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Abstract Mobile opportunistic networks (MONs) are

intermittently connected networks, such as pocket switched

networks formed by human-carried mobile devices. Rout-

ing in MONs is very challenging as it must handle network

partitioning, long delays, and dynamic topology. Flooding

is a possible solution but with high costs. Most existing

routing methods for MONs avoid the costly flooding by

selecting one or multiple relays to deliver data during each

encounter. How to pick the ‘‘good’’ relay from all

encounters is a non-trivial task. To achieve efficient

delivery of messages at low costs, in this paper, we propose

a novel group-based routing protocol in which the relay

node is selected based on multi-level cross-community

social group information. We apply a simple group for-

mation method to both historical encounters (social rela-

tionships in physical world) and/or social profiles of mobile

users (social relationships in social world) and build multi-

level cross-community social groups, which summarize the

wide range of social relationships among all mobile par-

ticipants. Our simulations over several real-life data sets

demonstrate the efficiency and effectiveness of the pro-

posed method by comparing it with several existing MON

routing schemes.

Keywords Routing � Relay selection � Social group �
Cross-community � Multi-level � Mobile opportunistic

networks

1 Introduction

Mobile opportunistic network (MON) is one of the

emerging communication paradigms in wireless mobile

communications. MONs are commonly defined as a type of

mobile networks where communication is challenged by

sporadic and intermittent contacts as well as frequent dis-

connections and reconnections, and where the assumption

of the existence of an end-to-end path between the source

and the destination is relinquished. Examples include

pocket switched networks (PSNs) [1] or mobile social

networks (MSNs) [2], which are comprised of human-

carried mobile devices moving in a restricted physical

space and use occasional contact opportunities to deliver

data. Intermittent connectivity in MONs results in lack of

instantaneous end-to-end paths, large transmission delays,

and unstable network topology. These characteristics make

the classical mobile ad hoc routing protocols not applicable

for MONs; therefore, many opportunity-based routing

protocols [3–10] are proposed recently for MONs or gen-

eral delay tolerant networks.

Most of existing opportunity-based routing methods for

MONs share the same principle, ‘‘store and forward’’, to

handle intermittent connectivity. If there is no connection

available at a particular time, the current node can store and

carry the data until it encounters other nodes. When the

node has such a forwarding opportunity, all encountered

nodes could be the candidates to relay the data. Therefore,

relaying selection and forwarding decision need to be made

by the current node based on certain forwarding strategy.
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The simplest routing method is epidemic routing [3], in

which a node forwards copies of message to any nodes it

encounters. This flooding-based method can guarantee the

best delivery ratio, but with possibly huge message over-

heads. To reduce the overheads, many routing methods

restrict the number of message replicas in the network to a

certain constant (such as in Spray and Wait [5]) or just one

(such as in SimBet [7]) or a small one by only replicating

the message when certain condition is met (such as in

delegation forwarding [6]). We call the method which

allows multiple replicas and the method which allows a

single replica as multi-copy routing and single-copy rout-

ing, respectively.

Forwarding decision (or replicating decision) and relay

selection in these routing protocols usually rely on com-

parisons between per-node metrics. For example, in

FRESH [8], the current node forwards if it encounters

another node which has met the destination more recently

than it does, and if multiple nodes satisfy such a condition

during encounter, it just selects the one which has met the

destination most recently as the relay; in Greedy-Total [9],

the node forwards if it meets nodes with a higher contact

frequency, it picks the one with highest frequency as the

relay. In addition to these metrics which aim to estimate the

delivery probability or expected delay to the destination

node, there are also certain social metrics (such as com-

munity and centrality) which can be used to assist for-

warding decision and relay selection in recent social-based

approaches [4, 7, 11–13]. For example, in SimBet [7], the

current node forwards if it encounters a node with higher

social centrality and has more common neighbors with the

destination; in Bubble Rap [4] the current node forwards

data to the node with higher centrality following a hierar-

chical community structure. These social-based methods

take the advantages of social relationships among nodes to

make smarter forwarding decisions.

In this paper, we propose a new group-based routing

protocol for mobile opportunistic networks, in which the

relay node is selected based on social group information

obtained from historical encounters or social profiles of

mobile users. We introduce a simple but efficient for-

mation method to build multi-level cross-community

social groups, which summarizes the wide range of social

relationships among all mobile participants. Notice that

social relations and behaviors among mobile users are

usually long-term characteristics and less volatile than

node mobility. Our group-based routing method forwards

the packet greedily toward the destination’s social

groups. We conduct extensive simulations using real-life

tracing data [15–17] to compare the proposed method

with several existing methods. Our simulation results

demonstrate the efficiency and effectiveness of the pro-

posed method.

