
airFinger: Micro Finger Gesture Recognition via
NIR Light Sensing for Smart Devices

Qian Zhang∗† Yetong Cao† Huijie Chen† Fan Li† Song Yang† Yu Wang‡ Zheng Yang∗ Yunhao Liu∗
∗ Tsinghua University, China

† Beijing Institute of Technology, China
‡ Temple University, USA

Abstract—Micro finger gesture recognition is an emerging
approach to realize more friendly interaction between human
and smart devices, especially for small wearable devices, such
as smartwatches and virtual reality glasses. This paper proposes
airFinger, a novel solution utilizing NIR light sensing to realize
both real-time gesture recognition and finger tracking aiming at
micro finger gestures. Using a custom NIR-based sensor with
novel algorithms to capture subtle finger movements, airFinger
enables to detect a rich set of micro finger gestures and track
finger movements in terms of scrolling direction, velocity, and
displacement. Besides, airFinger is capable of effective noise
mitigation, gesture segmentation, and reducing false recognition
due to the unintentional actions of users. Extensive experimental
results demonstrate that airFinger has robustness against indi-
vidual diversity, gesture inconsistency, and many other impacts.
The overall performance reaches an average accuracy as high
as 98.72% over a set of 8 micro finger gestures among 10, 000
gesture samples collected from 10 volunteers.

Keywords-micro finger gesture, light sensor, gesture recogni-
tion, interaction

I. INTRODUCTION

Micro finger gestures have gained an impetus for interaction

between human and smart devices in recent years. This kind

of gesture is performed by subtle finger movements, such as

thumb-tip rubbing or drawing against index finger-tip, which

allows more effective and rapid manipulation than gestures

performed by the whole hand or arm. Additionally, it is good

for privacy because users can operate devices without being

noticed by others, avoiding fatigue and social awkwardness by

using body-scale gestures in public places [1], [2]. Therefore,

micro finger gestures are more natural, fast, and unobtrusive,

especially for interaction with wearable devices, such as

smartwatches and virtual reality glasses.

As micro finger gestures emerge as a promising form for

interaction, many studies have exploited to recognize such

fine-grained gestures. Google’s Soli sensor [3] uses millimeter-

wave radar to sense micro finger gestures. However, it has

high energy consumption with a high-frequency. Other RF-

based methods use Wi-Fi [4]–[9], RFID [10]–[12], or acoustic

signals [13]–[17] to detect gestures, which are vulnerable to

environmental changes. Camera-based methods utilize depth

and infrared cameras [18]–[20] or RGB cameras [21] to enable

This work is supported in part by the NSFC under grant No. 61832010,
61632008, 61672319, 61872081, 61632013, 61772077. Fan Li is the corre-
sponding author.

Fig. 1. Recognize micro finger gestures using a prototype of airFinger.

users to interact with smart devices by hand gestures. These

methods might present privacy risks and also have relatively

high energy and processing consumption. Besides, infrared

pyroelectric sensors are leveraged to recognize micro thumb-

tip gestures [22]. This approach is adaptable to the recognition

of micro finger gestures, but its performance suffers from

varied surrounding temperatures. Magnetic sensors [23], [24]

can also sense finger-level gestures. However, they need to

instrument the fingers with extra sensors.

Recently, an alternative type of methods using Near Infrared

(NIR) light sensing may solve the above issues [25]–[28].

It is because NIR emitters/LEDs and receivers/photodetectors

(PDs) are highly energy-effective. Additionally, the NIR sen-

sors are small (3mm in diameter of each LED or PD) and easy

to be deployed, which benefits to be augmented in existing

smart devices, especially for small wearable devices. Thus,

this kind of method can achieve low energy consumption

and low processing power for reliably micro finger gesture

recognition. However, its inability to track finger movements

brings limits to its application scopes. A technique capable of

micro finger gesture detection and finger tracking would be

more desirable, which is relatively challenging and remains

unexploited. Therefore, we intend to enable the NIR-based

method to achieve both gestures detection and finger tracking

for micro finger gestures.

In this paper, we propose airFinger, a technique to reliably

detect micro finger gestures and track finger movements in

real-time via sensing reflected NIR light from fingers. A

typical scenario is shown in Fig. 1, in which a developed

custom prototype of airFinger recognizes a circle micro finger

gesture performed close to it.

To realize high accurate gesture recognition and real-time

finger movements tracking, airFinger faces two key challenges.

552

2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDCS47774.2020.00073

20
20

 IE
EE

 4
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
is

tri
bu

te
d

C
om

pu
tin

g
Sy

st
em

s (
IC

D
C

S)
 |

97
8-

1-
72

81
-7

00
2-

2/
20

/$
31

.0
0

©
20

20
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

D
C

S4
77

74
.2

02
0.

00
07

3

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

The first challenge is to enable airFinger robust to interfer-

ences. On one hand, although NIR PDs are sensitive to light

changes, which is suitable to capture imperceptible and minia-

ture finger movements, they are also affected by surrounding

varied sunlight intensities and other objects moving beside

the fingers. To enhance robustness, we design algorithms that

enable to automatically mitigate noise, dynamically segment

gestures, as well as preserve unique Received Signal Strength

(RSS) patterns of micro finger gestures. On the other hand, we

observe that people exhibit different RSS patterns for the same

gesture (individual diversity) and perform gestures slightly dif-

ferently from time to time because of different finger positions,

towards angles, and moving speeds (gesture inconsistency).

To reduce these influence on recognition accuracy, we select

25 kinds of RSS features that are robust against individual

diversity and gesture inconsistency via feature importance

feedback from a Random Forest (RF)-based classifier, which

also saves computing costs and avoids pre-training.

Another challenge of airFinger is to synchronously identify

finger moving direction, velocity, and displacement. Although

NIR PDs can sense small RSS effects from the micro move-

ments, how to precisely track fingers from the RSS patterns for

micro finger gestures is an issue that has not been studied. We

develop an energy-effective NIR-based prototype and design

a processing-efficient algorithm, which drives airFinger to

synchronously track fingers in real-time.

We evaluate the performance of airFinger with 10, 000
gesture samples collected from 10 volunteers. Experimental

results show that it can achieve a high average accuracy of up

to 98.72% among 8 micro finger gestures.

The main contributions of this paper are summarized in the

following:

• We propose airFinger, to our best knowledge, the first

work that enables to accurately detect and synchronously

track micro finger gestures using NIR light sensing. It has

a small size, low cost, and can be deployed with existing

smart devices, which provides an alternative new type of

interaction between humans and devices.

• We develop a system integrating a custom prototype

of NIR-based sensor and energy-effective and power-

efficiency algorithms to effectively detect 8 micro finger

gestures and track fingers in terms of scrolling direction,

velocity, and displacement.

• We conduct extensive experiments with 10 volunteers

under different real scenarios. The results show that

airFinger reaches an average accuracy as high as 98.72%
over 10, 000 gesture samples, which highlights its ability

to enable future micro finger gestures interaction with

ubiquitous computing applications.

The rest of this paper is organized as follows. Section II

surveys related work. Section III describes NIR principles and

a gesture set. Section IV presents the design details. Section V

shows evaluation results and Section VI discusses future work.

Finally, Section VII concludes the paper.

