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Abstract—With the development of society and the gradual
increase of life pressure, the number of people engaged in mental
work and working hours have increased significantly, resulting
in more and more people in a state of fatigue. It not only
reduces people’s work efficiency, but also causes health and
safety related problems. The existing fatigue detection systems
either have different shortcomings in diverse scenarios or are
limited by proprietary equipment, which is difficult to be applied
in real life. Motivated by this, we propose a multi-information
fatigue detection system named WakeUp based on commercial
smart speakers, which is the first to fuse physiological and
behavioral information for fine-grained fatigue detection in a non-
contact manner. We carefully design a method to simultaneously
extract users’ physiological and behavioral information based
on the MobileViT network and VMD decomposition algorithm
respectively. Then, we design a multi-information fusion method
based on the statistical features of these two kinds of information.
In addition, we adopt an SVM classifier to achieve fine-grained
fatigue level. Extensive experiments with 20 volunteers show
that WakeUp can detect fatigue with an accuracy of 97.28%.
Meanwhile, WakeUp can maintain stability and robustness under
different experimental settings.

I. INTRODUCTION
Fatigue is a physiological phenomenon caused by excessive

physical or mental work [1]. It reduces people’s work effi-
ciency, has a serious impact on physical and mental health, and
causes safety-related problems, resulting in serious economic
losses. In the past two years, the proportion of employees
who often work remotely has soared from 23% before the
outbreak of COVID-19 to 71% at present [2]. According to
the surveys [3], [4], about 69% of remote workers suffer from
fatigue, which greatly reduces work efficiency. In addition,
fatigue can lead to obesity, heart disease, depression, some
cancers, sleep disorders, and other problems. It also reduces
employees’ immunity to viruses and increases the possibility
of cold or flu transmission. According to statistics, the health
problems caused by fatigue cost American companies about
136.4 billion dollars a year [5]. Therefore, how to effectively
and accurately detect fatigue and timely warning are of great
practical significance.

In recent decades, researchers constantly try to find an
effective method to detect fatigue. One method to detect fa-
tigue is called subjective fatigue detection, which can identify
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whether people are fatigued through medical observation and
research, or inspection judgment, response test, and other
means. Common subjective fatigue detection methods include
Fatigue Assessment Scale (FAS) [6], Karolinska Sleep Scale
(KSS) [7], and so on. In addition, another method to detect
fatigue is based on objective symptoms. When people are
fatigued, they can show obvious symptoms of fatigue, which
are usually reflected in people’s physiology and behavior, such
as slow respiration, nodding, yawning, and other symptoms
[8]. Judging people’s fatigue levels by detecting fatigue-related
symptoms has become a hot research direction concerned by
many research institutions.

On one hand, the fatigue level can be determined by de-
tecting the changes of people’s physiological indicators (e.g.,
EEG, ECG, EMG) [9], [10]. Physiological signals can truly
reflect people’s fatigue state and have the advantage of high
reliability. However, traditional methods need to attach multi-
ple sensing devices on the human body, so the measurement
is inconvenient and the practicability is limited. On the other
hand, vision-based detection methods evaluate the fatigue level
according to the behavioral information of people’s head and
face (e.g., eyes, mouth) in the fatigue state [11], [12], which
has the advantage of non-contact detection. Nevertheless, due
to the acquisition of facial image information, there is a
problem of user privacy leakage. Therefore, a non-contact,
low-cost, easy-to-deploy, and fine-grained fatigue detection
system is urgently needed to improve people’s health levels
and work efficiency.

To this end, we further investigate the feasibility of using
acoustic sensing for fatigue detection, which has been widely
used in indoor location [13], [14] and human computer in-
terface [15], [16]. In addition, smart speakers that can record
our daily commands, such as Amazon Echo, Google Home,
and Apple HomePod, have become common in homes around
the world. By the end of 2021, the total number of smart
speakers in the world has reached nearly 163 million. Ac-
cording to Canalys’ latest forecast, the global installation base
of smart speakers is expected to reach 640 million by 2024
[17]. The widespread adoption of high-quality smart speakers
with multiple microphones also provides a unique opportunity
for non-contact fatigue detection. In this paper, we design
and implement WakeUp, the first multi-information fusion
fatigue detection system at home/office environment based on



commercial smart speakers. WakeUp not only monitors the
physiological information (i.e., respiration) of fatigue, but also
integrates the behavioral information (i.e., yawning, nodding,
stretching, and sighing) of fatigue.