This paper is organized as follows. Section 2 provides a

brief review of existing opportunity-based routing proto-

cols. Section 3 introduces the proposed routing method

based on multi-level cross-community social graphs in

details. Section 4 presents simulation results over different

real-life data sets, and Sect. 5 concludes the paper. Pre-

liminary results of this paper were appeared in [18, 19].

2 Related works

Mobile opportunistic networks are special cases of delay/

disruption tolerant networks (DTNs) [20]. The major dif-

ference of DTNs from MONs is that mobility is often

predictable or the future contact information is known.

Irregularity of mobility pattern in MONs poses great

challenges in the design of routing protocols. Here, we

mainly focus on opportunity-based routing where mes-

sages are forwarded using available communication

opportunities when nodes meet at the same place. By

taking the advantages of mobility of intermediate nodes, it

is expected to deliver the messages eventually, but with no

guarantees.

Epidemic routing [3] floods copies of message to any

nodes it encounters, thus can guarantee the delivery.

However, it suffers from huge message overheads. Spyro-

poulos et al. [5] then proposed Spray and Wait routing

which limits the total number of replicas of a message in

the network to a constant x. The source of the message

initially creates x replicas of the message. If a node u has

k [ 1 replicas and meets a node v with no replicas, u for-

wards half of its replicas to v and keeps the other half.

Erramilli et al. [6] also proposed another way to reduce the

total number of replicas, called delegation forwarding, in

which the current node only forwards a replica to

encountering nodes with highest-quality metric so far. In

other words, a node will forward a message only if it

encounters another node whose quality metric is greater

than any nodes the message has yet met. Here, the quality

metric can be defined in different ways as we will discuss it

in the next paragraph for single-copy routing. All these

three methods allow multiple replicas propagated in the

network which can clearly improve the chance of delivery.

There are also many forwarding schemes which only

allow one single copy of each message in the network, i.e.,

after forwarding the message to a single selected encoun-

tered node the current node will not forward anymore.

Forwarding decision usually relies on certain type of

quality metric, and the message is only forwarded to a node

with higher quality metric. If during an encounter, there are

multiple nodes with higher quality metric, only the one

with highest-quality metric is selected as the relay.

Examples include FRESH [8] (picking the node which has

386 Pers Ubiquit Comput (2014) 18:385–396

123



met the destination more recently), Greedy-Total [9]

(picking the node with a higher encounter frequency to all

other nodes), or MobySpace [21] (picking the node which

has more location similarity with the destination).

Mobile devices in MONs are used and carried by peo-

ple, whose behaviors are better described by social models.

This opens the new possibilities of social-based routing

[13] for MONs, in which the knowledge of social charac-

teristics is used for making better forwarding decisions. For

example, nodes with higher social centrality (more popu-

lar) are selected as relay nodes (such as in SimBet [7],

Bubble Rap [4], and friendship-based routing [12]); or

nodes within the same community (or social group) with

the destination are preferred as relay nodes (such as in

Label routing [11], Bubble Rap [4], and friendship-based

routing [12]). Our proposed group-based method belongs to

this category and uses the concept of social groups to

extract underlying social relationships among all nodes.

However, it is different from the community-based method

(such as Bubble Rap [4]) by using a much simpler social

group formation method. In addition, our group-based

method supports exploring multi-level and cross-commu-

nity social groups, which summarizes the wide range of

social relationships among all mobile participants in both

physical world (via historical encounters) and virtual social

world (via social features from user profiles). This type of

cross-community social graphs has not been well studied

before. The only similar idea we could find is a hybrid

social networking infrastructure proposed recently by Guo

et al. [14], in which both online and opportunistic com-

munities are considered and interlinked for the purposes of

content sharing and information dissemination.

3 Multi-level cross-community social group-based

forwarding

This section introduces our multi-level cross-community

group-based routing protocol for mobile opportunistic

networks in details. We start with a simple multi-level

social group formation based on historical encounters and

then follow with two versions of the proposed social group-

based routing. Finally, we explain how to apply them with

cross-community social groups where heterogeneous social

groups are obtained from different sources (beyond his-

torical encounters). Here, we assume that a set of n mobile

nodes V ¼ fv1; v2; . . .; vng and each possible data for-

warding happens when two mobile nodes are in contact

(i.e., move within transmission range of each other). By

recording contacts seen in the past, a contact graph G can

be generated where each vertex denotes a mobile node

(device or person who carries the device) and each edge

represents one or more past meetings between two nodes.