II. RELATED WORK

This section reviews related works on gesture and motion

recognition according to the following categories.
NIR light sensing-based methods: According to light prop-

agation and reflection models, many works leverage visible

light intensity or shadow to infer gestures and finger positions,

such as Okuli [25] and LiGest [29]. Besides, an infrared-

based sensor is used to detect 3D hand motion direction [26].

However, these methods are not suitable for micro finger

gestures with subtle hand motions. Focusing on finger-level

gestures, zSense [28] uses NIR sensing to recognize gestures

with low power, low energy, and low cost. Compared to

zSense, preserving its advantages of low consumption, our

work enables to synchronously track fingers and effectively

detect micro finger gestures.
Camera-based methods: Depth cameras, such as Kinect,

have been used to design a hand gesture recognition system

[18], [19]. Leap Motions can be combined with Kinect to

recognize gestures, which provides more kinds of features to

improve recognition performance [20]. Besides, a technique

uses only RGB cameras on off-the-shelf mobile devices to

recognize in-air gestures [21]. These methods can achieve high

recognition accuracy. However, they have potential issues of

privacy and high energy and computing cost [30], [31].
RF-based methods: RF signals (e.g., radar, sound, Wi-

Fi, RFID) have also been used for effective finger gesture

detecting. Soli [3] uses 60GHz radar to achieve sub-millimeter

accuracy of 4 gestures. FingerIO [13], Echotrack [14], Strata

[15], LLAP [16], and VSkin [17] use inaudible sound to mea-

sure the distance between hands and devices or the distance

of finger movements. WiGest [5], WiFinger [6], Widar [7],

and WiAG [8] reuse existing Wi-Fi signals and extract unique

patterns to infer gestures. Besides, RFID technology has also

been used to detect gestures by building theoretical models

to depict signal changes received from RFID readers [10]–

[12]. These RF-based methods utilize existing signals to track

or recognize human gestures, however, they might have high

cost and be susceptible to ambient disturbances.
Other methods: Magnetometers have been explored for

high-precision finger tracking, such as uTrack [23], Syn-

chroWatch [24], and FingerPad [32]. FingerSound [33] lever-

ages an inertial measurement unit to capture thumb move-

ments. Photoplethysmography sensors enable to track 9 finger-

level gestures [34] and detect 10 gestures by wearing a

smartwatch [35]. These sensors are suitable to infer gestures,

but they might not be accurate enough to detect micro finger

gestures or they instrument the fingers with extra sensors,

which might suffer from the uncomfortable user experience.

Thermal infrared signals radiating from fingers enable to cap-

ture subtle finger movements for micro gestures [22], however,

its accuracy is affected by varied surrounding temperatures.

III. PRELIMINARIES

A. NIR Sensing
We leverage harmless NIR, whose wavelength is from

740nm to 1400nm and invisible to human eyes. It has identical

553

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

(a) Circle (b) Double Circle (c) Rub (d) Double Rub (e) Click (f) Double Click (g) Scroll Up (h) Scroll Down

Fig. 2. Gesture set.

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Circle

Session 1
Session 2

(a) Circle

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Double Circle

Session 1
Session 2

(b) Double Circle

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Rub

Session 1
Session 2

(c) Rub

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Double Rub

Session 1
Session 2

(d) Double Rub

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Click

Session 1
Session 2

(e) Click

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Double Click

Session 1
Session 2

(f) Double Click

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Scroll Up

Session 1
Session 2

(g) Scroll Up

0 5 10 15 20 25

Sample Index

0

50

100

150

200

250

300

R
S

S

Scroll Down

Session 1
Session 2

(h) Scroll Down

Fig. 3. Characteristic RSS readings of gestures.

characteristics to visible light, such as light reflection and

refraction. If setting one NIR LED and conducting a micro

finger gesture in close proximity towards the LED, as human

skin can only absorb a tiny amount of NIR [36], most of the

emitted NIR will be reflected by the fingers. Then, the highly

sensitive NIR PDs enable to capture such subtle light changes

caused by the gesture and convert the RSS into electrical

signals. Because the fingers of a user move uniquely when

performing gestures and thus generate unique patterns in the

time-series RSS, we are motivated to use NIR LEDs and PDs

to recognize micro finger gestures.

B. Gesture Set

To design a gesture set, we first explore RSS readings

using one NIR LED (304IRC-94, 940nm, 20◦) and one NIR

PD (304PT, 700-1, 000nm, 80◦) located side by side. One

right-handed volunteer is asked to perform a large number of

candidate gestures. All gestures are performed twice, denoted

as two sessions. Then, we observe the RSS readings and

select eight common and intuitive micro finger gestures that

have their unique RSS patterns in each session and present

consistent RSS patterns among the two sessions. The gestures

and their corresponding RSS readings are shown in Fig. 2 and

Fig. 3, respectively.

According to their recognition requirement, the gesture set

includes two types: Detect-aimed gestures and Track-aimed
gestures. Detect-aimed gestures contain circle, double circle,

rub, and double rub (Fig. 2 (a)-(d)), which are performed

by moving the thumb-tip against the tip of the index finger,

like drawing a picture. Additionally, to satisfy the need to

interact with smart devices using relatively traditional gestures,

detect-aimed gestures also contain click and double click (Fig.

2 (e), (f)), resembling clicking/pressing on a touchscreen or

double-clicking using a mouse. The gestures of click and

double click can be performed in the air or against the hand

back. Comparing to detect-aimed gestures that need to be

detected, Track-aimed gestures also need to be synchronously

tracked in terms of finger movements direction, velocity, and

RSS
Readings

Data Processing

Detect-aimed Gesture Recognition

g

Data Processing

Gesture
Segmentation

Classification

Displacement
Mapping

Direction
Detection

Velocity
Detection

LED

PD

Noise
Mitigation

Feature
Extraction

v D

Displacement
Mapping

Direction
Detection

Velocity
Detection

v D

Track-aimed Gesture Recognition

Detect-aimed Gesture Recognition

ClassificationFeature
ExtractionType of

Gestures

D
et

ec
t-

ai
m

ed
Tr

ac
k-

ai
m

ed

Fig. 4. Overview of airFinger.

displacement. It contains scroll up and scroll down (Fig. 2 (g),

(h)), simulating scroll motions, such as sliding up and down

to browse information on a webpage.

IV. DESIGN OF AIRFINGER

A. Overview

The proposed airFinger includes three major parts, Data
Processing, Detect-aimed Gesture Recognition, and Track-
aimed Gesture Recognition, which is shown in Fig. 4. In

Data Processing (Section IV-B), we design a Square Based

Calculation (SBC) algorithm, whose advantages are two-fold.

First, it can effectively mitigate noise, such as reflected NIR

by surrounding objects, hardware noise from the device itself,

and varied sunlight intensities. Second, the results of SBC

can help to detect the starting and ending points of a gesture.

Additionally, we design a Dynamic Threshold (DT) algorithm

to segment gestures, which can automatically and dynamically

compute a threshold to find starting and ending points of a

gesture under different scenarios.

Detect-aimed Gesture Recognition (Section IV-C) aims to

recognize micro finger gestures by extracting unique features.

Traditional methods are based on observing and leveraging

554

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

standard features, such as maximum peak and mean amplitude,

which might be poor in robustness. Instead, we use a toolbox

to firstly extract a large number of features from the results

of Data Processing. Then we utilize feature feedback from a

random forest classifier to rank features by their contributions

to classification. Next, we select the top 25 features from the

importance ranking of feedback.

