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Localization is a fundamental problem in wireless sensor networks. Current localization
algorithms mainly focus on checking the localizability of a network and/or how to localize
as many nodes as possible given a static set of anchor nodes and distance measurements. In
this paper, we study a new optimization problem, minimum cost localization problem, which
aims to localize all sensors in a network using the minimum number (or total cost) of
anchor nodes given the distance measurements. We show this problem is very challenging
and then present a set of greedy algorithms using both trilateration and local sweep oper-
ations to address the problem. Extensive simulations have been conducted and demon-
strate the efficiency of our algorithms.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Location information can be used in many wireless sen-
sor network applications [1], such as event detecting, tar-
get tracking, environmental monitoring, and network
deployment. On the other hand, location information can
benefit networking protocols to enhance the performance
of sensor networks in different ways, such as delivering
packets using position-based routing, controlling network
topology and coverage with geometric methods, or balanc-
ing traffics in routing using location information. However,
manually configuring individual node’s position or provid-
ing each sensor with a Global Positioning System (GPS) to
obtain its location is expensive and infeasible for most sen-
sor networks. Therefore, localization problem is a funda-
mental task in designing wireless sensor networks.

The main task of localization in wireless sensor net-
works is to obtain the precise location of each sensor in
the 2-dimensional (2D) plane. To achieve this goal, several
special nodes (called anchor nodes1), who know their own
global locations via either GPS or manual configuration, are
. All rights reserved.
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odes in other papers.
needed. The rest of sensors will determine their locations by
measuring the Euclidean distances to their neighbors using
different distance ranging methods (such as radio signal
strength or time difference of arrival).

Given positions of anchor nodes, and distance measure-
ments among all pair of neighbors, to find the positions of
all sensors is still a very challenging task. In some cases, it
is even impossible. A network is localizable if there is ex-
actly one set of positions in the 2D plane for all nodes that
is consistent with all available information about distances
and positions. There is a strong connection between net-
work localizability and mathematical rigidity theory [2].
Recent theoretical works [3–5] show that the network is
localizable if and only if the graph is globally rigid. How-
ever, the problem of realizing globally rigid weighted
graphs (i.e., the network localization problem) is NP hard
[5].

A significant amount of localization algorithms [6–15]
have been developed to localize sensor nodes by exchang-
ing information with anchor nodes. Trilateration is a basic
localization technique and has been widely used in prac-
tice [6,7]. To accurately and uniquely determine the loca-
tion of a node in a 2D plane by trilateration, distance
measurements to at least three anchor nodes (or sensor
nodes who already know their positions) are needed. By
iteratively applying trilateration, it is possible to identify
localizable nodes in a network. However, as pointed out
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by Goldenberg et al. [8] and Yang et al. [9], trilateration has
a clear deficiency: it can only recognize a subset of sensors
even when the network is globally rigid.

To overcome the limitation of trilateration, there are
some recent works on new techniques which aim to local-
ize more sensors beyond trilateration. Yang et al. [9] pro-
posed a localization method based on detection of wheel
structures to further improve the performance of localiza-
tion. Their method is based on the following claim made by
them that all nodes in a wheel structure with three anchor
nodes are uniquely localizable. However, in this paper, we
show a counter-example in which nodes on a wheel struc-
ture cannot be uniquely localized. Goldenberg et al. [8]
introduced a localization method for sparse networks
using sweep techniques. Their method uses all possible
positions of sensors in each positioning step and prunes
incompatible ones whenever possible. Therefore, the possi-
ble positions could increase exponentially with the num-
ber of sensors. This limits the advantage of sweep method.

All existing localization methods try to localize more
sensor nodes in a network without guarantee of localizing
all nodes. They usually assume that there are enough an-
chor nodes to achieve the goal, or the set of anchor nodes
are pre-decided before deployment of the network. How-
ever, in this paper, we focus on studying a new localization
problem, called minimum cost localization problem (MCLP).
MLCP is an optimization problem which aims to localize all
nodes in a network using minimum anchor nodes. This is
an important problem, since the cost of manually configur-
ing an anchor node or equipping it with a GPS device is
expensive in many cases. In MCLP, we concentrate on the
selection of an anchor set such that (1) the whole network
could be localized and (2) the total cost of setting up these
anchors is minimized. This is completely different from
previous works on localization. To the best of our knowl-
edge, it has never been studied before. Notice that Khan
et al. [16] recently also proposed a localization method
using the minimal number of anchor nodes. However, they
assume that the sensing range of each sensor can be en-
larged to guarantee certain triangulation, thus only three
anchor nodes are needed to localize all sensors in 2D plane.
In our problem, the sensing range of each sensor is fixed,
therefore, their method does not work.