The key idea of WakeUp is to transmit inaudible high-
frequency ultrasonic signals through smart speakers, which are
reflected by users and received by the microphone array, and
then process the transmitted and received signals to extract
the fatigue statistics of users. To realize WakeUp, several chal-
lenges need to be addressed. Firstly, at home/office, the signals
reflected by users are easily disturbed by the activities (such
as sweeping, walking, etc.) of people around them. In order to
minimize the impact of these interferences, we take advantage
of the property that smart speakers have multiple microphones
to locate users. Since the distance between the microphones is
very close, triangulation may be greatly limited. In addition to
distance, another key parameter related to user’s location is the
direction of arrival (DOA) of the signal. We use generalized
cross-correlation with phase transform (GCC-PHAT) [18] to
obtain the accurate direction of the user and further use time-
delay beamforming to amplify the reflected signal.

Secondly, when we get the user’s reflected signal, how to
process it to extract the user’s physiological and behavioral
information? We construct a virtual transmitted signal and
iteratively mix it with the reflected signal to eliminate the
random time delay from the signal is triggered to be sent
until the signal is actually sent out and the confusion between
the direct path and the target reflection path [19]. Then the
mixed signal is low-pass filtered to obtain the intermediate
frequency (IF) signal [20]. Next, we first segment the IF
signal, then perform time-reassigned multisynchrosqueezing
transform (TMSST) [21] and wavelet scattering [22], [23] for
feature extraction, and finally send the wavelet scattering re-
sults to a designed MobileViT [24] to obtain user’s behavioral
information. We simultaneously extract the phase information
of the IF signal and use band-pass filtering to remove the
influence of behavioral information and high-frequency noises.
Then we further use the variational mode decomposition
(VMD) [25] to obtain user’s physiological information. After
obtaining the user’s behavioral and physiological information,
the last challenge is how to fuse this information and get
the user’s fine-grained fatigue detection results. To this end,
we extract the statistics of this information and use an SVM
classifier to get the current fine-grained fatigue state of users.

We implement WakeUp using a Raspberry Pi 4B, a regular
hexagonal 6-microphone array, an omni-directional speaker,
a respiration belt, and a laptop. We recruit 20 volunteers
(11 males and 9 females) and conduct data collection in
four different environments for evaluation. We end up collect-
ing 2000 samples containing fatigue information to evaluate
WakeUp, and each sample contains a 2-minute signal. Results
demonstrate that WakeUp can accurately detect fatigue under
different experimental settings.

Our contributions are summarized as follows:
• To the best of our knowledge, WakeUp is the first

system that uses smart speakers to fuse physiological

and behavioral information to achieve fine-grained fatigue
detection. Compared to the single-information solutions,
our system achieves better performance, robustness, and
universality.

• We apply the features of microphone array to make
WakeUp have a good anti-interference ability. We care-
fully design a feature extraction scheme based on
TMSST, wavelet scattering and the lightweight network
MobileViT to obtain the user’s behavioral information.
Moreover, we also design an extraction scheme based on
VMD to obtain physiological information.

• Based on statistical information, we design a fusion
scheme of behavioral and physiological information and
further combine with an SVM classifier to achieve fine-
grained fatigue detection.

• We implement a prototype of WakeUp and conduct
extensive experiments to evaluate its effectiveness with
20 volunteers. The results show that WakeUp can detect
fatigue with an average accuracy of 97.28%. Moreover,
we verify the stability of WakeUp under different exper-
imental settings, and the results suggest the system can
maintain the superiority of the performance.

II. RELATED WORK

Recent works in fatigue detection can be divided into
contact-based method, non-contact-based method, and hybrid
method.