Track-aimed Gesture Recognition (Section IV-D) aims to

track fingers synchronously while performing track-aimed

gestures. RSS readings caused by track-aimed gestures exhibit

unique patterns comparing with other gestures, however, the

uniqueness cannot be directly applied to infer scroll direction,

velocity, and displacement. To track fingers, we build a custom

NIR-based sensor with alternating NIR LEDs and PDs. The

sensor has low power consumption, reasonable price, and

small size (retailing $0.2 and 3mm in diameter of each NIR

LED or PD). Additionally, we design a ZEBRA algorithm,

which enables airFinger to track finger direction, velocity, and

displacement of the scrolling.

Because track-aimed gestures need to be tracked beside

detection, which is different from the detect-aimed gestures,

so they are handled differently. We design an algorithm

to distinguish these two types of gestures (Section IV-E).

Additionally, because recognition accuracy of airFinger is

affected by unintentional finger movings (non-gestures), such

as scratching, we also propose an algorithm to effectively

remove such interferences (Section IV-F).

B. Data Processing

1) Noise Mitigation: Technically, RSS readings are only

affected by moving fingers of gestures, denoted as Sges.

However, besides sudden RSS changes due to hardware, in

practice, the other parts of the hand will also reflect the

NIR lights, which results in relatively static noise of the RSS

readings, denoted as Nstatic. Additionally, the RSS readings

are also affected by relatively dynamic noise, denoted as Ndyn,

which might be from two aspects. First, except the emitted

NIR, other NIR sources, such as sunlight, are affected along

with the finger movements. Second, surrounding objects will

also reflect the NIR to the NIR PDs. So the RSS readings can

be formulated as RSS = Sges +Nstatic +Ndyn. Because of

Nstatic and Ndyn, although the RSS readings surely capture

subtle finger motions, the original RSS is not suitable to be

directly used to recognize gestures.

Embracing this issue, firstly, we add a 3D-printed black

shield to limit Field-of-View (FoV) of the PDs, which greatly

reduces the effect of noise. Secondly, we propose a Square

Based Calculation (SBC) algorithm to eliminate the noise. It

sets a sliding window of size w to check real-time RSS read-

ings, in which it subtracts values of the current window by the

previous and squares the magnitudes (ΔRSS2). Then Nstatic

will be removed. Additionally, as Ndyn has a lower magnitude

comparing to Sges, Ndyn will be relatively mitigated, while

Sges will be relatively enhanced. Therefore, the SBC algorithm

benefits to mitigate noise and strengthen unique patterns in

(a) Original RSS readings.

(b) RSS readings after SBC and DT algorithms.

Fig. 5. Results of SBC, DT algorithms to mitigate noise and segment
gestures.

RSS readings. Besides, it is simple and efficient with O(n)
time complexity.

2) Gesture Segmentation: We observe that RSS values are

relatively stable when no gesture is performed and there exist

significant changes when a gesture is performed, which helps

to segment gestures. After the process of SBC, this observation

will be more obvious. Therefore, based on the results of

SBC, we could apply a threshold to find the starting and

ending points of a gesture. However, a fixed threshold cannot

work, because different positions of fingers (e.g. distances

from fingers to the sensors) will change the range of ΔRSS2

values. We note that the optimal sensing distance will be

discussed in Section V-D. To solve this issue, we design

a Dynamic Threshold (DT) algorithm to automatically and

dynamically segment gestures. This algorithm is inspired by

the problem of background and foreground segmentation in

computer vision [37]. We denote a set of m signals of ΔRSS2

as S = {r1, r2, ..., rm}. Given a threshold Iseg , S can be

divided into two classes G and NG representing gestures and

non-gestures, respectively:

G = {ri|ri > Iseg, ri ∈ S},
NG = {ri|ri <= Iseg, ri ∈ S}. (1)

We set ω0 and ω1 as probabilities of the two classes separated

by Iseg . They are computed by:

ω0 =
|G|
m

, ω1 =
|NG|
m

. (2)

Mean value of each class is denoted as μ0 and μ1:

μ0 =

∑

ri∈G
ri

|G| , μ1 =

∑

ri∈NG

ri

|NG| . (3)

Then, we iteratively calculate a threshold Iseg that maximizes

inter-class variance:

Iseg = argmax
Iseg

ω0ω1(μ0 − μ1)
2. (4)

Thus, given an initial threshold, e.g., I ′seg = 10, along with

accumulated RSS readings, we can calibrate and update the

555

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SELECTED FEATURES.

Category Features

Standard Deviation, Variance, Count below/above mean,
Last location of maximum, Partial autocorrelation,
First location of minimum/maximum, Sample entropy,

Time Longest strike above/below mean, Kurtosis, AR,
Domain Autocorrelation, Number of peaks, Quantile,

Complexity-invariant distance [39], Mean absolute change,
Time reversal asymmetry statistic, Absolute energy,
Energy ratio by chunks, Approximate entropy, Length,
Linear trend, Augmented dickey fuller, c3 [40].

Frequency Fast Fourier Transform,
Domain Continuous Wavelet transform.

∗ Selected features used to remove other interferences in bold.

threshold Iseg . Then, to detect a starting point, DT contin-

uously compares ΔRSS2 with the dynamically computed

threshold Iseg . If ri ∈ S exceeds Iseg , it estimates a starting

point at time i; if ri ∈ S is below Iseg , an ending point is

detected at time i. Additionally, if two segments are separated

by less than time te, we cluster them into a single gesture. The

results of SBC and DT algorithms are shown in Fig. 5, which

demonstrates the effectiveness of our algorithms to mitigate

noise and segment gestures.

C. Detect-aimed Gesture Recognition

1) Feature Extraction: Like any machine learning-based

application, feature extraction is critical to the success of

airFinger. Here, the feature extraction has two issues. First,

we find that only using standard features, such as the number

of peaks, derivative, or skewness, results in low recognition

accuracy. Second, due to individual diversity and gesture

inconsistency, ΔRSS2 values are affected by how a gesture

is performed, such as finger moving speed, finger position and

pointing direction. Thus, features based on specific RSS values

are not appropriate for classification.

To obtain distinguishing and consistency features, firstly we

use a toolbox tsfresh [38] to automatically extract a large

number of candidate features. If using all these features with

a limited amount of training data, the problem of over-fitting

might happen. Thus, we want to select a set of features from

the candidate features. We apply a Random Forest (RF)-

based classifier to rank these features by their importance

feedback. Next, we combine signal observation and feature

importance to select 25 kinds of features from both time and

frequency domain, which are listed in Table I. These features

are most relevant to micro finger gestures and independent

on RSS effects from noise interferences, individual diversity,

and gesture inconsistency, which derives a high recognition

accuracy. Therefore, we reduce the amount of data needed for

training and improve classification accuracy.

2) Classification: Recording RSS readings when users are

performing gestures, airFinger recognizes the gestures in real-

time using the selected features above. We apply an RF-based

classifier to recognize micro finger gestures because several

works have shown that RF can perform well to classify large

amounts of data regarding accuracy, robustness, and scalability

[22]. Besides, comparing to Hidden Markov Models (HMM),

Dynamic Time Warping (DTW), and Convolutional Neural

Networks (CNN), RF has lower computational expense, which

is more suitable for real-time gesture recognition on wearable

smart devices [3]. Moreover, we compare its recognition ac-

curacy with other light-weighted classifiers including Logistic

Regression (LR), Decision Trees (DT), and Bernoulli Naive

Bayes (BNB). We find that the RF-based classifier has the

best performance, which is described in Section V-E.

