear transformation φ(x) of x into an M dimensional space

M ×M covariance matrix in this space (assume centered data
∑

n
φ(xn) = 0)

C =
1

N

N
∑

n=1

φ(xn)φ(xn)
⊤

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi ∀i = 1, . . . ,M
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Kernel PCA

Given N observations {x1, . . . , xN}, ∀xn ∈ R
D , define the D × D covariance

matrix (assuming centered data
∑

n
xn = 0)

S =
1

N

N
∑

n=1

xnx
⊤
n

Linear PCA: Compute eigenvectors ui satisfying: Sui = λiui ∀i = 1, . . . ,D

Consider a nonlinear transformation φ(x) of x into an M dimensional space

M ×M covariance matrix in this space (assume centered data
∑

n
φ(xn) = 0)

C =
1

N

N
∑

n=1

φ(xn)φ(xn)
⊤

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi ∀i = 1, . . . ,M

Ideally, we would like to do this without having to compute the φ(xn)’s
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Kernel PCA

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi
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Kernel PCA

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi

Plugging in the expression for C, we have the eigenvector equation:

1

N

N∑

n=1

φ(xn){φ(xn)
⊤vi} = λivi
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Kernel PCA

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi

Plugging in the expression for C, we have the eigenvector equation:

1

N

N∑

n=1

φ(xn){φ(xn)
⊤vi} = λivi

Using the above, we can write vi as: vi =
∑N

n=1 ainφ(xn)
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Kernel PCA

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi

Plugging in the expression for C, we have the eigenvector equation:

1

N

N∑

n=1

φ(xn){φ(xn)
⊤vi} = λivi

Using the above, we can write vi as: vi =
∑N

n=1 ainφ(xn)

Plugging this back in the eigenvector equation:

1

N

N∑

n=1

φ(xn)φ(xn)
⊤

N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn)
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Kernel PCA

Kernel PCA: Compute eigenvectors vi satisfying: Cvi = λivi

Plugging in the expression for C, we have the eigenvector equation:

1

N

N∑

n=1

φ(xn){φ(xn)
⊤vi} = λivi

Using the above, we can write vi as: vi =
∑N

n=1 ainφ(xn)

Plugging this back in the eigenvector equation:

1

N

N∑

n=1

φ(xn)φ(xn)
⊤

N∑

m=1

aimφ(xm) = λi

N∑

n=1

ainφ(xn)

Pre-multiplying both sides by φ(xl)
⊤ and re-arranging

1

N

N∑

n=1

φ(xl)
⊤
φ(xn)

N∑

m=1

aimφ(xn)
⊤
φ(xm) = λi

N∑

n=1

ainφ(xl)
⊤
φ(xn)
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Kernel PCA

Using φ(xn)
⊤φ(xm) = k(xn, xm), the eigenvector equation becomes:

1

N

N∑

n=1

k(xl , xn)

N∑

m=1

aimk(xn, xm) = λi

N∑

n=1

aink(xl , xn)
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Kernel PCA

Using φ(xn)
⊤φ(xm) = k(xn, xm), the eigenvector equation becomes:

1

N

N∑

n=1

k(xl , xn)

N∑

m=1

aimk(xn, xm) = λi

N∑

n=1

aink(xl , xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space
φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define ai as the N × 1 vector with elements ain
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Kernel PCA

Using φ(xn)
⊤φ(xm) = k(xn, xm), the eigenvector equation becomes:

1

N

N∑

n=1

k(xl , xn)

N∑

m=1

aimk(xn, xm) = λi

N∑

n=1

aink(xl , xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space
φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define ai as the N × 1 vector with elements ain

Using K and ai , the eigenvector equation becomes:

K2ai = λiNKai ⇒ Kai = λiNai
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Kernel PCA

Using φ(xn)
⊤φ(xm) = k(xn, xm), the eigenvector equation becomes:

1

N

N∑

n=1

k(xl , xn)

N∑

m=1

aimk(xn, xm) = λi

N∑

n=1

aink(xl , xn)

Define K as the N × N kernel matrix with Knm = k(xn, xm)

K is the similarity of two examples xn and xm in the φ space
φ is implicitly defined by kernel function k (which can be, e.g., RBF kernel)

Define ai as the N × 1 vector with elements ain

Using K and ai , the eigenvector equation becomes:

K2ai = λiNKai ⇒ Kai = λiNai

This corresponds to the original Kernel PCA eigenvalue problem Cvi = λivi

For a projection to K < D dimensions, top K eigenvectors of K are used
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Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn) −
1

N

N∑

l=1

φ(xl )
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Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn) −
1

N

N∑

l=1

φ(xl )

How does it affect the kernel matrix K which is eigen-decomposed?