Contact-based method. Contact methods mainly obtain
behavioral and physiological information through proprietary
equipment. Yeo et al. [26] use the “double banana” bipolar
referencing montage with 19 channels to collect EEG signals
and conduct nonlinear analysis on them, so as to determine
the user’s fatigue level. Katsis et al. [27] employ the newly
developed seat to record the user’s surface EMG signal and
then reflect the user’s fatigue state based on the amplitude
and frequency characteristics of the EMG signal. NodeTrack
[28] exploits the phase difference between two RFID tags
mounted on the back of the hat worn by the user to extract
fatigue-related nodding features. However, these works require
additional deployment of costly and environmentally sensitive
equipment, and contact-based signal acquisition also brings
comfort issues.

Non-contact-based method. Non-contact solutions mainly
obtain physiological and behavioral information through visual
and wireless signals. Geng et al. [29] utilize infrared acquisi-
tion equipment to collect user facial images, combine with
the cascade regression method to locate the feature points
of eyes and mouth, and use a neural network for fatigue
detection. However, vision-based methods may lead to privacy
leakage, and the detection accuracy is easily affected by light
and obstacles. In addition, Liu et al. [30] obtain respiration
and heartbeat through millimeter wave radar and built a back-
propagation neural network model to predict fatigue. WiFind
[31] studies the impact of physical features on WiFi signals
when users are fatigued, and verifies the feasibility of detecting
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Fig. 1: System architecture of WakeUp.
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Fig. 2: FMCW signal.
fatigue through WiFi signals. However, these wireless-signal-
based methods are usually very sensitive to the interference of
the surrounding environment, and their anti-interference ability
is relatively weak.

Hybrid method. There are also some researches focusing
on using both contact and non-contact methods to extract
multiple information to detect fatigue. Amirudin et al. [32]
exploit the physiological features of theta band in EEG signals
and combine with the eye state to detect fatigue. Abbas
et al. [33] develop a new hybrid fatigue detection system
based on multiple cameras and ECG sensors combined with
visual and non-visual features. Craye et al. [34] use multiple
sensors to extract multiple features (e.g., sound, image, heart
rate) to judge the fatigue state of users. But these works
generally require a variety of sensing equipment, which results
in poor system deployment capability. However, compared
with single information, the multiple information can contain
more features.

Unlike the above works, WakeUp automatically obtains
multiple information of users through acoustic sensing to
detect fatigue without wearing extra equipment. WakeUp has
good anti-interference ability by taking advantage of omni-
directional speaker and microphone array.

III. SYSTEM DESIGN

This section details the design of WakeUp. We also high-
light the key observations and core techniques behind the
detection of fatigue.

A. System Overview

Fig. 1 shows the architecture of WakeUp. The whole system
includes 2 parts, signal processing and fatigue detection.

In Signal Processing, the user first sends the system startup
command, then the microphone array records the command
signal and the system starts to work. In order to eliminate the
interference of the activities of surrounding people, we process
the command signals recorded by these microphones to obtain
the DOA of the signals. Next, the speaker emits frequency
modulated continuous wave (FMCW) signals, and then we
use beamforming to synthesize multiple received signals into
one signal to increase the strength of the reflected signal and
suppress noise. After that, we mix this synthetic signal with
the transmitted signal. Furthermore, we perform time delay
cancellation on the mixed signal to eliminate the time delay
caused by the hardware system from the signal is triggered to
be sent until the signal is actually sent out and the confusion
between the direct path and the target reflection path. Finally,

we utilize a low-pass filter on this signal to get the IF signal
reflected by the user.

In Fatigue Detection, we analyze the IF signal to ob-
tain behavioral information and physiological information of
fatigue. In order to obtain behavioral information, we first
perform TMSST on the IF signal, and then we perform wavelet
scattering transform on the transformed results to extract
translation-invariant, stable, and informative features. Next,
we feed these features into a MobileViT lightweight neural
network to get four kinds of behavioral information, including
yawning, nodding, stretching, and sighing. In addition, in
order to obtain physiological information, we first extract the
phase information of the IF signal and further obtain the
phase change. Then we perform band-pass filtering on the
phase change signal to remove the influence of low-frequency
behavioral information and high-frequency noises. Next, we
perform VMD decomposition on the filtered phase change and
Fast Fourier Transform (FFT) on each component to obtain
physiological information (i.e., respiration). After getting the
user’s behavioral and physiological information, we calculate
their statistical features for a period of time. Finally, we
employ these statistical features to train an SVM classifier
to achieve fine-grained fatigue detection.