The rest of this paper is organized as follows: In Section
2, we summarize related works in localization for sensor
networks. In Section 3, we formally define the minimum
cost localization problem and discuss its hardness. In Sec-
tion 4, we propose four greedy algorithms to solve the
MLCP using trilateration and/or sweep operations. In Sec-
tion 5, a weighted version of the localization problem is de-
fined and considered. Section 6 presents the simulation
results of all proposed algorithms. In Section 7, we discuss
the limitations of our study and several practical issues. Fi-
nally, Section 8 concludes the paper by pointing out some
possible future directions.

2. Related works

In this section, we review some basic theory and recent
work on localization in wireless sensor networks.
2.1. Trilateration

Trilateration is the most basic technique for positioning
system and has been used for thousands of years. It uses
the known locations of multiple anchor nodes and the
measured distance to each anchor node. To determine
the accurate location of a node in a 2D sensor network
using trilateration alone, it needs to hear from at least
three anchors. However, in a sparse sensor network, many
sensors may not be able to directly communicate with en-
ough anchor nodes to compute their positions. Fortunately,
sensors can also learn the distances among themselves
using different distance ranging techniques (such as re-
ceived signal strength (RSS), time of arrival (ToA), or time
difference of arrival (TDoA)). In many localization algo-
rithms [6,7] designed for wireless sensor networks, itera-
tive trilateration (or multilateration) is used to localize
nodes via multihop. The basic idea is as follows: nodes
measure distances to their neighbors and share their posi-
tion information with their neighbors to collaboratively
compute their positions. If a sensor node whose position
has already been uniquely determined, it can act as a
new anchor node to localize other nodes by sharing its po-
sition with its neighbors. This iterative process continues
until there are no nodes can be further localized.

2.2. Rigidity theory and localizability

Even trilateration can compute the position of a sensor
node using range measurements via anchor nodes when
enough measurements are available, in practice it is still
possible that many nodes’ positions cannot be uniquely
determined with limited measurements. An important
question is under what conditions the network localization
problem is solvable (i.e., each node has a unique position
solution). There is a strong connection between the prob-
lem of unique network localization and a mathematical to-
pic known as rigidity theory [2]. Recently, several new
results [3–5] have been published in sensor network area.

The network localization problem with distance infor-
mation is to determine locations pi of all nodes vi 2 V in
the real 2D space R2 given the graph of network G = (V,E),
the positions of anchor nodes in R2, and the distance be-
tween each neighbor pair (vi,vj) 2 E. The localization prob-
lem is said to be solvable or the network is said to be
localizable if there is exactly one set of positions in R2 for
all unknown nodes that is consistent with all available
information of distances and positions. The localization
problem can also be formed as a point formation
Fp = ({p1,p2, . . . ,pn},L) where pi is node i’s position and L is
a set of links whose internode distances are given (includ-
ing both the distances measured from unknown nodes to
anchor nodes and the distances among unknown nodes).
Then in [3,5], the following theorem gives the conditions
for a network to be localizable.

Theorem 1 ([3,5]). For a network in R2, if there are at least
three anchor nodes in general position, the network is
uniquely localizable if and only if the point formation for the
graph G is globally rigid.
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Here we say a set of points is in general position if any
three points do not lie on a line. We then give a rough def-
inition of global rigidity. Consider a point formation (and
its corresponding graph) with edges connecting some of
them to represent distance constraints. If there is no other
point formation which consists of different points but pre-
serves all distance constraints, then we call this point for-
mation or its corresponding graph globally rigid.

Results from rigidity theory give efficient ways (polyno-
mial algorithms) to check whether a graph is globally rigid.
The following theorem gives a sufficient and necessary
condition for global rigidity test in 2D space.

Theorem 2 [17]. A graph with n P 4 vertices is generically
globally rigid in R2 if and only if it is redundantly rigid and 3-
connected in two dimensions R2.

Here a graph is redundantly rigid if the removal of any
single edge results in a graph that is also generically rigid.
This condition can be checked in polynomial time.

Even though the global rigidity can be determined effi-
ciently, the problem of realizing globally rigid weighted
graphs (the network localization problem) is still NP hard.
Aspnes et al. [5] proved this by giving a polynomial-time
reduction of the set-partition problem to the globally ri-
gid weighted graph realizing problem. For more details
about the complexity of localization problem, please refer
to [5].

2.3. Beyond trilateration

Recently, Yang et al. [9] proposed a localization method
based on detection of wheel structures to further improve
the performance beyond trilateration. Here a wheel graph
Wn is a graph with n nodes, formed by connecting a single
node to all nodes of an (n � 1)-cycle. In [3], the wheel
graph has been proved to be globally rigid. Then [9]
claimed that all nodes in a wheel structure with three anchor
nodes are uniquely localizable. Based on this observation,
their method uses detection of wheel structure to identify
more localizable nodes than simple trilateration. However,
we will show a counter-example in Section 4.3 in which
nodes on a wheel structure cannot be uniquely localized
due to a possible flip.