D. Track-aimed Gesture Recognition

To track a scrolling motion, we need to know its direction,

velocity, and displacement while a user is scrolling by finger

to operate a screen. To realize this, finger localization is an

intuitive method. Although Infrared Radiation (IR) proximity

sensors have been widely used to measure distances, such as

lidar or sensor unit GP2Y0A21YK0F of SHARP, they cannot

measure micro finger gestures, because the measurement scope

is larger than 10cm [41].

To solve this issue, firstly we design a special NIR-based

sensor consisting of NIR LEDs and PDs altering located close

to each other and side by side. For example, as shown in Fig.

6, two NIR LEDs (L1, L2) and three NIR PDs (P1, P2, P3)

are in the interval distributions. The FoV of NIR LEDs and

PDs are 20◦ and 80◦, respectively. Their irradiation scopes

and sensing scopes are denoted as IL1, IL2, and SP1, SP2,

SP3, respectively. Then, we design a ZEBRA algorithm to

track finger locations.

1) Direction: When a finger is posited in IL1, it reflects

NIR to P1 and P2. Thus, it will increase the signal values

of P1 and P2. Similarly, when the finger is posited in IL2,

it reflects NIR to P2 and P3 and increases signal values of

P2 and P3. Within a small FoV, we assume that P1 will not

receive the reflected NIR from IL2, and vice versa. Thus, if

P1 has earlier signal ascending than P3, the gesture is regarded

as scroll up. Otherwise, it is a scroll down. Two typical waves

of scroll up and scroll down are shown in Fig. 7. Note that, to

determine the orders of signal ascending of PDs, we use the

SBC algorithm (Section IV-B) to find ascending points and

ending points of gestures.

However, sometimes, users do not scroll completely be-

tween P1 and P3. They might scroll up only passing P1. Under

this condition, airFinger will only detect a signal ascending

point of P1 during the entire gesture duration, which also infers

that the signal ascending point of P1 happens before P3. So,

we still regard this gesture as scroll up. Similarly, if users

scroll down only passing P3, which results in only detecting a

signal ascending point of P3 during the entire gesture duration,

the gesture will be regarded as scroll down.

Therefore, we can identify scroll direction based on the

different orders of signal ascending points in real-time, without

waiting for the end of this gesture.

2) Velocity & Displacement: To track scroll velocity, as the

physical distance between P1 and P3 is fixed, the velocity

556

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Principle of
a NIR-based sensor.

P1

P2

P3

Ascending
Point of P1

Ascending
Point of P3

Ending
Point of P3

Sample Index

T
t

(a) Scrolling from P1 to P3, signal ascending of
P1 occurs before P3.

P1

P2

P3

Sample Index

Ascending
Point of P1

Ending
Point of P1

Ascending
Point of P3

T
t

(b) Scrolling from P3 to P1, signal ascending of
P3 occurs before P1.

Fig. 7. Signals of track-aimed gestures. Δt denotes time difference between signal ascending of P1 and P3. T denotes the
total duration time of a track-aimed gestures.

is proportional to the time difference Δt between signal

ascending of P1 and P3, which is denoted as v(Δt). We also

assume that every user scrolls at a constant velocity. Then

scroll displacement Dt during time t of a track-aimed gesture

is mapped as:

Dt = α · v(Δt) ·min{t, T}, (5)

where T is the total duration time of a track-aimed gesture,

and α is scroll direction (α = 1 denotes scroll up and α = −1
denotes scroll down).

Therefore, we can track scroll velocity and displacement

using the designed special sensor and we note that the dis-

placement can map to different scales according to different

application demands.
3) Summary: We list the three conditions of ZEBRA to

recognize direction, velocity, and displacement in terms of

scroll up in the following. The recognition for scroll down

is vice versa.

• When a user scrolls just through IL1, we use the orders

of signal ascending points to determine α. Since there are

no signal changes in P3, Δt is incalculable. We assign a

velocity v′ according to experience. Then Dt = α · v′ ·
min{t, T}.

• When a user scrolls through IL1 and IL2, we use the

orders of signal ascending points to determine α. Then
we get v(Δt) from Δt and T from the total scroll time.

Then Dt = α · v(Δt) ·min{t, T}.
• When a user scrolls through IL1 and IL2 and passes the

sensing space, α is determined by the orders of signal

ascending points. v(Δt) is determined by Δt. Since the

finger is out of sensing space, we use T to compute the

whole scroll duration. Then Dt = α · v(Δt) ·min{t, T}.
The detailed rules in ZEBRA are described in Alg. 1. When

only finding an ascending point of P1, we set this gesture as

scroll up. The velocity v(Δt) during time t is set according to

experience v′ and the displacement is Dt = α · v′ ·min{t, T}
(lines 2-7). When finding an ascending point of P1 before

P3, we still set this gesture as scroll up. The velocity v(Δt)
during time t is proportional to Δt and the displacement is

Dt = α · v(Δt) ·min{t, T} (lines 8-13). Similarly, when only

finding an ascending point of P3, we set this gesture as scroll

down. The velocity v(Δt) during time t is set according to

experience v′ and the displacement is Dt = α · v′ ·min{t, T}

ALGORITHM 1: ZEBRA Algorithm.

Input: RSS signals S.
Output: scroll direction α, velocity v(Δt) and scroll

displacement Dt during time t.
1 Find signal ascending point using SBC algorithm;

2 if only P1 has an ascending point, P3 has no
ascending point;

3 then
4 detect a scroll up gesture: α=1;
5 set velocity according to experience v′:

v(Δt) = v′;
6 Dt = α · v′ ·min{t, T};
7 end
8 if P1 has an ascending point before P3;
9 then
10 detect a scroll up gesture: α=1;
11 velocity is proportional to Δt: v(Δt) = Δt;
12 Dt = α · v(Δt) ·min{t, T};
13 end
14 if only P3 has an ascending point, P1 has no

ascending point;
15 then
16 detect a scroll down gesture: α=-1;
17 set velocity according to experience v′:

v(Δt) = v′;
18 Dt = α · v′ ·min{t, T};
19 end
20 if P3 has an ascending point before P1;
21 then
22 detect a scroll down gesture: α=-1;
23 velocity is proportional to Δt: v(Δt) = Δt;
24 Dt = α · v(Δt) ·min{t, T};
25 end

(lines 14-19). When finding an ascending point of P3 before

P1, we still set this gesture as scroll down. The velocity v(Δt)
during time t is proportional to Δt and the displacement is

Dt = α · v(Δt) ·min{t, T} (lines 20-25).

Overall, ZEBRA enables to simulate track-aimed gestures

in terms of direction, velocity, and displacement in real-time

with low computation and low energy costs.

557

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

E. Distinguish Detect-aimed and Track-aimed Gestures

As detect-aimed gestures and track-aimed gestures have

different recognition algorithms, we need to distinguish them

at the beginning of gesture performing. We observe that when

performing a detect-aimed gesture, signal ascending points

from all PDs almost occur simultaneously. However, when

performing a track-aimed gesture, signal ascending points

from all PDs occur in orders. So we set that when the

time difference between signal ascending points is less than

a threshold Ig , we regard the current gesture as a detect-

aimed gesture. Otherwise, it is regarded as a track-aimed

gesture. This algorithm is light-weighted in computing cost

and response time, which can effectively distinguish gestures

at the beginning of gesture performing. The performance of

this algorithm is shown in Section V-I.