B. Signal Processing

DOA Estimation: When users work at home/office, the
signals reflected by them are easily disturbed by the activities
of people around them. To eliminate these interferences, we
use the microphone array to locate the user. Since the user
hardly changes the location during most working hours, we
only need to calculate the user’s direction relative to the
smart speaker when the system starts to work. Firstly, the
user sends the startup command to the smart speaker, then
the microphone array records this command signal and the
system starts to work. For convenience, we can establish a
three-dimensional Cartesian coordinate system with the center
of the smart speaker as the origin. The direction of the user
relative to the smart speaker can be determined with two
parameters, namely, azimuth angle and elevation angle. The
azimuth angle is defined as the angle, in the xy-plane, from the
x-axis toward the y-axis. The elevation angle is defined as the
angle from the xy-plane toward the z-axis. Since the command
signal arrives at each microphone at different time, we estimate
the direction of the user based on Time Difference of Arrival
(TDOA). We use the GCC-PHAT algorithm to calculate the
time delay, which assumes that the signal source is located
in the far field of the array, so the DOA is the same for



all microphones. We use the command signals from the user
received by the microphone array, and estimate the correlation
between each signal pair via GCC-PHAT. The maximum peak
in each correlation is further found to determine the delay
between these two signals. Finally, we estimate the azimuth
and elevation angles using least-square estimation.

FMCW Signal Design: After obtaining the DOA, the smart
speaker starts to transmit FMCW signals, which are reflected
by the user and received by the microphone array. The basic
principle of FMCW is to transmit frequency continuous wave
and its frequency changes with time as shown in Fig. 2. The
transmitted signal xT with frequency conversion period T can
be expressed as

xT (t) = AT cos

(
2π

(
fmin +

B

2T
t

)
t

)
, t ∈ (0, T ) , (1)

where AT represents the amplitude of the transmitted signal.
fmin and fmax are the minimum and maximum frequency
of FMCW respectively. The sound frequency above 15kHz
is already inaudible for most adults [35], and considering
the upper limit of sound frequency produced by most smart
speakers, we set fmin and fmax to 16kHz and 21kHz,
respectively. B = fmax−fmin is the bandwidth of the FMCW.
When the speaker and microphone array are co-located and the
distance between the target and the sensing device is R, the
signal reaches the target, and then reflects back from the target
to the microphone array after time period td = 2R/c, where
c is the propagation speed of the signal in the air. Therefore,
the signal xR (t) received by the microphone array can be
expressed as

xR (t) = AR cos

(
2π

(
fmin +

B

2T
(t− td)

)
(t− td)

)
, (2)

where AR is the amplitude of the received signal. Finally,
we multiply xT (t) and xR (t) to mix, and pass the mixed
signal through the low-pass filter to obtain the IF signal xIF

containing the target information, whose frequency is fIF [20].
Beamforming: Now we have not only the azimuth and

elevation angles of the user relative to the smart speaker, but
also the reflected signal received by the microphone. Next,
we use time-delay beamforming to suppress the interference
of surrounding people and enhance the strength of the user’s
reflected signal. The time delay beamformer performs delay-
and-sum beamforming, which can compensate a reflected
signal coming from a specific direction for the arrival time
differences across the microphones. Reflected signals arriving
at the array elements are time-aligned and then summed. Time
alignment is achieved by transforming the signals into the
frequency domain and applying linear phase shifts correspond-
ing to a time delay. The individual signals are then added
and converted back to the time domain. Finally, the signals
received by the six microphones are combined into one signal.