Goldenberg et al. [8] introduced a localization method
for sparse networks using sweep techniques. In trilatera-
tion, only a part of nodes can be uniquely localizable and
there are still some nodes whose positions cannot be un-
iquely decided. However, some of such nodes can be local-
ized up to a set of possible locations. The idea of sweeping
method is recording all possible positions in each position-
ing step and pruning incompatible ones whenever possi-
ble. One drawback of sweeping method is that the
possible positions could increase exponentially with large
number of nodes.

There are also other types of localization methods, such
as using multidimensional scaling [10,11] or mobile an-
chors [12–15]. However, all the previous localization
methods try to localize more sensor nodes in a network
without guarantee of localizing all nodes. Instead, in this
paper, we study an optimization problem which aims to
localize all nodes in a network using minimum anchor
nodes. Recently, Khan et al. [16] also proposed a localiza-
tion method to localize all nodes using the minimal num-
ber of anchor nodes. However, they assume that the
sensing range of each sensor can be enlarged to guarantee
certain triangulation, thus, three anchor nodes are enough
to localize all sensors in 2D plane. Instead, in our study, the
sensing range of each sensor is fixed. There are also an-
chor-free localization algorithms [18–20] proposed in the
literature, which compute the relative positions of all sen-
sors without the help from anchor nodes. However, these
methods either require high density of sensors to perform
boundary detection and landmark selection or need sen-
sors equipped with motion actuator. The results from these
methods are usually relative or roughly estimated posi-
tions instead of accurate positions, which are good enough
for certain applications such as location-based routing. But
in many sensor applications, more accurate locations are
needed, thus we focus on anchor-based localization in this
paper.
3. Minimum cost localization problem

Assume that a sensor network is modeled as a graph
G = (V,E), where V is the set of n sensors v1, . . . ,vn and E is
the set of links. Here if a link vivj 2 E, the distance between
sensors vi and vj can be measured or estimated via wireless
communication. Each sensor could have different sensing
range. Hereafter, we assume that no three sensors are col-
linear.2 A subset of sensors B � V are anchor nodes whose
positions are known at the beginning of localization. The
remaining sensors will rely on distance measurements in E
and the positions of anchor nodes B to determine their loca-
tions during the localization procedure. We further assume
that there is a unit cost to make a sensor node as an anchor
node (e.g., equip it with a GPS device or perform a manual
measurement). Then the minimum cost localization problem
can be formally defined as follows:

Definition 1 (Minimum Cost Localization Problem
(MCLP)). Given a sensor network G, find a subset of sensors
B to be anchor nodes such that (1) all sensors can be
localized and realized (i.e., their positions can be calcu-
lated) given the graph, the length of all links, and positions
of all anchor nodes and (2) the total number of anchor
nodes jBj is minimized.
3.1. Hardness of MCLP

It is clear that MCLP always has a feasible solution, since
in the worst case every sensor is selected as anchor node,
i.e., B = V. However, finding the optimal solution of such
problem is very challenging. Even though the solvable of
localization problem (i.e., global rigidity testing) is com-
putable in polynomial time, Aspnes et al. [5] and Eren
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et al. [3] showed that realizable globally rigid weighted
graph realization is still NP-hard even in unit disk graphs.
Thus, to check whether a solution in MCLP can realize all
sensors in the plane is still NP-hard. Therefore, MCLP is also
a hard computational problem, even for a simple graph
model (such as unit disk graph).

Next, we discuss the possible lower and upper bounds
on the size of the optimal solution Bopt of MCLP. First, it
is obvious that all sensors with node degree less than 3
should be included in B. When a sensor only has two
neighbors, it cannot determine its location from the other
nodes. Let V<3 be the union of such sensors, then jV<3j is
an obvious lower bound of jBoptj. Notice that there exists
a network in which jBoptj = jV<3j, such as a circular network
where every sensor has degree 2. On the other hand, if all
node degrees in G are larger or equal to 3, the upper bound
of jBoptj can be given by the size of the minimum 3-domi-
nating set M3DSopt of V. Here, the minimum k-dominating
set of V (denoted by MkDSopt) is a subset of nodes so that
(1) every node not in MkDSopt must have k neighbors in
MkDSopt and (2) jMkDSoptj is minimized. Finding the mini-
mum k-dominating set (MKDS) is a NP-hard problem even
in unit disk graphs. This also implies that analysis on opti-
mal solution of MCLP problem is extremely hard. The best
constant approximation of MKDS problem is maxf5