An edge in this contact graph conveys the information that

two nodes encountered each other in the past. Such exis-

tence of an edge intends to have predictive capacity for

future contacts. The contact graph can be constructed to

record the encounters in a specific period of time by

recording the time, the frequency and the duration of all

encounters.

3.1 Simple multi-level social group formation

Since wireless devices are usually carried by people, it is

natural to explore the social interactions among wireless

devices in mobile opportunistic networks to design better

forwarding strategy. Social group (or community) is an

important concept from sociology [22–24]. A social group

is usually defined as a group of interacting people living in

a common location. Sociologists have studied the interac-

tions between people in groups on many spatial and tem-

poral scales [22–26] and shown that a member of a given

social group is more likely to interact with another member

of the same group than with a randomly chosen member of

the population [25]. Therefore, social groups naturally

reflect social relationships among people in social networks

and implicitly define encounter patterns among wireless

devices in mobile opportunistic networks. Our proposed

group-based routing protocol hence uses social group

information obtained from historical encountered data (a

contact graph) to make its forwarding decision.

Constructing social groups from the encountered data

could be done by using different methods. For example,

there are several community detection algorithms [27–30]

available for identifying social communities from the

underlying contact graphs. Guo et al. [31] recently also

proposed a group-mining method for extracting and for-

mulating social groups from mobile social activity logging

repository. However, most of these community detection or

group-mining methods are relatively complex and not

suitable for real-time executions in MONs. Instead, in this

paper, we adopt a very simple social group formation

method based on the number of past encounters among

nodes. For any two nodes vi and vj, if there is more than

t encounters between vi and vj in the past, they will be

placed into the same group. Here, t is an adjustable

threshold which defines how strong the social tie between

two members is. In other words, given the contact graph

G in the past, we only keep an edge between vi and vj when

the number of their encounters is larger than or equal to

t. For the graph Gt formed by all remaining edges, we treat

each connected component as one social group. If two

nodes are within the same group, there must be a path

connecting them in G with all ‘‘strong’’ contact history.

Another way to form the social group is letting each

completed subgraph of Gt be a social group. This requires a
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much stronger tie among group members, that is , any two

members must directly have a ‘‘strong’’ contact history. In

our simulations, we use the first method to define social

groups. It is straightforward to compute the connected

components of the contact graph Gt in linear time (in terms

of the numbers of the nodes and edges of the graph) using

either breadth-first search or depth-first search. By defining

different values of t, we can construct multi-level social

groups. Larger t leads to smaller groups with stronger ties.

See Fig. 1 for illustration.

Note that our group-based forwarding algorithm does

not rely on particular social group formation method.

Social group information from other group/community

detection algorithms or specified by users could be adopted

in our model.

3.2 Routing with single-level social group

Having the knowledge of social groups could help routing

protocol to choose better forwarding relays for particular

destinations and hence improve the chance of delivery.

Since it is believed that devices within the same social

group have higher chances to encounter with each other,

our group-based forwarding method intends to choose the

member of social group of the destination as the preferred

relay node.

Our group-based forwarding method (denoted by Group

hereafter) works as follows. The current node vi with a

message M destined to vd meets a set of nodes which means

that they are capable to exchange messages. Assume that R is

the set of nodes among them which do not hold message

M, that is , all possible relay nodes at this particular time. If

the destination vd of message M is in R, vi simply delivers the

message to vd. Otherwise, vi looks for nodes within the same

group of vd (we use g(vd) to denote the member set of social

group of vd) as possible relay nodes. If there exists multiple

such nodes, our method picks the one which has met the

destination most recently as the relay node and forwards

M to it. This is similar to the idea of FRESH [8]. If there is no

any member of g(vd) in R, vi continues holding M. Algorithm

1 shows the detailed description. In Group, social group

information is used to increase the chance of meeting the

destination, while the FRESH tries to deliver the message to

destination as soon as possible.

3.3 Routing with multi-level social groups

In Group, we only use one level of social group infor-

mation to make forwarding decision. However, the choice

of threshold t could affect the routing performance signif-

icantly. If t is too large, the constructed group could be too

small and none relay nodes could be found in Group. If t is

too small, the constructed group will include everyone and

Group will regress to FRESH. Therefore, it makes great

sense to take the advantages of wide spectrum of social

relationships by considering multi-level social group

information into our group-based forwarding method. We

call this version of our method mGroup.
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Fig. 1 Multi-level social groups formed from different values of

t. The number labeled on each link is the number of past encounters

between two endpoints. When t = 1, Gt is the original contact graph G
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In mGroup, we consider m-level social groups

gt1ðÞ; gt2ðÞ; . . .; gtmðÞ formed by different thresholds. We

assume that t1 [ t2 [ . . .; tm; thus the first level group (we

call it top level) requires the strongest social tie among its

members, while the m level group has the weakest social

ties. See Fig. 1 for an illustration of 3-level social groups.