Time Delay Cancellation: There is a random time delay
from the signal is triggered to be sent until the signal is
actually sent out and the sequence of the direct path signal
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Fig. 3: Time delay cancellation.
and the target reflection path signal in time can be chaotic.
The direct path means that the signal directly reaches the
microphone array from the speaker, while the target reflection
path means that the signal is emitted by the speaker, then
reflected by the target, and finally received by the microphone
array. In order to eliminate this delay and path confusion, we
adopt a method of iteratively mixing the virtual transmitted
signal and the received signal. We first perform FFT on the
filtered signal, and then select the maximum peak fd to obtain
the delay tv = fdT/2B to construct the virtual transmission
signal xV :

xV (t) = AT cos

(
2π

(
fmin +

B

2T
(t+ tv)

)
(t+ tv)

)
. (3)

Next, xV and x′
R are mixed, and low-pass filtering and FFT

are carried out again. x′
R represents the signal corresponding to

xV received by the microphone array and beamformed. If the
maximum peak is located at the timestamp “0”, it means that
the delay is successfully eliminated, otherwise, let tv = T −
tv , we continue to construct a virtual transmission signal for
iteration until the maximum peak is located at the timestamp
“0” [19]. Generally, the above process needs to be iterated
twice at most, and the schematic diagram of the results after
iteration is shown in Fig. 3. It can also be seen from the figure
that this process also solves the problem of confusion between
the direct path and the reflection path. Finally, we mix xV

and x′
R and perform low-pass filtering to obtain IF signal xT

IF

containing user’s fatigue information, which can be expressed
as:

xU
IF =

ATAR

2
cos

(
2π

B

T
ttd + 2πfmintd − π

B

T
t2d

)
. (4)

From the above equation, it can be concluded that the phase
of the signal is φ = −2π

(
fmintd − B

2T t
2
d

)
. Usually, fmin ≫

Btd/2T , so we can omit the quadratic term. By replacing td
with 2R/c, the phase change ∆φ caused by the change of
path length ∆R can be expressed as ∆φ = − 4πfmin∆R

c .

C. Fatigue Detection

After obtaining the IF signal containing user’s fatigue in-
formation, we simultaneously process the IF signal and its
phase change to get behavioral and physiological information
respectively. Since training a network and an SVM classifier
requires a large amount of data, it is usually necessary to
collect enough data before information extraction. Therefore,
we first introduce the process of data collecting, then describe
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the specific methods of two kinds of information extraction
in detail, and finally give the algorithm of information fusion
and fatigue detection.

1) Data Collecting: We recruit 20 volunteers, including 11
males and 9 females. We collect data with smart speakers in
office, dormitory, bedroom, and study room for two months.
After the above Signal Processing process, we obtain about
2000 samples containing fatigue information, each containing
a 2-minute signal. In addition, we use a camera to record the
user’s real behavioral information and employ a respiration
belt to get the groundtruth of the user’s respiration.

2) Behavioral Information Extraction: After analyzing
these sample data, it is found that about 96% of yawning,
nodding, sighing, and stretching can be completed in 2.9s,
2.4s, 2.8s, and 5s respectively. Before feature extraction, we
divide these 2-minute signals into frames, and the frame length
is equal to 0.2s.

Feature Extraction: We first perform TMSST on the IF
signal xU

IF containing user’s fatigue information obtained in
III-B. TMSST is a time-frequency analysis method, which
owns the capability to provide an energy concentrated time-
frequency representation result for the frequency-varying sig-
nal. We use short-time Fourier transform (STFT) to extend
xU
IF to the time-frequency domain. In the frequency domain,

the STFT using the moving window function ĝ (ξ) signal can
be written as:

G (u, t) = (2π)
−1

∫ +∞

−∞
xU
IF (ξ) ĝ (ξ − t) ei(ξ−t)udξ. (5)

Next, G (u, t) is integrated in one dimension along the time
direction to compress fuzzy time-frequency energy into group
delay (GD) trajectory. This process can be expressed as:

Tm (a, t) =

∫ +∞

−∞
G (u, t) δ

(
a− t̂ (u, t)

)
du. (6)

where δ (·) is the Dirac delta function, and t̂ (u, t) is the 2D
GD estimated in [36]. In TMSST, the 2D GD is obtained
by iteration, assuming that t̂N (u, t) is the 2D group delay
obtained after N iterations. We use t̂N (u, t) to replace t̂ (u, t)
in Eq. 6:

TmN (a, t) =

∫ +∞

−∞
G (u, t) · δ

(
a− t̂[N ] (u, t)

)
du. (7)

If Eq. 7 is iterated for a sufficient number of times, the TMSST
result of the IF signal can be obtained. By default, we set the
number of iterations N to 150.