k ;1g
from [21].
4. Greedy algorithms for MCLP

Since the problem of MCLP is computationally challeng-
ing, in this section, we propose several greedy algorithms
to approximately solve MCLP. Our greedy algorithms share
the same general framework but differ from each other
depending on how many hops of information and which
localization method are used at each node. To explain the
algorithms easily, we define the status of each sensor using
different colors. A white node is a node whose location is
undecided yet, a black node is an anchor node whose posi-
tion is known, and a green node is a non-anchor node
whose position is already obtained via localization. Ini-
tially, all nodes are white. The purpose of our algorithms
is to find the smallest set of anchors (black nodes) to get
the positions of all nodes (coloring all nodes in either black
or green).
4.1. General greedy framework

The basic idea of the general greedy framework is as
follows: (1) All nodes with degree less than three are col-
ored black first, since they cannot be located by other
nodes. Notice that when these nodes are marked as black,
the MARK procedure will color as many surrounding
nodes as possible. (2) In each step, we greedy select a
white node which can benefit the localization procedure
most in next step if it is marked as black, and color it as
black. The selection of such node is based on certain
underlying localization method and the surrounding
neighborhood information. The whole procedure is given
in Algorithm 1. The algorithm will terminate when all
nodes are colored.
Algorithm 1. General Greedy Localization Framework

1: for each v 2 V do
2: s(v) = white and r(v) = 0.
3: end for
4: for each v 2 V do
5: if the degree of v 6 2 then
6: MARK(v,black).
7: end if
8: end for
9: while $v such that s(v) = white do
10: u = GREEDY-SELECTIONi.
11: MARK(u,black).
12: end while

Recall that the position of a white node can be calcu-
lated (becomes a green node) via trilateration if it has three
non-white neighbors. For each white node v, we maintain a
rank r(v) to indicate the number of its located (non-white)
neighbors. When we mark a node u as either black or
green, we first update its white neighbors’ ranks and em-
ploy localization (e.g., trilateration) to locate as many
nodes as possible. When a node v has three located neigh-
bors (i.e., r(v) = 3), it can be marked as green. This MARK
procedure could be done recursively, as shown in Algo-
rithm 2. Lines 9–11 is the same procedure except for using
blue instead of green or black, which will be used by Algo-
rithm 4 later for estimation of the number of localizable
nodes by making one node as an anchor node.
Algorithm 2. MARK(u,color)

1: s(u) = color.
2: for all u’s neighbor v and s(v) = white do
3: r(v) = r(v) + 1.
4: end for
5: if any u’s white neighbor v and r(v) P 3 then
6: if color = black or green then
7: MARK(v,green).
8: end if
9: if color = blue then
10: MARK(v,blue).
11: end if
12: end if

In next two subsections, we will introduce two sets of
greedy algorithms based on this general framework. They
adopt different underlying localization techniques:
trilateration and local sweeps.
4.2. Greedy algorithms based on trilateration

We first introduce two simple greedy algorithms only
based on trilateration. It is clear the ordering of picking
the white node to color as black in each step (GREEDY-
SELECTIONi) is crucial and will affect the quality of the final
output. We now introduce two ways to define the benefit
of marking a white node as black.
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The first one (as shown in Algorithm 3) is purely based
on information of its one-hop neighbors. Basically, for a
white node v we first consider the number of its white
neighbors with rank 2 (denoted by c2(v)). White nodes
with rank 2 are critical, since with one more located neigh-
bor, their locations can be computed by trilateration. Thus,
we pick the white node v with largest c2(v). When it is a tie,
we consider the number of white neighbors with rank 1 or
rank 0. ID is used for the last tie-break. Hereafter, we de-
note this greedy algorithm (consists of Algorithms 1–3)
as Greedy-Tri-1. The limitation of this method is that the
scope of estimated benefit of coloring a node in black is
limited within its one-hop neighborhood. However, the
real benefit of adding a new anchor node could be beyond
its immediate neighbors.

Algorithm 3. GREEDY-SELECTION1

1: cmax
0 ¼ cmax

1 ¼ cmax
2 ¼ �1.

