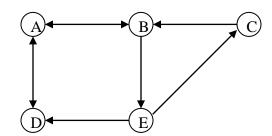
1. (a) Let a directed graph G_1 be given.



Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b

Yes [simple circuit length] No

a, d, a, d, a

Yes [simple circuit length] No

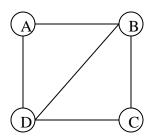
a, d, e, b, a

Yes [simple circuit length] No

a, b, e, c, b, a

Yes [simple circuit length] No

(b) For the simple graph G_2

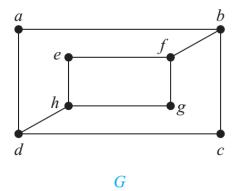


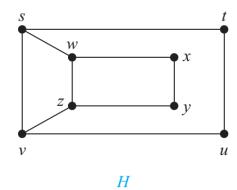
Find M², where M is the adjacency matrix of G₂

Find the number of paths from A to D in G_2 of length 2.

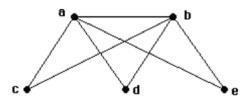
2. Let f(n) = 1 + 2 + 3 + ... + n. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses C and k.

3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.



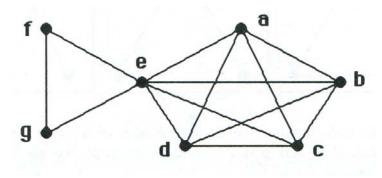


4. Is the following graph planar? If so draw it without any edges crossing. If it is not, prove that it is not planar.



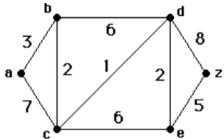
5.

- (a) Is there an Euler circuit in the following graph? If so, find such a circuit. If not, explain why no such circuit exists.
- (b) Is there a Hamilton circuit in the following graph? If so, find such a circuit. If not, prove why no such circuit exists.



6. Let $f(n) = 3n^2 + 8n + 7$. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph.



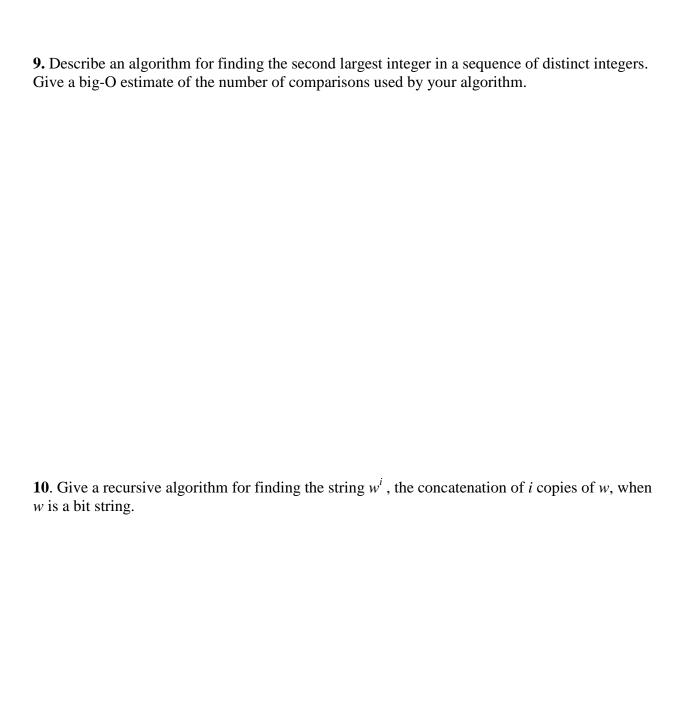
а	b	С	d	e	z	S
0	∞	∞	∞	∞	∞	а
X						
X						
X						
X						
X						
X						
X						
X						

8 . How many vertices and how many edges does each of the following graphs have? What is the chromatic number of each of the graphs? Explain your answers.
(a) K_5

(b) C₄

(c) W₅

(d) K_{2,5}



- 11. Give a recursive definition of
- a) the set of odd positive integers.
- b) the set of positive integer powers of 3.
- c) the set of polynomials with integer coefficients.

12. Let *S* be the subset of the set of ordered pairs of integers defined recursively by *Basis step:* $(0, 0) \in S$.

Recursive step: If $(a, b) \in S$, then $(a + 2, b + 3) \in S$ and $(a + 3, b + 2) \in S$.

- a) List the elements of S produced by the first two applications of the recursive definition.
- **b)** Use structural induction to show that $5 \mid a + b$ when $(a, b) \in S$.