TMSST can provide energy concentrated time-frequency
representation results for frequency change signals, but the
extracted features are not stable to obtain behavioral infor-
mation. Therefore, we use wavelet scattering transform to
make up for this deficiency. The effect of applying wavelet
scattering transform directly to the frequency-varying signal
is not obvious, but we find that applying it to the result of
TMSST can not only obtain stable features, but also make

(a) Nodding (b) Yawning

(c) Sighing (d) Stretching

Fig. 5: Illustration of feature extraction.

the extracted features more prominent and have the property
of translation invariance. Wavelet scattering is a technology
that can be used to automatically extract low variance and
compact features, which can minimize the differences within
classes while preserving the distinguishability between classes.
As shown in Fig. 4, the wavelet scattering framework is mainly
composed of three parts, including convolution, nonlinearity,
and averaging. The local translation invariant feature of the
input signal can be obtained by convolution, and the high-
frequency information is lost in this step, which can be
recovered by subsequent wavelet modulus processing. Then a
scaling filter is used to average each mode to obtain the first-
order scattering coefficient. By repeating the above process,
we can obtain a feature matrix, which covers all orders of
scattering coefficients to describe the features of the input
signal. We design a wavelet time scattering transform with
two filter banks. The first filter bank has a quality factor of
eight wavelets per octave. The second filter bank has a quality
factor of one wavelet per octave.

For each frame, we first calculate its TMSST and then per-
form wavelet scattering transform on the result. Fig. 5 shows
the results of feature extraction of the behavioral information,
and it can be seen that their frequency domain ranges are
different. And obviously, we find that the frequency is mainly
concentrated in the time of 1 ∼ 2.5s. Therefore, in order to
obtain features of behavioral information, we use 15 frames,
which can focus on the latest 3s signals to extract the features
of yawning, nodding, sighing, and stretching. In addition, we
use the t-SNE [37] algorithm to better visualize these features,
as shown in Fig. 6, which shows that these behaviors can
be well separated, and also reflects the effectiveness of the
designed feature extraction algorithm.

Behavioral Information Acquisition: After feature ex-
traction, we use a neural network to get this behavioral
information. Our proposed network architecture is based on
MobileViT, which is a light-weight, general-purpose, and
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mobile-friendly transformer-based network. It combines the
local representation of CNN-based networks in learning space
and vision transformation (ViT) in learning global features.
The architecture of MobileViT is shown in Fig. 7, which
contains two important components, MobileViT block [24] and
MobileNetV2 block [38]. MobileViT block is composed of
three sub-modules, namely local information coding module,
global information coding module, and feature fusion module.
Their main structures are normal convolution and visual trans-
former. The corresponding functions of the three sub-modules
are to extract local feature, global feature, and fusion feature.
MobileViT block can fully extract features of images with
fewer parameters. The main structure of MobileNetV2 block is
normal convolution and depth-wise convolution. MobileNetV2
block first increases and then decreases the number of channels
of feature map, and connects the residual module afterwards,
which can obtain higher detection accuracy with less compu-
tation. At the end of the network, we map the output to four
kinds of behavioral information through a DNN layer.

The input image size of the proposed model is 256× 256.
In order to unify the input, we preprocess the feature image
and scale it to the input size of the model. We use the
features extracted from 15 frame signals mentioned above to
construct a dataset, of which 60% are used to build a train
set and the remaining 40% are used to build a test set. In
the online detection phase, we first take the current frame
and previous 14 frames as input to extract nodding, yawning,
sighing, and stretching. Then the DNN layer maps the output
to a probability vector, and finally we choose a behavior with
the greatest probability as the behavioral information.