F. Remove Other Interferences

RSS readings are affected by many other interferences, such

as a user unintentional moving fingers rather than performing

a gesture or sudden RSS changes due to hardware noise.

Because the interferences also cause significant changes in

RSS readings like what a gesture does, they can be falsely

segmented as a detect-aimed gesture. To remove such in-

terferences, we design a machine learning-based model to

identify gestures and non-gestures. Similarly, we also utilize

tsfresh [38] to extract features firstly, then we select 9 kinds

of features that are ranked as the most effective and relevant

features by RF (listed in Table I in bold). We also compare the

performance of RF with LR, DT, and BNB. The recognition

accuracy of RF is the highest. So we apply an RF-based

classifier to identify gestures and non-gestures. Note that since

these features to remove the interferences are also extracted to

recognize detect-aimed gestures, they can be saved and reused

later. Thus, this algorithm can reduce inevitable interferences

without extra consumption burden. The performance of this

method is shown in Section V-J.

V. EVALUATION

A. Implementation and Experiment Setup

We build a prototype of airFinger that contains two NIR

LEDs (304IRC-94, 940nm, 20◦), three NIR PDs (304PT, 700-
1, 000nm, 80◦), alternatively located close to each other, and a

3D-printed black shield, which is shown in Fig. 1. The LEDs

and PDs are fixed to face the same side and their diameters

are both 3mm. In the experiments, we use amplifiers and

a Micro Controller Unit (MCU) Arduino UNO to measure

RSS readings of the NIR PDs at 100Hz. The total power

consumed by the PDs and LEDs is highly efficient, 24mW
excluding the consumption of microcontroller. The window

size w and parameter te for clustering gestures are set to 10ms
and 100ms, respectively. The threshold Ig used to distinguish

detect-aimed gestures and track-aimed gestures is set to 30ms.
These settings are learned from the collected samples in the

data collection in the following.

Fig. 8. Accuracy of different sensing
distances between user fingers and
the sensor.

25% 45% 65% 85%0
10
20
30
40
50
60
70
80
90

100

Testing Data Percentage

A
cc

ur
ac

y
(%

)

RF
LR
DT
BNB

Fig. 9. Accuracy comparison be-
tween four classifiers with different
percentage of testing data.

(a) Confusion matrix.

Circle

Double Circle
Click

Double Click
Rub

Double Rub
0

10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(%
)

Accuracy
Recall
Precision

(b) Accuracy, recall, and precision.

Fig. 10. Overall performance of detect-aimed gestures among 10 volunteers.

B. Data Collection

We have 10 volunteers (4 males and 6 females), aging from

20 to 49 (avg = 25.7). Everyone is healthy and right-handed.

They all attend an orientation that teaches how to perform the

designed eight gestures shown in Fig. 2. Note that, volunteers

perform gestures according to their habits, without given any

instructions (e.g. magnitude or duration).

The data collection process has 5 sessions. During each

session, every volunteer is asked to sit in a comfortable posture

and perform gestures in close proximity to the prototype. Each

gesture is repeated 25 times. Between sessions, every volunteer

takes a five minutes break such as standing up and relaxing

arms. The process lasts about 1-2 hours for each volunteer.

Additionally, as an incentive to participate in the experiment,

we have paid all volunteers by monetary compensation. We

totally collect 10, 000 samples (10 people ∗ 8 gestures ∗ 5
sessions ∗ 25 times) with manually gesture labels.

C. Performance Metrics

Confusion Matrix: Each row and each column represents

the ground truth and the predicted result, respectively. The ith-
row and jth-column entry of the matrix is defined as the ratio

of the total number of samples that are classified as the jth

gesture while actually are the ith gesture divide to the total

number of samples that are the ith gesture.

Accuracy: The ratio of the total number of samples that

are correctly classified divide to the total number of classified

samples made by the classifier.

Recall: The ratio of the samples that are correctly recog-

nized as label g among all the samples with label g.
Precision: The ratio of the samples that are correctly rec-

ognized as label g among all the samples that are recognized

as label g.

D. Study of Sensing Distance

We study the optimal sensing distance from users’ fingers

to the prototype of airFinger. Three volunteers are asked to

558

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

(a) Confusion matrix.

1 2 3 4 5 6 7 8 9 10
User ID

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(%
)

Accuracy
Recall
Precision

(b) Accuracy, recall, and precision.

Fig. 11. Impact of individual diversity of detect-aimed gestures among
different people.

(a) Confusion matrix.

Circle

Double Circle
Click

Double Click
Rub

Double Rub
0

10
20
30
40
50
60
70
80
90

100
P

er
ce

nt
ag

e
(%

)

Accuracy
Recall
Precision

(b) Accuracy, recall, and precision.

Fig. 12. Impact of gesture inconsistency of detect-aimed gestures among
different sessions.

conduct the designed eight gestures in close proximity to the

prototype at different distances from 0.5cm to 12cm with an

increment of 0.5cm. We find that the optimal sensing distance

is about 0.5cm to 6cm, in which the accuracy of airFinger

achieves above 90%. We note that this sensing distance can

reduce noise disturbance and provides an unobtrusive and

natural distance for users to interact with smart devices by

micro finger gestures [32].

E. Performance of RF-based Classifier

To show the effectiveness of the RF-based classifier, we

compare its accuracy with three other commonly used clas-

sifiers including LR, DT, and BNB. All these classifiers use

default parameters. We use all the collected gesture samples

and vary the percentage of testing data. The comparison results

are shown in Fig. 9.

We can see that with the increasing percentage of testing

data, all accuracies of the classifiers slightly decrease, while

the RF-based classifier has the highest accuracy. When the

testing data is 25% of the whole data set, the RF-based

classifier reaches the highest accuracy. Although LR also

performs not bad, its computing time is much longer than

that of RF. Therefore, the RF-based classifier outperforms

all the other tested classifiers and has high efficiency for the

classification of multi-dimensional features.

F. Detect-aimed Gesture Evaluation

1) Overall Performance: To show the overall performance

of airFinger to recognize six detect-aimed gestures among 10
volunteers, we conduct a five cross-validation (leave-one-out-

cross-validation) over all collected samples. The overall results

are calculated by averaging the results from all combinations

of training and testing data. The average accuracy is 98.44%,

which indicates that airFinger enables to correctly recognize

the detect-aimed gestures.

The confusion matrix of the overall performance is shown in

Fig. 10 (a). We can see that averagely above 90% of gestures

are correctly recognized. Circle shows the best recognition

results, 98.41% of them correctly identified. Additionally, as

shown in Fig. 10 (b), all gestures can be recognized well

with the lowest average recall and precision of 90.65% and

92.13% (both above 90%), respectively. Thus airFinger has a

promising overall performance to recognize the detect-aimed

gestures among 10 volunteers.

2) Impact of Individual Diversity: To prove the robustness

of airFinger against individual diversity, we use samples of

nine users as training data and samples of the remaining one

user as testing data. The results are calculated by averaging

the results from all ten combinations of training and testing

data. The average accuracy is 83.61%, which indicates that

airFinger has robustness among different people.