During a round of encounter, mGroup starts with the top-

level group with threshold t1. If no node locates in the same

group with the destination, mGroup will check with the

second level group of the destination. This procedure

continues until either it finds a relay node within the same

group of the destination or m-level groups are all explored.

By taking the full advantages of social groups at all levels,

mGroup intends to achieve better performance than

Group. Algorithm 2 shows the details of mGroup. The

time complexity of Algorithm 2 at each node vi is Oðm �
jRjÞ where m is the number of levels and |R| is the number

of nodes which vi meets at particular time. Clearly, with a

larger value of m, the time complexity increases. However,

from our experiences (as shown in our simulation results

reported in Sect. 4), a small value of m (such as 3 or 4) is

usually sufficient. Notice that using a large number of

layers with different thresholds may lead to small differ-

ences among different layers, which does not help to make

smart routing decision and wastes resources in MONs.

3.4 Routing with multi-level cross-community social

groups

So far we build the multi-level social groups purely from

the contact graph obtained based on historical encounters,

which exploit possible physical contacts between pairs of

devices in the physical world. However, the proposed

multi-level social group techniques can be applied to other

types of social graphs and used for routing in mobile

opportunistic networks, if those information are available.

For example, the data set of Infocom 2006 [17] includes

answers from each participant to a questionnaire with a

number of social information about this person, such as

nationality, affiliation, and speaking language. These

information reflects certain level of social features or

relationships among users in a virtual social world. In [32],

Wu and Wang showed that in this data set, the total contact

times and contact durations between two individuals

reduce when the social feature difference between them

increases. The individuals with only one different social

feature have about 36.5 % more contact times and 32.6 %

longer contact durations than the individuals with two

different features. Similarly, in Mei et al. [33], also found

that individuals with similar social features tend to contact

more often in MONs. Therefore, it is also possible to

consider the social features or relationships among mobile

users to improve the performance of MON routing. Both

[33] and [32] directly use social features as routing metrics;

however, we now consider how to use social features to

discover social groups so that our social group-based

routing can be applied.

Recall that our proposed method uses different values of

contact strength threshold t to form multi-level social

groups based on contact graph (as shown in Fig. 2a). The

same approach can be easily adopted to form social groups

using the social features. As illustrated in Fig. 2b, we can

define the social feature strength between any two nodes as

the number of common identical social features. For

example, if nodes vi and vj only share the same nationality

and affiliation, we give their social strength weight of 2.

Large social strength implicitly implies strong social tie.

By defining social strength among nodes, we can have a

weighted social feature graph G0. Using different values of

threshold t0, we can then define multi-level social groups

among mobile users. Since people come in contact with

each other more frequently if they have more social fea-

tures in common, we can prefer the nodes in the same

social group with the destination as possible relay nodes. If

multiple social groups coexist, the one with strongest social

strength (highest in the multi-level structure) can be

picked.

One advantage of using social features for routing

guidance is that social feature-based routing does not need

to collect and maintain routing state information. Social

features are static internal features of each mobile node and

usually can be obtained before the deployment of the net-

work or during user registration phase. However, routing

solely based on these static social features may not lead to

great performance (as shown by our simulation results in

Sect. 4.5).

Among multiple social features, some are more impor-

tant than others for either routing or group formation pur-

poses. One way to measure the importance of a social

feature is to calculate its entropy value over the data set, as

did in [32]. In information theory, Shannon entropy is a

measure of the uncertainty associated with a random var-

iable. We use entropy to quantify the value of the infor-

mation contained in the social features. Specifically, there

are n mobile users in the network, and each user has N

social features, denoted as f1; f2; . . .; fN : For a social fea-

ture fj with Mj possible outcomes, fxi : i ¼ 1; . . . Mjg; its

Shannon entropy, denoted by E(fj) is defined as

EðfjÞ ¼ �
XMj

i¼1

pðxiÞlog2pðxiÞ; j ¼ 1; . . .;N

where p(xi) is the probability of outcome xi in the data set.

Table 1 shows the entropy of each social feature listed in

the descending order for Infocom 2006 data set. It is clear

that a social feature with larger entropy means better
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distinction among mobile users. But if we use common

values of social features to form social groups (i.e., two

users are in the same group if they share the same values of

certain social features), using only social features with

largest entropy may lead to small or isolate groups. This is

not good for group-based routing. On the other hand, using

social features with lowest entropy may lead to a huge

social group, since everyone has the same values. This is

also useless for routing purpose. In our simulations (Sect.

