CIS2166 - Schedule and Homework Assignments

Fall 2016

Dr. Longin Jan Latecki        TA: REN-HAU HOWARD LIU

Section

Topic

Problems

Class date

3.1

Algorithms

+13, 16, +34, +41, 42 (due Sep. 9)

Aug. 30

3.2

Growth of Functions

+1, +2, 10, 12, 14 (due Sep. 9)

Sep. 1

3.3

Complexity of Algorithms

2, 4, +13, 14, 44 (due Sep. 16)

Sep. 6

3.3

Complexity of Algorithms

 

Sep. 8

5.1

Mathematical Induction

6, +18, +19, 20, 22 (due Sep. 23)

Sep. 13

5.2,

5.3

Strong Induction,

Recursive Definition

5.2: 12 (due Sep. 23)

5.3: +2, 24, 44 (due Sep. 23)

Sep. 15

5.4

Recursive Algorithms

5.4: 8, 10, 16, (due Sep. 30)

Sep. 20

10.3

Representing Graphs

+6, +8, 10, 12, +17, 34, 36 (due Sep. 30)

Sep. 22

10.4

Connectivity

2, +3, 4, +5, 10, +19, 20, 32, 56, 58 (due Oct. 7)

Sep. 27

10.5

Euler and Hamilton Paths

+1, 2, 10, 18, 28, 30, 32, 54 (due Oct. 7)

Sep. 29

10.6

Shortest Path

2, +3, 6(a), 6(c), 18 (due Oct. 7)

Oct. 4

10.7

Planar Graphs

+2, 4, 6, 12, 14, 20 (due Oct. 21)

Oct. 6

 

Review: Example Questions

 

Oct. 11

 

Midterm exam

 

Oct. 13

10.8

Graph Coloring and Matching in Graphs

10.8: 2, 4, 6, +17, 18, +hwMatching (due Oct. 28)

Oct. 18

 

Midterm discussion

 

Oct. 20

 

Matrix Algebra 1, Google PageRank

hwM1 (due Nov. 4)

Oct. 25

 

Google PageRank, notes

In PageRank: 1, 5, 7, 11 (due Nov. 4)

Oct. 27

 

Matrix Algebra 2, example
Linear Equations, VL1, VL2

hwM2 (due Nov. 11)

Nov. 1

 

Matrix Algebra 2

 

Nov. 3

 

Matrix Algebra 2, Eigenppt

hwM3 (due Nov. 18)

Nov. 8

 

EigenEx, Eigenvalues/vectors VL21,
Linear Classification

 

Nov. 10

13.1

Modeling Computation

+1, 2, +3, 4, 18, 20 (due Dec. 2)

Nov. 15

13.1

Modeling Computation

 

Nov. 17

13.2

Finite State Machines with Output, notes

13.2: +1, 2, +3, 4, 10 (due Dec. 9)

Nov. 29

13.3

Finite State Machines with No Output

+1, +5, +9, 10, 12, 16, 18, 24 (due Dec. 9)

Dec. 1

13.5

Turing Machine

+1, 2, +3, 8, 10, 12 (due Dec. 9)

Dec. 6

 

Review: Practice Questions

 

Dec. 8

 

Final Exam

Time:  10:30 - 12:30

Dec. 20

 

VL stands for Video Lecture from http://web.mit.edu/18.06/www/videos.shtml
based on Matrix Algebra part based on Gilbert Strang, Introduction to Linear Algebra, 4th Edition, 2009