Fig. 11 (a) shows the confusion matrix of six detect-aimed

gestures. Double click gestures have the best performance,

95.67% of them correctly recognized. Fig. 11 (b) shows the

accuracy, recall, and precision of 10 volunteers and 80%
of them can reach an accuracy above 80%. The average

precision and recall of the 10 volunteers are 84.69% and

87.44%, respectively. While volunteer 4 and 6 have relatively

low accuracies due to false detection of click and rub. It

might because these gestures are not highly user-friendly for

them, but their other gestures still achieve high accuracies. So

airFinger is resilient against individual diversity. Additionally,

these results demonstrate that we can pre-train the classifier

and then people can directly work with airFinger without user-

specific calibration.

3) Impact of Gesture Inconsistency: To prove the robust-

ness of airFinger against individual inconsistency, we use

4 sessions of each user as training data and the remaining

one session as testing data. The results of all combinations

are averaged. The average accuracy of all the detect-aimed

gestures is 97.07%, which indicates gestures from different

sessions can still be correctly recognized.

In Fig. 12 (a), the confusion matrix is shown for recognition

of the detect-aimed gestures. Double circle has the best

performance, 94.01% of them correctly recognized. In Fig. 12

(b), all gestures can reach accuracies above 95%. The average

recall and precision are 91.28% and 91.11%, respectively. Rub

and double rub have relatively low recall and precision. The

reason is that some gestures of double rub of volunteer 3
are recognized as gestures of rub. It might because he/she

performs slowly so that gestures of double rub are segmented

into two gestures of rub. Overall, airFinger is resilient against

gesture inconsistency and a pre-trained classifier enables users

to conduct gestures without pre-setup before each use.

G. Track-aimed Gesture Evaluation

We test the recognition results of scroll directions. The

average accuracy of scroll up is 99.88% and the average

accuracy of scroll down is 99.26%. Thus airFinger performs

well to recognize directions of the track-aimed gestures.

Additionally, we implement a real-time interface of gesture

tracking on a tablet and set v′ = 80mm/s according to

experience. The interface displays some news with words and

559

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERFORMANCE SUMMARY.

Category Accuracy

Circle 99.26%
Double circle 98.72%

Detect-aimed Click 98.65%
Gestures Double click 98.68%

Rub 97.69%
Double rub 97.62%

Average accuracy = 98.44%

Track-aimed Scroll up direction 99.88%
Gestures Scroll down direction 99.26%

Average accuracy = 99.57%

Rate of scroll velocity & displacement 2.6/3.0

Summary average accuracy = 98.72%

pictures. When a volunteer is watching the news by the track-

aimed gestures, we use a bar mapping to the track-aimed

gestures along with their direction, velocity, and displacement.

All volunteers are asked to rate the interface by a score of 1 to

3, which represents noticeable un-matched scrolling, standard,

and fluent matched scrolling, respectively. The average score is

2.6 and 90% of users do not feel un-matching scrolling when

using our interface, which confirms the performance of our

technique. Thus, airFinger reaches the goal to synchronously

recognize the track-aimed gestures in terms of direction,

velocity, and displacement.

H. Performance Summary

The above experiment has proved airFinger’s ability to

recognize the detect-aimed gestures and track-aimed gestures.

As shown in Table II, for the six detect-aimed gestures,

the average accuracy of all samples is 98.44%. For the two

track-aimed gestures, the average accuracy of scroll direction

is 99.57%. Thus, the accuracy of our system for all eight

gestures is 98.72%. Overall, airFinger is robust to different

environments and when faced with different users, it does not

need to be re-trained to achieve good performance.

I. Performance of Distinguishing Gestures

We evaluate the designed algorithm to distinguish the

detect-aimed gestures and track-aimed gestures with all the

collected samples. The results are shown in Fig. 13. The accu-

racy, recall, and precision of our algorithm are all above 98%.

The results demonstrate that the two kinds of gestures can be

correctly distinguished, which provides a sound foundation to

recognize the designed micro finger gestures.

J. Other Impacts

1) Unintentional Motions: We also test if airFinger is

resilient to unintentional motions. When performing gestures,

users may unintentionally move hand or fingers occurring non-

gestures. To mimic the unintentional motions, six volunteers

are asked to perform gestures and non-gestures over two

sessions. During each session, every volunteer is asked to

perform 25 gestures and 25 non-gestures like scratching,

Detect-aimed Track-aimed
Gestures

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(%
)

Accuracy
Recall
Precision

Fig. 13. Performance of distinguish-
ing two kinds of gestures.

Gesture Non gesture0
10
20
30
40
50
60
70
80
90

100

Gestures

P
er

ce
nt

ag
e

(%
)

Accuracy
Recall
Precision

Fig. 14. Impact of unintentional
motions.

97.36

0.00

0.00

0.00

0.51

0.32

2.35

99.59

0.00

0.00

0.00

0.32

0.00

0.00

86.92

0.61

13.59

0.00

0.00

0.00

12.15

95.43

3.85

0.00

0.29

0.00

0.93

2.13

81.79

0.00

0.00

0.41

0.00

1.83

0.26

99.35

Circle

Double Circle
Click

Double Click
Rub

Double Rub

Circle

Click

Rub

0

20

40

60

80

(a) Confusion matrix.

8:00 11:00 14:00 17:00 20:00
Times

0
10
20
30
40
50
60
70
80
90

100

P
er

ce
nt

ag
e

(%
)

Accuracy
Recall
Precision

(b) Accuracy, recall, and precision.

Fig. 15. Impact of environmental light changes of detect-aimed gestures.

extending, or reposition hands and fingers. Between sessions,

volunteers are asked to take a break. The volunteers totally

perform 300 unintentional motions and 300 designed gestures

over the two sessions. We label the performed gestures and

compare them with the recognition results. We conduct a

three cross-validation (leave-one-out-cross-validation) over all

these samples and average the results from all combinations

of training and testing data.

It is encouraging to find that airFinger can achieve an

average accuracy of 94.83%, which is shown in Fig. 14. The

average recall and precision are 94.83% and 94.88%, respec-

tively. The results demonstrate that the designed algorithm has

high effectiveness to remove unintentional motions.

2) Environmental NIR Changes: To evaluate the impact of

environmental NIR changes, we conduct experiments from

8 to 20 o’clock every 3 hours in one day, which represent

differently environmental NIR conditions. Two volunteers are

asked to perform all the designed gestures under the 5 different

times. Each gesture is performed 25 times.

As shown in Fig. 15 (a), above 80% of gestures are correctly

recognized and even over 99% of double circle and double rub

are correctly recognized. Fig. 15 (b) shows the accuracy, recall,

and precision under the 6 different times. The average accuracy

is 92.97%. The average recall and precision are 93.8% and

95.02%, respectively. Thus, we show that airFinger is resilient

against environmental NIR changes.

3) Dominant Hand Influence: We validate the impact of

using the non-dominant hand on the performance of airFinger.

We have six right-handed volunteers to take part in two

sessions. During each session, they perform all the designed

eight gestures with their left hand (non-domain hand) 20
times. We conduct a three cross-validation (leave-one-out-

cross-validation) over all these samples and average the re-

sults from all combinations of training and testing data. The

prototype is also oriented accordingly.