2: for all v and s(v) = white do
3: Let ci(v) be the number of v’s neighbors with rank

i.
4: if c2ðvÞ > cmax

2 then
5: cmax

0 ¼ c0ðvÞ; cmax
1 ¼ c1ðvÞ; cmax

2 ¼ c2ðvÞ.
6: IDmax = v.
7: else if c2ðvÞ ¼ cmax

2 then
8: if c1ðvÞ > cmax

1 then
9: cmax

0 ¼ c0ðvÞ; cmax
1 ¼ c1ðvÞ; cmax

2 ¼ c2ðvÞ.
10: IDmax = v.
11: else if c1ðvÞ ¼ cmax

1 then
12: if c0ðvÞ > cmax

0 then
13: cmax

0 ¼ c0ðvÞ; cmax
1 ¼ c1ðvÞ; cmax

2 ¼ c2ðvÞ.
14: IDmax = v.
15: end if
16: end if
17: end if
18: end for
19: Return IDmax.
Algorithm 4. GREEDY-SELECTION2

1: for all v and s(v) = white do
2: MARK (v,blue).
3: Let c(v) be the number of blue nodes.
4: for all v and s(v) = blue do
5: s(v) = white.
6: Let r(v) be the number of its black and green

neighbors.
7: end for
8: end for
9: Return v with the maximum c(v) (tie is broken by

ID).

The second way to define the benefit of coloring a node
in black is to compute how many nodes can be located via
iterative trilateration. To do so, for each white node v, our
algorithm (as shown in Algorithm 4) runs a fake MARK
procedure to color it in blue and recursively color other
nodes in blue using trilateration. We count the number
of all blue nodes marked by node v, denoted by c(v). The
node with largest c(v) will be selected as the next anchor
node. Notice that we need restore the white color and right
ranks for all blue nodes in each step after fake MARK pro-
cedure (Lines 4–7). This method basically estimates all
possible benefits from a node via iterative trilateration.
Thus, it performs better than Greedy-Tri-1 method. Hereaf-
ter, we denote this new greedy algorithm (consists of Algo-
rithms 1, 2, 4) as Greedy-Tri-2.
4.3. Greedy algorithms based on local sweeps

Recent research [9,8] shows that trilateration has its
own limitation. Fig. 1a illustrates an example from [9]
where trilateration cannot propagate to the network while
it actually should be localizable due to the globally rigidity
of the network. In this example, the left part of the network
is already marked black or green by trilateration, and the
remaining part is connected via a wheel structure. Based
on trilateration, nodes v3, v4 and v5 cannot be localized
since they all have only one or two colored neighbors.
However, since the wheel structure is globally rigid, it
should be able to localize all nodes on the wheel. Therefore,
in [9] the authors propose a method to detect such wheel
structures and use them to perform localization beyond
trilateration.

Even though the wheel structure is localizable due to its
globally rigid, it may not lead to unique realization of node
positions as claimed in [9]. Fig. 1b shows such an example.
In this example, v2 to v6 are all neighbors of v1 and form a
circle, together with v1 they form a wheel structure. Even
assuming that the other nodes already know their posi-
tions, v4 and v5 cannot decide their positions due to a pos-
sible flip at v 04 and v 05. Notice that this flip does not violate
the distance measurements among all nodes. Therefore,
simply detecting wheel structure (as in [9]) is not sufficient
to realize all nodes.

In order to overcome the problem of wheel structure
above, we can use sweep operations to check the consis-
tency of possible positions of nodes in a local neighbor-
hood and localize them if possible. Basically, we first
compute all pairs of possible positions of two neighboring
nodes, then calculate the corresponding distances between
them. If there is only one pair of possible positions which
can match the real distance measurement, these two nodes
can then be realized. To simplify the operation, we limit
such sweeps in two-or three-hop ranges from the process-
ing node. This is different from the method used in [8],
since they do not limit the range and type of sweep oper-
ations which leads to possible exponential growth of
complexity.

Next we present two greedy algorithms which use local
sweeps in two-hop or three-hop neighborhood to localize
nodes beyond trilateration. The key idea is using two
neighboring nodes whose ranks are both 2 to localize each
other. Since when a node’s rank reaches 2, its location has
been limited to two possible positions. The distance be-
tween these two nodes will be used to eliminate the bogus
positions. Both methods still use the general greedy frame-
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work (Algorithms 1 and 4) by only modifying the MARK
procedure with local sweeps.

Fig. 2 illustrates examples for the first method. In this
method, when we consider to mark a node u as a new black
node, we check the number of new nodes that can be real-
ized not only via trilateration but also using a local sweep
in two-hop neighborhood of u. If there exist two white
neighbors w and v with rank of 2 and they are neighbors
to each other, u can check whether there is a pair of possi-
ble positions of these two nodes which can uniquely satisfy
the distance measurement between them. If yes as shown
in Fig. 2a, we consider both v and w marked as green by u.
Otherwise, as shown in Fig. 2b, they cannot be realized by
u. Algorithm 5 shows the modified MARK process. Hereaf-
ter, we call this method (consists of Algorithms 1, 4, 5)
Greedy-Sweep-1.

