1. (a) Let a directed graph G_1 be given.

Does each of the following list of vertices form a path in G_1 ? If yes, determine (by circling) if the path is simple, if it is a circuit, and give its length.

a, b, e, c, b	Yes [simple circuit	length]	No
a, d, a, d, a	Yes [simple circuit	length]	No
a, d, e, b, a	Yes [simple circuit	length]	No
a, b, e, c, b, a	Yes [simple circuit	length]	No

(b) For the simple graph G_2

Find M^2 , where M is the adjacency matrix of G_2

Find the number of paths from A to D in G_2 of length 2.

2. Let f(n) = 1 + 2 + 3 + ... + n. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses *C* and *k*.

3. Determine whether the given pair of graphs is isomorphic. Exhibit an isomorphism or provide a rigorous argument that none exists.

4. Show that a vertex c in the connected simple graph G is a cut vertex if and only if there are vertices u and v, both different from c, such that every path between u and v passes through c.

5.

(a) Is there an Euler circuit in the following graph? If so, find such a circuit. If not, explain why no such circuit exists.

(b) Is there a Hamilton circuit in the following graph? If so, find such a circuit. If not, prove why no such circuit exists.

6. Let $f(n) = 2n^2 + 5n\log(n) + 8n + 7$. Show that f(n) is $O(n^2)$. Be sure to specify the values of the witnesses C and k.

7. Use Dijkstra's algorithm to find the length of the shortest path between the vertices a and z in the following weighted graph.

8. How many vertices and how many edges does each of the following graphs have? (a) K_5

(b) C₄

(c) W₅

(d) K_{2,5}

9. Describe an algorithm for finding the second largest integer in a sequence of distinct integers. Give a big-O estimate of the number of comparisons used by your algorithm.

10. Give a recursive algorithm for finding the string w^i , the concatenation of *i* copies of *w*, when *w* is a bit string.

11. Give a recursive definition of

- a) the set of odd positive integers.
- b) the set of positive integer powers of 3.
- c) the set of polynomials with integer coefficients.

12. Let S be the subset of the set of ordered pairs of integers defined recursively by *Basis step:* (0, 0) ∈ S. *Recursive step:* If (a, b) ∈ S, then (a + 2, b + 3) ∈ S and (a + 3, b + 2) ∈ S.
a) List the elements of S produced by the first two applications of the recursive definition.
b) Use structural induction to show that 5 | a + b when (a, b) ∈ S.

13. Write a pseudocode for an algorithm for evaluating a polynomial of degree *n*, $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, at x = c. What is big-O estimate of the time complexity of your algorithm (in terms of the number of multiplications and additions used) as a function of n? Explain your answer.

14. Show that $\log(n!)$ is $\Theta(n \cdot \log(n))$.

15. Prove that $1*1! + 2*2! + \ldots + n*n! = (n + 1)! - 1$ whenever n is a positive integer.

16. Prove that $1 + 3 + ... + (2n - 1) = n^2$ whenever n is a positive integer.