CIS2166 - Schedule and Homework Assignments

Fall 2015

Dr. Longin Jan Latecki        TA: David Dobor

Section

Topic

Problems

Class date

3.1

Algorithms

+13, 16, +34, +41, 42 (due Sep. 4)

Aug. 25

3.2

Growth of Functions

+1, +2, 10, 12, 14 (due Sep. 4)

Aug. 27

3.3

Complexity of Algorithms

2, 4, +13, 14, 44 (due Sep. 4)

Sep. 1

3.3

Complexity of Algorithms

 

Sep. 3

5.1

Mathematical Induction

6, +18, +19, 20, 22 (due Sep. 11)

Sep. 8

5.2

Strong Induction

12 (due Sep. 11)

Sep. 10

5.3,
5.4

Recursive Definition,
Recursive Algorithms

5.3: +1, +2, 24, 44 (due Sep. 18);
5.4: 8, 10, 16, (due Sep. 18)

Sep. 15

10.3

Representing Graphs

+6, +8, 10, 12, +17, 34, 36 (due Sep. 24)

Sep. 17

10.4

Connectivity

2, +3, 4, +5, 10, +19, 20, 32, 56, 58 (due Sep. 24)

Sep. 22

10.5

Euler and Hamilton Paths

+1, 2, 10, 18, 28, 30, 32, 54 (due Oct. 2)

Sep. 24

10.6

Shortest Path

2, +3, 6(a), 6(c), 18 (due Oct. 2)

Sep. 29

10.7

Planar Graphs

+2, 4, 6, 12, 14, 20 (due Oct. 2)

Oct. 1

10.8

Graph Coloring and Matching in Graphs

10.8: 2, 4, 6, +17, 18 (due Oct. 9)

Oct. 6

 

Review: Example Questions

 

Oct. 8

 

Midterm exam

 

Oct. 13

 

Matrix Algebra 1, Google PageRank

hwM1 (due Oct. 16)

Oct. 15

 

Midterm discussion

 

Oct. 20

 

Google PageRank, notes

In PageRank: 1, 5, 7, 11 (due Oct. 23)

Oct. 22

 

Matrix Algebra 2
Linear Equations, VL1, VL2

hwM2 (due Oct. 30)

Oct. 27

 

Matrix Algebra 2

 

Oct. 29

 

Matrix Algebra 2

hwM3 (due Nov 6)

Nov. 3

 

Matrix Algebra 2, Eigenppt,
Eigenvalues and Eigenvectors VL21

 

Nov. 5

13.1

Modeling Computation

+1, 2, +3, 4, 18, 20 (due Nov 13)

Nov. 10

13.1

Modeling Computation

 

Nov. 12

13.2

Finite State Machines with Output, notes

13.2: +1, 2, +3, 4, 10 (due Nov 20)

Nov. 17

13.3

Finite State Machines with No Output

+1, +5, +9, 10, 12, 16, 18, 24 (due Nov 20)

Nov. 19

13.5

Turing Machine

+1, 2, +3, 4, 8, 10, 12 (due Dec 4)

Dec. 1

 

Review: Example Questions

 

Dec. 3

 

Final Exam

Time:  10:30 - 12:30

Dec. 15

 

VL stands for Video Lecture from http://web.mit.edu/18.06/www/videos.shtml
based on Matrix Algebra part based on Gilbert Strang, Introduction to Linear Algebra, 4th Edition, 2009