K̃nm = φ̃(xn)
⊤
φ̃(xm)

= φ(xn)
⊤
φ(xm) −

1

N

N∑

l=1

φ(xn)
⊤
φ(xl ) −

1

N

N∑

l=1

φ(xl )
⊤
φ(xm) +

1

N2

N∑

j=1

N∑

l=1

φ(xj )
⊤
φ(xl )
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Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn) −
1

N

N∑
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φ(xl )

How does it affect the kernel matrix K which is eigen-decomposed?
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⊤
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N
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1
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⊤
φ(xm) +

1
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N∑
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φ(xj )
⊤
φ(xl )

= k(xn, xm) −
1

N

N∑

l=1

k(xn, xl ) −
1

N

N∑

l=1

k(xl , xm) +
1

N2

N∑

j=1

N∑
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k(xl , xl )
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Kernel PCA: Centering the Data

In PCA, we centered the data before computing the covariance matrix

For kernel PCA, we need to do the same

φ̃(xn) = φ(xn) −
1

N

N∑

l=1

φ(xl )

How does it affect the kernel matrix K which is eigen-decomposed?

K̃nm = φ̃(xn)
⊤
φ̃(xm)

= φ(xn)
⊤
φ(xm) −

1

N

N∑

l=1

φ(xn)
⊤
φ(xl ) −

1

N

N∑

l=1

φ(xl )
⊤
φ(xm) +

1

N2

N∑

j=1

N∑

l=1

φ(xj )
⊤
φ(xl )

= k(xn, xm) −
1

N

N∑

l=1

k(xn, xl ) −
1

N

N∑

l=1

k(xl , xm) +
1

N2

N∑

j=1

N∑

l=1

k(xl , xl )

In matrix notation, the centered K̃ = K− 1NK−K1N + 1NK1N

1N is the N × N matrix with every element = 1/N

Eigen-decomposition is then done for the centered kernel matrix K̃
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Kernel PCA: The Projection

Suppose {a1, . . . , aK} are the top K eigenvectors of kernel matrix K̃

The K -dimensional KPCA projection z = [z1, . . . , zK ] of a point x:

zi = φ(x)⊤vi
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Kernel PCA: The Projection

Suppose {a1, . . . , aK} are the top K eigenvectors of kernel matrix K̃

The K -dimensional KPCA projection z = [z1, . . . , zK ] of a point x:

zi = φ(x)⊤vi

Recall the definition of vi

vi =

N
∑

n=1

ainφ(xn)
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Kernel PCA: The Projection

Suppose {a1, . . . , aK} are the top K eigenvectors of kernel matrix K̃

The K -dimensional KPCA projection z = [z1, . . . , zK ] of a point x:

zi = φ(x)⊤vi

Recall the definition of vi

vi =

N
∑

n=1

ainφ(xn)

Thus

zi = φ(x)⊤vi =

N
∑

n=1

aink(x, xn)
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Manifold Based Methods

Locally Linear Embedding (LLE)

Isomap

Maximum Variance Unfolding

Laplacian Eigenmaps

And several others (Hessian LLE, Hessian Eigenmaps, etc.)
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Locally Linear Embedding

Based on a simple geometric intuition of local linearity

Assume each example and its neighbors lie on or close to a locally linear
patch of the manifold

LLE assumption: Projection should preserve the neighborhood

Projected point should have the same neighborhood as the original point
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Locally Linear Embedding: The Algorithm

Given D dim. data {x1, . . . , xN}, compute K dim. projections {z1, . . . , zN}

For each example xi , find its L nearest neighbors

Assume xi to be a weighted linear combination of the L nearest neighbors

xi ≈
∑

j∈N

Wijxj (so the data is assumed locally linear)

Find the weights by solving the following least-squares problem:

W = arg min
W

N∑

i=1

||xi −
∑

j∈Ni

Wijxj ||
2

s.t.∀i
∑

j

Wij = 1

Ni are the L nearest neighbors of xi (note: should choose L ≥ K + 1)
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Locally Linear Embedding: The Algorithm

Given D dim. data {x1, . . . , xN}, compute K dim. projections {z1, . . . , zN}

For each example xi , find its L nearest neighbors

Assume xi to be a weighted linear combination of the L nearest neighbors

xi ≈
∑

j∈N

Wijxj (so the data is assumed locally linear)