As shown in Fig. 16, the average accuracy of gestures

performed by non-dominant hand is over 95%, only slightly

lower than that performed by the dominant hand. The average

560

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

95.83
1.25
1.67
0.00
2.08
0.42
0.00
0.00

1.25
91.67
0.42
1.25
0.42
2.08
0.00
0.00

1.25
0.42

93.75
0.42
1.25
2.08
0.00
0.00

0.00
1.30
0.00

95.83
1.25
1.25
0.00
0.00

1.25
1.67
2.92
0.42

95.00
2.92
0.00
0.00

0.42
3.75
1.25
2.08
0.83

91.25
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00

99.58
2.08

0.00
0.00
0.00
0.00
0.00
0.00
0.42

97.92

Circle

Double Circle
Click

Double Click
0

20

40

60

80

Double

Fig. 16. Impact of dominant hand.

Sitting Standing Walking
0

1

Conditions

P
e
rc

e
n
ta

g
e
 (

%
)

Accuracy

Recall

Precision

Fig. 17. Performance of a demo
within a wristband.

recall and precision are 95.10% and 95.13%, respectively.

Thus, we show that using the non-dominant hand does not

affect the performance of airFinger.
4) Other Human Interferences: We test if airFinger is re-

silient to human interferences. When a volunteer is performing

gestures, another volunteer is asked to move around, such as

passing by or waving arms. We find that other human moving

around does not affect the accuracy of airFinger. We analyze

the reasons in two aspects. First, the designed NIR-based

sensor is optimized to be sensitive to the range from 0.5cm
to 6cm proximity to itself. The effect of other human moving

around is out of the sensing range of the sensor, which cannot

affect the performance of airFinger. Second, we have designed

SBC and TD algorithms to mitigate noise, which is beneficial

to reduce the effects of human interferences.

Additionally, we also ask a volunteer to use an IR remote

control around when another volunteer is performing gestures.

When it is directly pointed to the sensors, the remote control

will cause recognition errors, however, this kind of situation is

rare in practice. So commonly non-directly-pointed operations

will not have an impact on airFinger.

K. Demo within a Wristband

To evaluate if airFinger can perform well under real wrist-

band scenarios, we augment our prototype with a wristband

and implement a Bluetooth module to send signals to a laptop.

The band can be worn on wrists and recognize micro finger

gestures in proximity to it. We test it with six right-handed vol-

unteers and all of them wear it on their left hand and conduct

gestures by the right hand in three common usage conditions

including sitting, standing, and walking. Under each condition,

every volunteer repeatedly performs all the designed gestures

25 times. The built wristband and experiment scenarios are

shown in Fig. 18.

The results are shown in Fig. 17. The averaged accuracy,

recall, and precision are 97.17%, 97.17%, and 97.46%, re-

spectively. Thus our technology ensures great performance

for practical usage on wristbands while sitting, standing, and

walking. It can build robust interaction between users and their

wrist-worn smart devices via micro finger gestures.

VI. DISCUSSION AND FUTURE WORK

Outdoors Situation: As the sunlight contains a large

amount of NIR, the PDs of airFinger might be up into the

saturation region under the high intensity of sunlight outdoors.

To solve this issue, we plan to optimize hardware design to

be workable under different light intensities via frequency

modulation, high sample rate, and adjustable amplifiers.

Fig. 18. Demo of a wristband. One volunteer performs gestures while sitting,
standing, and walking.

Gesture Set: We would like to build a sensor with more

number of LEDs and PDs along with other posited distri-

butions to construct a multi-dimensional sensing area and

improve input resolution, which enables to expand the gesture

set so as to realize more applications. Additionally, it is an

interesting option to enable user-self-defined gestures. Users

might be willing to define customized gestures on their own.

Like personalized icons, customized gestures can provide

more space for users to interact with their smart devices and

somehow preserve both personality and privacy.

Energy and Storage: Although NIR LEDs and PDs are

cost-effective, we could optimize hardware design and recog-

nition algorithms to further reduce power-consuming and

storage-cost. Additionally, it can combine with a Bluetooth or

Wi-Fi module to pass data for processing to a cloud server or

an edge computing terminal, which will extend its computing

ability and reduce consumption burden on local devices.

VII. CONCLUSION

We design airFinger to recognize micro finger gestures. Our

technology exploits NIR light sensing to capture subtle finger

movements to identify gestures and track finger movements

in real-time. We build a prototype of airFinger and conduct

extensive experiments with 10 volunteers under different sce-

narios. Its overall accuracy achieves 98.72% among 8 micro

finger gestures and it has resilience against individual diversity,

gesture inconsistency, and many other impacts.

Our proposed solution, airFinger, made the first step to de-

velop an approach based on NIR light sensing to detect micro

finger gestures and track fingers with energy and processing

efficiency. As its target is micro finger gestures, airFinger can

expand working space for wearable devices and avoid blocking

the line of sight when using a tiny screen device. Additionally,

it has a small size, low cost, and can be applied to different

applications for interaction with ubiquitous smart devices.

REFERENCES

[1] K. Khoshelham and S. O. Elberink, “Accuracy and resolution of kinect
depth data for indoor mapping applications,” in Industrial Technology
and Vocational Education, vol. 12, no. 2, 2012, p. 1437.

[2] D. Kim, O. Hilliges, S. Izadi, A. D. Butler, and P. Olivier, “Digits:
Freehand 3D interactions anywhere using a wrist-worn gloveless sensor,”
in ACM symposium on User interface software and technology, UIST,
2012.

561

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

[3] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig,
E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous gesture sensing
with millimeter wave radar,” in ACM Transactions on Graphics, TOG,
vol. 35, no. 4, 2016, p. 142.

[4] Z. Yang, Z. Zhou, and Y. Liu, “From RSSI to CSI: Indoor localization
via channel response,” in ACM Computing Surveys, vol. 46, no. 2, 2013.

[5] H. Abdelnasser, M. Youssef, and K. A. Harras, “WiGest: A ubiquitous
WiFi-based gesture recognition system,” in IEEE International Confer-
ence on Computer Communications, INFOCOM, 2015, pp. 1472–1480.

[6] S. Tan and J. Yang, “WiFinger: Leveraging commodity WiFi for fine-
grained finger gesture recognition,” in ACM International Symposium
on Mobile Ad Hoc Networking and Computing, MobiHoc, 2016, pp.
201–210.

[7] Y. Zheng, Y. Zhang, K. Qian, G. Zhang, Y. Liu, C. Wu, and Z. Yang,
“Zero-effort cross-domain gesture recognition with Wi-Fi,” in Inter-
national Conference on Mobile Systems, Applications, and Services,
MobiSys, 2019, pp. 313–325.

[8] A. Virmani and M. Shahzad, “Position and orientation agnostic gesture
recognition using WiFi,” in International Conference on Mobile Systems,
Applications, and Services, MobiSys, 2017, pp. 252–264.

[9] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: Wireless
indoor localization with little human intervention,” in ACM International
Conference on Mobile Computing and Networking, MobiCom, 2012, pp.
269–280.

[10] S. Pradhan, E. Chai, K. Sundaresan, L. Qiu, M. A. Khojastepour, and
S. Rangarajan, “RIO: A pervasive RFID-based touch gesture interface,”
in ACM International Conference on Mobile Computing and Network-
ing, MobiCom, 2017, pp. 261–274.

[11] Y. Zou, J. Xiao, J. Han, K. Wu, Y. Li, and L. M. Ni, “GRfid: A device-
free RFID-based gesture recognition system,” in IEEE Transactions on
Mobile Computing, TMC, vol. 16, no. 2, 2017, pp. 381–393.

