CIS 2166 HW 2 for Matrix Algebra part 2

г1	2	2л г <i>4</i>	2	21	[5]	[2	1	ן0	[2	0	ן0	[2	1	0]
$A = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$	Z F	$\begin{bmatrix} 3 \\ c \end{bmatrix}, B = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$	с С	$\begin{bmatrix} 2\\ 1 \end{bmatrix}$,	C = 4, D =	= 4	3	3 , E	= 0	0	1,	F = 4	3	3,
14	Э	01 17	З	41	[3]	L-6	2	1	Lo	1	0]	L-6	-2	3

1. Use method of Gaussian elimination to find x for the system of linear equations $E^*x=C$. Solve by hand.

- 2. Use method of Gaussian elimination to find x for the system of linear equations $F^*x=C$. Solve by hand.
- 3. What is rank of matrices A, B, D and F? Hint: use Gaussian elimination.
- 4. Use method of Gaussian elimination to find inverse of matrix D, E, F. Solve by hand.
- 5. Compute Tr(D) (trace of matrix D), Tr(A)
- 6. Find the determinants of D, E, F using the Sarrus formula.
- 7. Use method of Gaussian elimination to find det(D), det(E), det(F). Solve by hand.
- 8. If A and B are any symmetric matrices $(A^{T}=A, B^{T}=B)$, show that $A^{*}B=(B^{*}A)^{T}$