4.5), we will study the trade-off among different social

features.

Notice that the social groups based on social features are

distinct from the social groups based on historical

encounters. The first ones are in the virtual world irre-

spective of physical distance among mobile users, while

the second ones are in the physical world which depend on

the physical proximity of users. However, both types of

social groups are complementary. One of the advantages

using social features is that they can be obtained before the

deployment of MONs, and there is no need to maintain any

states during the routing except the static social graph. On

the other hand, the encounter-based social groups reflect

the dynamic way people exchange information through

direct, face-to-face contacts. Therefore, both types of social

groups can be combined and used as a hybrid cross-com-

munity multi-level graph, as shown in Fig. 2c. This

approach actually makes more sense for MONs, since

modern people are living in a cross-space and multi-com-

munity coexisted world. Our simulation results in Sect. 4.5

will verify this conclusion. Notice that in Fig. 2c, we

simply put the level from social features under the levels

from contact graphs. This is mainly due to that in our

simulations routing over social groups from contact graphs

can achieve better performance than the one over social

groups from social features. Thus, at current node

vi, mGroup will first explore the neighbors within the

social groups from contact graphs, then try the neighbors

within the groups from social features if necessary. This

simple way to combine two types of social groups works

well in our simulation with Infocom 2006 data set [17].

However, for other more complex data sets or cross-com-

munity scenarios, new advanced integration techniques

may be needed. We leave such study as one of our future

works.

4 Simulations

In this section, we conduct extensive simulations with three

different realistic contact traces [15–17], which are pub-

licly available at Crawdad [34], to evaluate our proposed

method and compare it with existing opportunity-based

routing schemes.

4.1 Compared routing methods

We implement our algorithm mGroup and compare it with

five other existing routing methods which are listed below.

• Epidemic [3]: during any encounter, the message is

forwarded to all encountered nodes.

• Spray and Wait [5]: when node vi has k [ 1 message

replicas and meets node vj, it gives vj half of its replicas

and keeps the other half. Initially, the source has

x copies of the message. The default value of x is 10 in

our simulations. If there are multiple nodes during the
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Fig. 2 Multi-level social groups based on different social graphs for

the same network: a multi-level social groups based on the contact

graph, b multi-level social groups based on social features, c multi-

level cross-community social groups which include groups from

heterogeneous sources

Table 1 Entropy of social

features for Infocom 2006 data

set

Social feature Entropy

Graduated school 5.223

Topics 4.864

Affiliation 4.618

City 4.379

Nationality 4.333

Country 3.928

Languages 3.524

Position 1.390
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encounters, vi randomly picks one of them to share its

copies.

• FRESH [8]: the message is only forwarded from node vi

to node vj if vj has met the destination more recently

than vi does. If there are multiple nodes satisfying such

a condition during the encounters, vi forwards the

message to the one who has met the destination most

recently.

• Destination Frequency [6]: the message is only

forwarded from vi to vj if vj has met the destination

more often than vi does. If there are multiple nodes

satisfying such a condition during the encounters, vi

forwards the message to the one who has met the

destination most often.

• Greedy-Total [9]: the message is only forwarded from

vi to vj if vj has more total contacts with all other nodes

than vi does. If there are multiple nodes satisfying such

a condition during the encounters, vi forwards the

message to the one who has most contacts.

4.2 Routing metrics

In all experiments, we compare each algorithm using the

following routing metrics.

• Delivery ratio: the average percentage of successfully

delivered messages from the sources to the destinations.

• Hop count: the average number of hops during each

successful delivery from the sources to the destinations.

• Delay: the average time duration of successfully

delivered messages from the sources to the destinations.

• Number of forwarding: the average number of mes-

sages forwarding in the network during the whole

period.

4.3 Simulation results on NUS contact trace data

In order to test our proposed forwarding method in realistic

mobile opportunistic networks, we first use the NUS stu-

dent contact trace [15], which was collected during the

Sprint semester of 2005/2006 in National University of

Singapore. There are total 22,341 students who enroll in

4,885 sessions and last for 77 session hours in this data set.

As different sessions have various start and end time and

may last more than one hour, we split all sessions into unit

time slot size (1 hour). Therefore, there will be total 77

time slots. If two students share the same session at a

particular time slot, we consider they have contact in that

time slot. Since the total number of students is too huge in

the data set, we use the same method used in [10] to select

a subset of students for our simulations. Contacts related to

the non-selected students are ignored. Notice that if

students are selected randomly, the network formed by

selected students becomes too sparse for packet delivery.