Algorithm 5. MARK1(u,color)

1: All lines (Lines 1–12) in Algorithm 2 except for
changing MARK to MARK1.

2: if any two u’s white neighbors v and w satisfying
r(v) = r(w) = 2 and they are neighbor to each other
then

3: if both v and w have unique positions to
guarantee the consistence of distance measurement
then

4: if color = black or green then
5: MARK1(v,green) and MARK1(w,green).
6: end if
7: if color = blue then
8: MARK1(v,blue) and MARK1(w,blue).
9: end if
10: end if
11: end if
Algorithm 6. MARK2(u,color)

1: All lines (Lines 1–11) in Algorithm 5 except for
changing MARK1 to MARK2.

2: if any u’s white neighbors v and any v’s white
neighbor w satisfying r(v) = r(w) = 2 and they are
neighbor to each other then

3: if both v and w have unique positions to
guarantee the consistence of distance measurement
then

4: if color = black or green then
5: MARK2(v,green) and MARK2(w,green).
6: end if
7: if color = blue then
8: MARK2(v,blue) and MARK2(w,blue).
9: end if
10: end if
11: end if
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The second method based on sweep is an extension of
Greedy-Sweep-1. It further considers the nodes in u’s

three-hop neighborhood when we process u. Fig. 3 illus-
trates the examples. Node u will check its one-hop neigh-
bor v and v’s neighbor w about their possible positions.
Algorithm 6 presents the corresponding MARK procedure
used in this method. We call this method (consists of Algo-
rithms 1, 4, 6) Greedy-Sweep-2. It is clear that in each step
Greedy-Sweep-2 can localize more sensors than previous
methods. Therefore, the number of anchors used in its out-
put is the least.
4.4. Greedy does not lead to optimal solution

All greedy algorithms may not generate the optimal
solution for MCLP. Fig. 4 illustrates such an example with
a 7-sensor network. Running Greedy-Tri-1 on the network,
the result is shown in Fig. 4a. v7 is first marked as black
since it has 6 white neighbors with rank 0. Then all white
nodes have the same amount of white neighbors at each
rank. Thus, v6 is marked since it has the highest ID among
them. Then v5 is colored next since it has the highest ID
among nodes have 1 white neighbor with rank 2. And v3

is colored green by v5. At last v4 is colored since it now
has two neighbors with rank 2. After that, v1 and v2 will
be colored in green. This gives the solution as shown in
Fig. 4a. If we run Greedy-Tri-2, Greedy-Sweep-1 or Greedy-
Sweep-2 on the network, the same solution will be gener-
ated. However, the optimal solution of MCLP on this net-
work should be three nodes like v1, v2, v3 or v4, v5, v6, as
v7

v6

v5

v4

v3

v2

v1 v7

v6

v5

v4

v3

v2

v1

(a) greedy solution (b) optimal solution

Fig. 4. Greedy algorithm does not lead to the optimal solution.
shown in Fig. 4b. After coloring these three nodes, v7 can
be marked as green, and then remaining nodes can also
be marked as green.

5. Weighted version of MCLP

So far, we only consider minimizing the number of an-
chor nodes needed to realize the network. However, in
many applications, the cost of setting an anchor node at
different locations may vary. For example, some nodes
may locate in an area which is difficult to install anchor de-
vices. Therefore, it is nature to model the minimum cost
localization problem in a weighted fashion. We assume
that each sensor node v has a weight w(v) to become an an-
chor node. The goal of minimum cost localization problem
is now to minimize the total weight of all anchor nodes
needed to localize the network. The formal definition is gi-
ven as follow:

Definition 2 (Weighted Minimum Cost Localization Problem
(WMCLP)). Given a sensor network G, find a subset of
sensors B to be anchor nodes such that (1) all sensors can
be localized and realized, given the graph, the length of all
links, and positions of all anchor nodes; and (2) the total
weight of anchor nodes (i.e.,

P
v i2Bwðv iÞ) is minimized.

Fortunately, all proposed greedy algorithms can be eas-
ily extended to handle this weighted version. Basically, at
each step we select the node whose c(v)/w(v) is maximum,
i.e., the ratio between the number of nodes localized by
node v and v’s weight is maximum. The only modifications
from Algorithms 3 and 4 are lines shown in Algorithms 7
and 8.

