CIS 2166

HW11 Matrix Algebra

+1 . Matrix operations.
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$,
$B=\left[\begin{array}{lll}4 & 3 & 2 \\ 2 & 3 & 4\end{array}\right]$,
$C=\left[\begin{array}{l}5 \\ 4 \\ 3\end{array}\right]$,
$D=\left[\begin{array}{lll}9 & 6 & 5 \\ 8 & 4 & 3 \\ 7 & 2 & 1\end{array}\right], E=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$

What is:
$A+2 B$
$(A-B)^{\top}$
$B^{*} B^{*} C$
$C^{*} C^{\top}$
$C^{\top}{ }^{\top} \mathrm{C}$
D*A
A*D*
$C^{\top} * D$
$D+D^{\top}$
$\left(D+D^{T}\right)^{\top}$
D*D
$D^{\top} * D$
2. You can easily manipulate with rows and columns of a matrix by multiplying it with another matrix.

You will see how by answering the following questions.
a) Show that multiplying D from left with $E, E^{*} D$, transforms matrix D such that its first row is multiplied by two, and its second and third rows are swapped.
b) How does multiplying D from right with $E, D^{*} E$, transform matrix D ?
c) Create matrix E, such that multiplying D from left with $E, E^{*} D$, transforms D such that its second row is divided by 2 and its first and third rows are swapped.
d) Create matrix E, such that multiplying D from left with $E, E^{*} D$, transforms D such that its second row is the original second row minus the original first row of D.