On the other hand, if students are selected by maximizing

their connection levels (the number of shared sessions), the

network becomes almost fully connected. To prevent these

extremes, the selection method by [10] works as follows.

The first student is randomly selected. If we already have k

students, we randomly split them into two groups V1 and

V2. Then we select the next student as the one who has

highest connection to students in group V1 and the lowest

connection to students in group V2 among the students that

are not yet selected. Here, the level of connection is the

average number of shared sessions. We put the selected

student in group V1. This procedure is repeated (new group

V1 and group V2 will be generated from k ? 1 selected

nodes) until we have the required number of students. A

clustering factor C is defined as
jV1j

jV1jþjV2j ; which is used to

control the degree of connectivity in the network. In our

simulations, we randomly choose C from 0.1 to 0.9 as [10]

did. For more details about the selection method, please

refer to [10].

For routing tasks, we randomly choose 50 or 100 pairs

of selected students as the sources and destinations. All

results are reported as the average of these 50 or 100 tasks.

We test both single-copy and multiple-copy routing ver-

sions of all methods. For the multi-copy case, we allow the

number of replicas at the source to be either 10 or 20.

Table 2 summarizes the parameters used in our

experiments.

In total, we have conducted four sets of simulations. In

all simulations, we increase the number of selected students

from 100 to 600. Fifty routing tasks are performed in each

setting of the first three sets of simulations, while 100

routing tasks are used in the last set of simulations. For all

methods in the first three sets of simulations, we use the

first 40 sessions data as historical data to obtain statistics

(such as social groups or encounter counts), and routing

tasks are performed for the last 37 sessions to evaluate the

routing performances. For those in the last set, we use a

sliding window with size of 30 sessions to perform the

Table 2 Parameters used for NUS data set

Parameter Value or range

Total number of students/sessions 22,341/4,885

Total number of time slots 77

Number of selected students 100–600

Clustering factor C 0.1–0.9

Number of routing tasks 50 or 100

Number of message replicas allowed 1, 10 or 20

Number of levels of social graph 1 or 4
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group formation and routing methods are evaluated over all

sessions.

In the first set of simulations, we consider all methods

(using their multi-copy versions in which the total number

of copies is limited to 10, except for epidemic routing).

Figure 3 shows all results. It is clear that the delivery ratio

is increasing as the number of students (devices) increases.

This is reasonable since denser networks provide more

opportunities for message delivery. From Fig. 3a, we can

see that our proposed mGroup algorithm achieves better

delivery ratio than any others except for epidemic routing.

Notice that even though epidemic routing has the best

delivery ratio, it costs extremely large amount of for-

warding as shown in Fig. 3d. In terms of hop count, delay,

and number of forwarding, mGroup is at the similar level

with those of other opportunity-based methods.

In the second set of simulations, we compare the per-

formance of our group-based methods using either a single-

level social group (Group) or multi-level social groups

(mGroup). For Group, we use different threshold values

t = 5, 10, 15, 20. For mGroup, we use all these 4-level of

social groups. Figure 4 shows the results in which Group_t

denotes Group method with threshold value t. For

Group_t with single-level social group, larger threshold

t leads to higher delivery ratio since it provides the infor-

mation of stronger social ties. However, overall mGroup

with multi-level social groups has the highest delivery

ratio. This confirms our original conjecture of better per-

formance with more information.

In the third set of simulations, we consider both single-

copy and multi-copy versions of our methods. We allow

different numbers of copies (1, 10, or 20) during the

routing. Figure 5 shows the comparison in which

mGroup_x denotes mGroup method with limitation of

x numbers of copies. It is obvious that with more message

copies, all methods can achieve higher delivery ratio but

increase the number of forwarding too. There is clearly a

trade-off between number of copies and forwarding

overhead.

In the last set of simulations, instead of using static

historical encounters to perform the social grouping, a

sliding window approach is used. For current time slot, the

grouping is done with the encounter information in the

previous w time slots. In other words, the social groups are
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Fig. 3 Simulation results of all different routing algorithms
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Fig. 4 Simulation results of mGroup and Group routing
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dynamic and time evolving. We let w = 30 and other

settings be the same with those in the first set of simula-

tions except for 100 random routing tasks. Figure 6 gives

the average performances of different routing algorithms

over 100 routing tasks. The results are consistent with those

using static historical encounter information. This demon-

strates that the proposed method can be used in online

fashion. We also test different window sizes, the results are

similar thus ignored here.

