CIS 2166

HW 13: Matrix Algebra part 2

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right], \quad B=\left[\begin{array}{lll}
4 & 3 & 2 \\
2 & 3 & 4
\end{array}\right], \quad C=\left[\begin{array}{l}
5 \\
4 \\
3
\end{array}\right], \quad D=\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & 3 & 3 \\
-6 & 2 & 1
\end{array}\right], \quad E=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \quad F=\left[\begin{array}{ccc}
2 & 1 & 0 \\
4 & 3 & 3 \\
-6 & -2 & 3
\end{array}\right],
$$

1. Use method of Gaussian elimination to find x for the system of linear equations $E^{*} x=C$. Solve by hand.
2. Use method of Gaussian elimination to find x for the system of linear equations $F^{*} x=C$. Solve by hand.
3. What is rank of matrices A, B, D and F ? Hint: use Gaussian elimination.
4. Use method of Gaussian elimination to find inverse of matrix D, E, F. Solve by hand.
5. Compute $\operatorname{Tr}(\mathrm{D})$ (trace of matrix D$), \operatorname{Tr}(\mathrm{A})$
6. Find the determinants of D, E, F using the Sarrus formula.
7. Use method of Gaussian elimination to find $\operatorname{det}(D), \operatorname{det}(E)$, $\operatorname{det}(F)$. Solve by hand.
8. If A and B are any symmetric matrices $\left(A^{\top}=A, B^{\top}=B\right)$, show that $A^{*} B=\left(B^{*} A\right)^{\top}$