Algorithm 7. WEIGHTED-GREEDY-SELECTION1

Line 3: Redefine ci(v) to be the ratio of the number of
v’s neighbors with rank i to v’s weight w(v).
Algorithm 8. WEIGHTED-GREEDY-SELECTION2

Line 9: Return v with the maximum c(v)/w(v).
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6. Simulation results
To evaluate our proposed methods for MCLP, we con-
duct extensive simulations on random generated sensor
networks. In our simulations, we deploy 50–1000 sensors
uniformly in a 1200 � 1000 rectangle region. We use both
unit disk graph model and random graph model to gener-
ate network topology (i.e., distance measurements among
sensors). In unit disk graph model, we set the transmission
range of each sensor as 80. If the distance between two
sensors are smaller or equal to 80, we assume there is dis-
tance measurement between them. Fig. 5a shows an exam-
ple of such topology with 200 sensors. In the random graph
model, whether there is an edge between a pair of nodes is
decided randomly with a prefixed probability. In this case,
the sensing range of each node may be various. For all sim-
ulation settings, we repeat the simulation for 100 times,
the results presented here are the average results over
these 100 simulations.

In our simulations, we implement five algorithms,
namely, Greedy-Random, Greedy-Tri-1, Greedy-Tri-2, Gree-
dy-Sweep-1, and Greedy-Sweep-2. In Greedy-Random algo-
rithm, trilateration is recursively used to localize as many
sensors as possible, and when there is no more nodes can
be localized, a random node is picked to become the next
anchor node, then this procedure is repeated until every
sensor is localized. Thus, Greedy-Random is just like Algo-
rithm 1 except for changing Line 10 to randomly pick a
white node. The only metric of our evaluation is the num-
ber of anchor nodes (black nodes) selected by each algo-
(a) The Sensor Network (b) Greedy-R

(d) Greedy-Tri-2 (e) Greedy-S

Fig. 5. An example of MCLP: different algorithms generated different results. Her
are sensors whose locations are realized by localization algorithms. Running thes
nodes in their results are 43, 42, 34, 33, and 27, respectively.
rithm. It is obvious that the less anchor nodes selected
the better. Notice that it is not practical to obtain the opti-
mal solution of MCLP for comparison even using the
exhaustive search on all anchor sets, since checking
whether a solution in MCLP can realize all sensors is still
NP-hard.

Fig. 5 shows a group of results for all algorithms on the
same unit disk graph with 200 sensors. In the results, black
nodes are anchor nodes and green nodes are sensors whose
location is realized by other nodes. In this particular exam-
ple, Greedy-Random selects 43 anchor nodes, while our
proposed greedy methods select 42, 34, 33, and 27, respec-
tively. It is clear that these greedy algorithms perform bet-
ter than pure greedy-random algorithm. In addition, using
sweeping operation beyond the trilateration can improve
the performance.

We run our algorithms on both unit disk graph model
and random graph model. Notice that in random graph
model there could be no distance measurement even be-
tween two nearby sensors. The results are plotted in Fig. 6.

Fig. 6a and b shows the number of black nodes used by
each algorithm for different models with different node
densities. From these results, we have the following obser-
vations. First, in all the results, greedy algorithms with lo-
cal sweep use less anchors than greedy algorithms with
pure trilateration, and they all use less anchors than gree-
dy-random algorithm. For example, with random network
with 400 nodes, Greedy-Sweep-2 uses 38% less anchors
than Greedy-Random and 33% less anchors than Greedy-
Tri-2. Second, if an algorithm uses more information (i.e.,
andom (c) Greedy-Tri-1

weep-1 (f) Greedy-Sweep-2

e, black nodes are the anchors selected by our algorithms and green nodes
e five algorithms on this particular 200-node network, the number of black
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information from larger neighborhood), it can achieve bet-
ter performance. For example, Greedy-Sweep-2 is better
than Greedy-Sweep-1. For random network with 400 nodes,
Greedy-Sweep-2 uses 31% less anchors than Greedy-Sweep-
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1. Third, when the network become denser, the number of
anchors first increases and then decreases. This is reason-
able and due to the underlying connectivity of the net-
work. Initially, when the network is sparse (not well
connected), network with more sensors needs more anchor
nodes to be localized. However, when the network be-
comes dense enough and well connected, the number of
anchors will drop since most of sensors can be localized
via their neighbors. In Fig. 7, we plot the connectivity prob-
ability (the probability that the network is fully connected
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Fig. 7. Connectivity probability: probability that the network is fully
connected.

(a) Normal Network (b) With Dis

(d) With “O” Hole (e) With “H

Fig. 8. Different shapes of sensor network
as a single connected component) of the underlying net-
work when the number of nodes increases. It is clear that
when the number of nodes is larger than 400, the network
becomes well connected (possibly fully-connected) and
thus need less anchors to localize the whole network.
Fourth, it is interesting that the improvement of sweep-
based algorithms is more clear when the network is nei-
ther too sparse nor too dense. In addition, its improvement
in random graphs is much larger than in unit disk graphs.
This is due to the existence of special nonuniform sub-
structure in random graphs.