4.4 Simulation results on Cambridge Bluetooth trace

data

We also test the performances of proposed single-level

social group (Group) and multi-level social groups

(mGroup) protocols using a real-life Bluetooth trace data

set. The Bluetooth trace data [16] were collected from a

group of mobile users (i.e., students from Cambridge

University) who were asked to carry iMotes with them for

two months starting from October 28, 2005, in addition

with a number of stationary nodes in various locations that

were expected many people to visit, such as grocery stores,

pubs, market places, and shopping centers in and around

the city of Cambridge, UK. The Bluetooth trace data

consist of measurement data from 36 mobile participants

and 18 fixed locations. In order to discover the social

relationships among mobile users, we only use tracing

contacts between 36 mobile students in this set of

simulations.

We split the contact time duration into unit time slot size

(one hour) and test the performances of proposed single-

level social group (Group) and multi-level social groups

(mGroup) protocols together with other existing routing

methods mentioned in Sect. 4. A in randomly chosen 120

time slots. For all routing protocols, we use the first 40

hours data as historical data to obtain social group infor-

mation and evaluate the performances of routing tasks for

the remaining 80 hours. In the simulation, each student

tries to send message to other 35 students, and thus, there

are 36 9 35 = 1260 source and destination pairs in total.

The simulation results are shown in Table 3 which are the

average of these 1260 routing tasks. The number of mes-

sage replicas allowed is set to 10 except for epidemic

routing. The simulation results for Bluetooth trace data are

consistent with those for NUS trace data, such as for

Group_t with single-level social group method, larger

threshold t leads to higher delivery ratio; 3-level social

groups mGroup protocol have the highest delivery ratio

among all other routing methods except for epidemic

routing, but the number of message forwarding of mGroup

is much less than epidemic routing and mGroup is at the

similar level in terms of hop count, delay, and number of

forwarding with those of other opportunity-based methods.

4.5 Simulation results on Infocom 2006 Bluetooth

trace data with social features

Finally, to test the cross-community social group idea in

mGroup, we use the Infocom 2006 trace data [17]. This

data set includes Bluetooth sightings by groups of users

(i.e., 79 participants) carrying iMotes for four days during

Infocom 2006 conference in Barcelona, Spain. In addition

to the Bluetooth contact information among participants, it

also includes social features of each participant, which are

the statistics of participants’ information returned from a

questionnaire form. Since some social features in partici-

pants’ questionnaire forms are blank, we extract eight

social features from the original data set: nationality,

graduated school, languages, current affiliation, current

position, city of residence, country of residence, and

interested topics, whose entropy values are summarized in

Table 1.

There are 74,981 contacts between 79 participants over

a period of 337,418 s. We divide the period using time slot

with length of one hour and test the routing performance

over randomly chosen 120 time slots. Again, we use the

first 40 hours data as historical data to obtain social group

information and then evaluate the performance of routing

tasks over the remaining 80 hours. In the simulations, each

participant tries to send a message to all other 78 partici-

pants. The number of message replicas allowed is set to 10

except for epidemic routing.

Table 4 shows the performances of existing methods

and Group/mGroup over social groups generated from

contact graphs. Here, Group_t is the method over a single-

level social group with the threshold value of encounter t,
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Fig. 6 Simulation results of all different routing algorithms with

sliding window (window size w = 30)
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and mGroup is the method over 3-level social groups with

threshold values of encounters t = 100, 50, 10 from the

top level to the lower level. Clearly, mGroup achieves

better performance than Group_t.

We then implement both Group and mGroup over

social groups generated purely from static social features in

the data set. As we described in Sect. 3, we measure the

number of common social features among nodes. We use

Group’_t’ to represent Group method with threshold value

t0 over the social feature strength. mGroup’ is mGroup

method over 3-level social groups with threshold values of

social feature strength t0 = 6, 4, 2 from the top level to the

lower level. For Group’_2 (t0 = 2), we have three different

variations: Group’_2 (all eight social features listed in

Table 1 are considered), Group’_2(t) (only the top four

social features listed in Table 1 are considered), and

Group’_2(m) (only the middle four social features listed in

Table 1 are considered). In other words, Group’_2,

Group’_2(t), and Group’_2(m) are three one-level social

group routing methods where during the group formation

Table 3 Simulation results on

Cambridge Bluetooth data set
Epidemic Spray and wait Destination frequency FRESH Greedy-total

Delivery ratio 0.68 0.58 0.61 0.60 0.58

Hop count 1.9 3.1 2.2 2.7 3.4

Delay 68 69 69 69 69

Number of forwarding 12.6 5.6 2.9 4.4 5.0

Group_5 Group_10 Group_15 mGroup

Delivery ratio 0.60 0.63 0.66 0.67

Hop count 2.9 2.9 3.1 3.1

Delay 69 68 69 51

Number of forwarding 4.0 4.0 4.4 4.2

Table 4 Simulation results on

Infocom 2006 data set (social

groups from contact graphs)