[12] C. Wang, J. Liu, Y. Chen, H. Liu, L. Xie, W. Wang, B. He, and
S. Lu, “Multi-touch in the air: Device-free finger tracking and gesture
recognition via COTS RFID,” in IEEE International Conference on
Computer Communications, INFOCOM, 2018, pp. 1–9.

[13] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota, “FingerIO: using
active sonar for fine-grained finger tracking,” in SIGCHI Conference on
Human Factors in Computing Systems, CHI, 2016, pp. 1515–1525.

[14] H. Chen, F. Li, and Y. Wang, “EchoTrack: Acoustic device-free hand
tracking on smart phones,” in IEEE International Conference on Com-
puter Communications, INFOCOM, 2017, pp. 1–9.

[15] S. Yun, Y.-C. Chen, H. Zheng, L. Qiu, and W. Mao, “Strata: Fine-grained
acoustic-based device-free tracking,” in International Conference on
Mobile Systems, Applications, and Services, MobiSys, 2017, pp. 15–28.

[16] W. Wang, A. X. Liu, and K. Sun, “Device-Free gesture tracking
using acoustic signals,” in ACM International Conference on Mobile
Computing and Networking, MobiCom, 2016, pp. 82–94.

[17] K. Sun, T. Zhao, W. Wang, and L. Xie, “VSkin: Sensing touch gestures
on surfaces of mobile devices using acoustic signals,” in ACM Inter-
national Conference on Mobile Computing and Networking, MobiCom,
2018, pp. 591–605.

[18] Z. Ren, J. Yuan, and Z. Zhang, “Robust hand gesture recognition based
on finger-earth mover’s distance with a commodity depth camera,” in
ACM International Conference on Multimedia, MM, 2011, pp. 1093–
1096.

[19] C. Wang, Z. Liu, and S. Chan, “Superpixel-based hand gesture recog-
nition with kinect depth camera,” in IEEE Transactions on Multimedia,
2015, pp. 29–39.

[20] G. Marin, F. Dominio, and P. Zanuttigh, “Hand gesture recognition with
leap motion and kinect devices,” in IEEE International Conference on
Image Processing, ICIP, 2015, pp. 1565–1569.

[21] J. Song, G. Soros, F. Pece, S. R. Fanello, S. Izadi, C. Keskin, and
O. Hilliges, “In-air gestures around unmodified mobile devices,” in ACM
Symposium on User Interface Software and Technology, UIST, 2014, pp.
319–329.

[22] J. Gong, Y. Zhang, X. Zhou, and X.-D. Yang, “Pyro: Thumb-tip gesture
recognition using pyroelectric infrared sensing,” in ACM Symposium on
User Interface Software and Technology, UIST, 2017, pp. 553–563.

[23] K. Chen, K. Lyons, S. White, and S. N. Patel, “uTrack: 3D input using
two magnetic sensors,” in ACM symposium on User Interface Software
and Technology, UIST, 2013, pp. 237–244.

[24] G. Reyes, J. Wu, N. Juneja, M. Goldshtein, W. K. Edwards, G. D.
Abowd, and T. Starner, “SynchroWatch: One-handed synchronous smart-
watch gestures using correlation and magnetic sensing,” in ACM Inter-

national Conference on Ubiquitous Computing, UbiComp, vol. 1, no. 4,
2017.

[25] C. Zhang, J. Tabor, J. Zhang, and X. Zhang, “Extending mobile in-
teraction through near-field visible light sensing,” in ACM International
Conference on Mobile Computing and Networking, MobiCom, 2015, pp.
345–357.

[26] J. S. Kim, S. J. Yun, D. J. Seol, H. J. Park, and Y. S. Kim, “An
IR proximity-based 3D motion gesture sensor for low-power portable
applications,” in IEEE Sensors Journal, vol. 15, no. 12, 2015, pp. 7009–
7016.

[27] Y. Li, T. Li, R. A. Patel, X.-D. Yang, and X. Zhou, “Self-powered gesture
recognition with ambient light,” in ACM symposium on User Interface
Software and Technology, UIST, 2018, pp. 595–608.

[28] A. Withana, R. Peiris, N. Samarasekara, and S. Nanayakkara, “zSense:
Enabling shallow depth gesture recognition for greater input expressivity
on smart wearables,” in ACM Conference on Human Factors in Com-
puting Systems, CHI, 2017, pp. 3661–3670.

[29] R. H. Venkatnarayan and M. Shahzad, “Gesture recognition using ambi-
ent light,” in ACM International Conference on Ubiquitous Computing,
UbiComp, vol. 2, no. 1, 2018.

[30] D. Sbirlea, M. G. Burke, S. Guarnieri, M. Pistoia, and V. Sarkar,
“Automatic detection of inter-application permission leaks in android
applications,” in IBM Journal of Research and Development, vol. 57,
no. 6, 2013, pp. 10:1–10:12.

[31] Z. Weinberg, E. Y. Chen, P. R. Jayaraman, and C. Jackson, “I still
know what you visited last summer: Leaking browsing history via user
interaction and side channel attacks,” in IEEE Symposium on Security
and Privacy, S&P, 2011, pp. 147–161.

[32] L. Chan, R. Liang, M. Tsai, K. Cheng, C. Su, M. Y. Chen, W. Cheng,
and B. Chen, “Fingerpad: Private and subtle interaction using fingertips,”
in ACM Symposium on User Interface Software and Technology, UIST,
2013, pp. 255–260.

[33] C. Zhang, A. Waghmare, P. Kundra, Y. Pu, S. Gilliland, T. Ploetz,
T. E. Starner, O. T. Inan, and G. D. Abowd, “FingerSound: Recognizing
unistroke thumb gestures using a ring,” in ACM International Conference
on Ubiquitous Computing, UbiComp, vol. 1, no. 3, 2017.

[34] T. Zhao, J. Liu, Y. Wang, H. Liu, and Y. Chen, “PPG-based finger-
level gesture recognition leveraging wearables,” in IEEE International
Conference on Computer Communications, INFOCOM, 2018, pp. 1–9.

[35] Y. Zhang, T. Gu, C. Luo, V. Kostakos, and A. Seneviratne, “Findroidhr:
Smartwatch gesture input with optical heartrate monitor,” in ACM
International Conference on Ubiquitous Computing, UbiComp, vol. 2,
no. 1, 2018.

[36] I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers
absorption and skin reflectance spectra simulation in the visible and near-
infrared spectral regions,” in Physiological Measurement, vol. 23, no. 4,
2002, pp. 741–753.

[37] N. Otsu, “A threshold selection method from gray-level histograms,” in
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1,
1979, pp. 62–66.

[38] “Toolkit,” 2016, http://tsfresh.readthedocs.io/en/latest/.
[39] G. E. Batista, E. J. Keogh, O. M. Tataw, and V. M. Souza, “CID: An

efficient complexity-invariant distance for time series,” in Data Mining
and Knowledge Discovery, vol. 28, no. 3, 2014, pp. 634–669.

[40] T. Schreiber and A. Schmitz, “Discrimination power of measures for
nonlinearity in a time series,” in Physical Review E Statistical Physics
Plasmas Fluids and Related Interdisciplinary Topics, vol. 55, no. 5,
1997, pp. 5443–5447.

[41] “Sharp distance measuring sensor unit,” 2006, http://www.farnell.com
/datasheets/1657845.pdf.

562

Authorized licensed use limited to: Temple University. Downloaded on March 17,2021 at 19:43:05 UTC from IEEE Xplore. Restrictions apply.