Find the weights by solving the following least-squares problem:

W = arg min
W

N∑

i=1

||xi −
∑

j∈Ni

Wijxj ||
2

s.t.∀i
∑

j

Wij = 1

Ni are the L nearest neighbors of xi (note: should choose L ≥ K + 1)

Use W to compute low dim. projections Z = {z1, . . . , zN} by solving:

Z = arg min
Z

N∑

i=1

||zi −
∑

j∈N

Wijzj ||
2

s.t.∀i

N∑

i=1

zi = 0,
1

N
ZZ

⊤
= I
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Locally Linear Embedding: The Algorithm

Given D dim. data {x1, . . . , xN}, compute K dim. projections {z1, . . . , zN}

For each example xi , find its L nearest neighbors

Assume xi to be a weighted linear combination of the L nearest neighbors

xi ≈
∑

j∈N

Wijxj (so the data is assumed locally linear)

Find the weights by solving the following least-squares problem:

W = arg min
W

N∑

i=1

||xi −
∑

j∈Ni

Wijxj ||
2

s.t.∀i
∑

j

Wij = 1

Ni are the L nearest neighbors of xi (note: should choose L ≥ K + 1)

Use W to compute low dim. projections Z = {z1, . . . , zN} by solving:

Z = arg min
Z

N∑

i=1

||zi −
∑

j∈N

Wijzj ||
2

s.t.∀i

N∑

i=1

zi = 0,
1

N
ZZ

⊤
= I

Refer to the LLE reading (appendix A and B) for the details of these steps
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LLE: Examples

(CS5350/6350) Nonlinear Dimensionality Reduction October 25, 2011



Isometric Feature Mapping (Isomap)

A graph based algorithm based on constructing a matrix of geodesic distances

(CS5350/6350) Nonlinear Dimensionality Reduction October 25, 2011



Isometric Feature Mapping (Isomap)

A graph based algorithm based on constructing a matrix of geodesic distances

Identify the L nearest neighbors for each data point (just like LLE)

Connect each point to all its neighbors (an edge for each neighbor)

Assign weight to each edge based on the Euclidean distance

Estimate the geodesic distance dij between any two data points i and j

Approximated by the sum of arc lengths along the shortest path between i and
j in the graph (can be computed using Djikstras algorithm)
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Isometric Feature Mapping (Isomap)

A graph based algorithm based on constructing a matrix of geodesic distances

Identify the L nearest neighbors for each data point (just like LLE)

Connect each point to all its neighbors (an edge for each neighbor)

Assign weight to each edge based on the Euclidean distance

Estimate the geodesic distance dij between any two data points i and j

Approximated by the sum of arc lengths along the shortest path between i and
j in the graph (can be computed using Djikstras algorithm)

Construct the N × N distance matrix D = {d2
ij}
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Isomap (Contd.)

Use the distance matrix D to construct the Gram Matrix

G = −
1

2
HDH

where G is N × N and

H = I−
1

N
11⊤

I is N × N identity matrix, 1 is N × 1 vector of 1s
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Isomap (Contd.)

Use the distance matrix D to construct the Gram Matrix

G = −
1

2
HDH

where G is N × N and

H = I−
1

N
11⊤

I is N × N identity matrix, 1 is N × 1 vector of 1s

Do an eigen decomposition of G

Let the eigenvectors be {v1, . . . , vN} with eigenvalues {λ1, . . . , λN}

Each eigenvector vi is N-dimensional: vi = [v1i , v2i , . . . , vNi ]

Take the top K eigenvalue/eigenvectors
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Isomap (Contd.)

Use the distance matrix D to construct the Gram Matrix

G = −
1

2
HDH

where G is N × N and

H = I−
1

N
11⊤

I is N × N identity matrix, 1 is N × 1 vector of 1s

Do an eigen decomposition of G

Let the eigenvectors be {v1, . . . , vN} with eigenvalues {λ1, . . . , λN}

Each eigenvector vi is N-dimensional: vi = [v1i , v2i , . . . , vNi ]

Take the top K eigenvalue/eigenvectors

The K dimensional embedding zi = [zi1, zi2, . . . , ziK ] of a point xi :

zik =
√

λkvki
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Isomap: Example

Digit images projected down to 2 dimensions

(CS5350/6350) Nonlinear Dimensionality Reduction October 25, 2011



Isomap: Example

Face images with varying poses
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