It is also interesting to see the percentage of anchor
nodes needed to localize a network. Fig. 6d and e shows
the trend of such a percentage when the network density
increases. It is clear that the percentage always decreases
with increasing of density. In other words, less percentage
of anchors nodes is needed for localization in denser net-
works. For example, when the network only has 100 nodes,
over 90% of them need to be anchor nodes. But when the
network has 1000 nodes, using only around 1% of them
as anchor nodes can localize the whole network.

For all simulation results, the above conclusions are
consistent for both unit graph model and random graph
model. However, it is also clear from these results that ran-
dom graph model needs more anchor nodes than unit
graph model does.

We also conduct the simulations for weighted version
of MCLP where we generate a random weight w(v) for each
sensor v. Here, w(v) is randomly chosen from 1 to 10.
Fig. 6c and f shows the results. The trends of performances
are similar to those in the unweighed case.
k Hole (c) With Square Hole

” Hole (f) “E” -Shape

s used in the last set of simulations.
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Finally, instead of uniformly deployed sensor networks
in a rectangle region, we consider sensor networks with
special shapes or with different sizes of holes (as shown
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Fig. 9. Results of different algorithms of MCLP on networks with different shape
percentage of black nodes selected by the algorithm.
in Fig. 8). The results are plotted in Fig. 9. The perfor-
mances of our algorithms are still consistent over these
networks.
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s (the number of nodes increase from 50 to 1000). Plots show the average
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7. Limitations and discussions

We have several ideal assumptions when we study the
new minimum cost localization problem (MLCP) in theory.
In this section, we discuss the limitations of our study,
some possible relaxations on assumptions, and related
practical issues.

7.1. Underlying localization methods

In this paper, we use trilateration and/or local sweep
techniques as the underlying localization methods in our
proposed greedy algorithms for MLCP. However, any other
localization methods can be adopted in our general greedy
framework. In general, the better the localization method
is (i.e., it can localize more sensors in each step), the better
performance the greedy framework can achieve for MLCP.

7.2. Global knowledge of measurements

Our greedy-based algorithms take the global knowledge
of all distance measurements (the graph G) as the input for
solving the MLCP. This maybe unrealistic in many sensor
applications. We assume that either the whole sensor net-
work is connected so that sensor nodes can send their
measurements to a sink who can run the algorithms or
the proposed localization algorithms are separatively run-
ning for each connected component. In addition, the pro-
posed algorithms can be limited within certain subarea
instead of the whole network. In some sensor applications,
the global information of all possible measurements could
be available before the actual deployment (e.g. the rough
deployment position of each sensor and its measurement
range are known), then our algorithms can be applied be-
fore the deployment to pick the anchor nodes.

7.3. Accurate distance measurements

In our proposed methods and simulations, we assume
that the distance measurements are accurate and there is
no collinear sensors. However, in practice, nearly collinear
neighborhood or measurement errors could cause inaccu-
rate positioning and thus might lead to poor performance
of localization. If there are three collinear anchors (or
neighbors with known positions) but with accurate dis-
tance measurements, then the collinear can be easily de-
tected and our algorithms can simply treat these three
anchors as two. If there are distance measurement errors,
more careful consideration need to be adopted. Fortu-
nately, there are several studies on robust localization
algorithms [22–25] which can identify possible flip ambi-
guities caused by measurement errors and take necessary
actions to mitigate them. Again, our proposed framework
can use any localization algorithm include these robust
localization algorithms to evaluate possible anchor nodes.

7.4. Any node can be an anchor

In our study, we assume that every sensor node could
be selected as an anchor. However, in some applications
(especially heterogenous sensor networks), some sensors
may not act as anchors due to equipment or physical lim-
its. In these cases, we can model the MLCP problem as the
weighted version by giving these sensors infinite costs.

7.5. Static networks

Finally, we assume that the sensor network is static. If
sensors are mobile or some sensors fail, the localization
algorithms need to be re-run since the solution of MLCP
may also change.

8. Conclusion

In this paper, we formally define the minimum cost
localization problem (MCLP) to find the minimum anchor
set to localize the whole network. The problem is compu-
tationally challenging and has never been studied. We
present four different greedy algorithms to find the anchor
set for a given network. Extensive simulations have been
conducted and demonstrated the efficiency of our
algorithms.

All proposed algorithms are given in centralized for-
mats, however, they can be easily implemented in a dis-
tributed fashion (the propagation of localization is
limited to a local region). We leave such implementations
and their evaluations as our future work. In addition, find-
ing more efficient algorithms which can achieve constant
approximation of MCLP is also an interesting direction.
However, such problem is an extremely challenging task
since even to check whether a solution (a set of anchors)
can realize all sensors is still NP-hard.
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