Epidemic Spray and wait Destination frequency FRESH Greedy-total

Delivery ratio 0.70 0.38 0.25 0.46 0.39

Hop count 3.8 4.0 1.6 3.6 3.8

Delay 54 57 56 58 56

Number of forwarding 14.6 6.9 2.0 6.0 3.6

Group_10 Group_50 Group_100 mGroup

Delivery ratio 0.37 0.41 0.44 0.45

Hop count 3.7 3.8 3.8 3.8

Delay 56 56 59 60

Number of forwarding 6.9 7.5 6.9 6.9

Table 5 Simulation results on

Infocom 2006 data set (social

groups from social features)

mGroup Group’_2(t) Group’_2(m) Group’_2 Group’_4 Group’_6 mGroup’

Delivery ratio 0.45 0.23 0.27 0.29 0.32 0.35 0.39

Hop count 3.6 3.8 3.8 3.5 3.3 3.6 3.8

Delay 60 56 60 58 59 61 63

Number of

forwarding

6.9 6.3 6.0 6.8 6.3 5.9 6.0

Table 6 Simulation results on

Infocom 2006 data set (social

groups from both contact graphs

and social features)

mGroup mGroup?Group’_2 mGroup?Group’_4 mGroup?Group’_6 mGroup?mGroup’

Delivery
ratio

0.45 0.46 0.48 0.50 0.55

Hop count 3.8 3.8 3.9 3.6 3.8

Delay 60 66 62 62 62

Number of
forwarding

6.9 6.0 5.3 6.2 5.9
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phase, two participants will be put into the same group if

they have at least two common identical social features

among all eight social features or the top four social features

or the middle four social features listed in Table 1,

respectively. Table 5 shows all simulation results. First,

clearly routing purely over social groups from static social

features (Group’_t’ or mGroup’) achieves lower delivery

ratio than the method over social groups from contact

graphs mGroup. This is reasonable since the contact

graphs generated based on Bluetooth traces are more

directly reflecting the physical contact opportunities used

for packet delivery. Second, for single-level version

Group’_t’, larger threshold value t0 leads to higher delivery

ratio since it provides the information of stronger social

ties. Third, mGroup’ can achieve better performance than

single-level version Group’_t’ with more multi-level

information. Forth, Group’_2 outperforms Group’_2(t)

and Group’_2(m). Thus, considering more social features is

helpful. Last, compared with Group’_2(t), Group’_2(m)

has better performances though they both consider four

social features. This shows that it does not necessarily lead

to better performance using social features with higher

entropy. Notice that if the entropy of a social feature is very

large, it is hard to find common values of that social feature

among users.

Finally, we implement new hybrid versions of mGroup

by adding additional levels of social groups from social

features under the social groups from contact graphs. Here,

mGroup?Group’_2 represents a hybrid 4-level cross-

community social groups, which combines the 3-level social

groups mGroup (with threshold values of encounters

t = 100, 50, 10) and an additional level Group’_2 of social

groups (with 2 common social features) as the bottom level.

Similarly, we have the other two hybrid 4-level cross-com-

munity social groups: mGroup?Group’_4 and mGroup?

Group’_6. We also test mGroup?mGroup’ which is a

hybrid 6-level cross-community social groups with 3-level

from mGroup and the other 3-level from mGroup’ (3-level

social groups with threshold values of social feature strength

t0 = 6, 4, 2). Table 6 shows the simulation results. It is clear

that with new additional information from social features,

our multi-level social group method can further improve the

delivery ratio while maintain similar level of other metrics.

This confirms the complementary properties of two types of

social groups obtained from both physical and virtual worlds

and the benefits of combining useful social information

cross-space/community.

5 Conclusion

Mobile opportunistic networking is a new emerging com-

munication system which takes the advantages of any

possible contact opportunities to deliver data among

mobile devices. Routing in such networks is a challenging

problem. In this paper, we propose a new group-based

routing method which forwards message based on multi-

level cross-community social group information. Our

simulation results demonstrate the great performance of the

proposed method and the advantages of considering diverse

social relationships among nodes during relay selection. In

this paper, we only use a few simple and static social

features available in the data set (Infocom 2006 trace data

[17]) to test our cross-community methods. We leave

exploring more complex social group analysis using more

enriched social features (such as Facebook friendship or

location profiles) to achieve further performance

improvement as one of our future works, when such

information becomes available in public data sets.
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