3) Physiological Information Extraction: The phase change
∆φ includes not only the changes caused by chest displace-
ment, but also the greater phase changes caused by users’
behavioral information, so that the phase changes caused by
chest displacement are submerged and cannot be extracted.
Fortunately, through our study of users’ behavioral informa-
tion, we find that the occurrence frequency range of these
behaviors is generally between 0 ∼ 0.08Hz, while the
respiration frequency of normal people is generally between
0.2 ∼ 0.4Hz. Therefore, we first perform band-pass filtering
on the phase change to remove the influence of behavioral in-
formation and high-frequency noises. Secondly, the frequency
range of users’ slow movement, such as leaning forward and
backward, is generally between 0.1 ∼ 2Hz, and we cannot
remove it by filtering, so we adopt VMD to decompose the
filtered phase change ∆φ′ to obtain the respiration signal.
Assuming that the number of intrinsic mode function (IMF)
obtained by decomposition is K, the variational constraint
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model can be expressed as:

min
{ζk},{ωk}

{
K∑

k=1

∥∥∂t

[(
υ (t) + j

πt

)
∗ ζk (t)

]
e−jωkt

∥∥2

2

}
s.t.

K∑
k=1

ζk (t) = ∆φ′
, (8)

where ∂t is the partial derivative with respect to time t,
υ (t) is the unit pulse function, j is the imaginary unit, ∗ is
the convolution operation, ζk (t) is the k-th IMF, and ωk (t)
is the center frequency of ζk (t). The second-order penalty
factor β and Lagrange multiplication operator λ (t) are intro-
duced to transform the constrained variational problem into an
unconstrained problem. The augmented Lagrange function is
expressed as follows:

L ({ζk} , {ωk} , λ) = β
K∑

k=1

∥∥∂t

[(
υ (t) + j

πt

)
∗ ζk (t)

]
e−jωkt

∥∥2

2

+

∥∥∥∥∆φ−
K∑

k=1

ζk (t)

∥∥∥∥2

2

+

〈
λ (t) ,∆φ′ −

K∑
k=1

ζk (t)

〉 .

(9)
The saddle point of the augmented Lagrange function can
be obtained by iterating with alternating direction method of
multipliers. K is set to 3 by default. Based on the above
VMD decomposition method, we decompose the filtered phase
change signal ∆φ′ into 3 IMFs and a residual signal, and the
decomposition results are shown in Fig. 8. Through the FFT of
these three IMF components, it is found that IMF1 is a high-
frequency component, IMF2 is between 0.21 ∼ 0.45Hz, and
IMF3 is a low-frequency component. Therefore, IMF2 mainly
contains respiration information. IMF1, IMF3, and residual
signals mainly include the noises caused by the user’s own
movement. In this way, we get the physiological information
of users. Moreover, we use the maximum peak search method
to obtain the number of respiration, which are marked with
pentagrams in Fig. 8.

4) Information Fusion and Fatigue Detection: After obtain-
ing behavioral and physiological information, we first extract



TABLE I: Fatigue assessment scale.

Symptom
Fatigue
Level

Wide awake L1

Relatively awake L2

A little fatigue L3

Fatigue but struggling to stay awake L4

Extreme fatigue and difficulty to stay awake L5

the statistical features of them and then use an SVM classifier
for fine-grained fatigue detection.

Respiration has been used to detect fatigue [39], and recent
studies find that respiration rate variability (RRV) [40] is
also closely related to fatigue, so we extract some statistical
features of RRV to detect fatigue. RRV refers to small changes
between respiration intervals. Usually, it takes more than two
minutes to measure the variability features to get a more
accurate analysis, which is also the reason why each of data
samples is a 2-minute signal. We have obtained the position
of the maximum peak of the respiration signal in III-C3,
and the interval between adjacent peaks is expressed by RR.
We utilize RR to calculate five features of RRV, including
Mean RR, SDNN , RMSSD, SD1, and SD2. Mean RR
is the mean of RR intervals, SDNN is the standard deviation
of RR intervals, RMSSD is the square root of the mean
of the sum of difference of successive RR intervals, SD1 is
the Poincaré plot standard deviation perpendicular the line of
identity, and SD2 is the Poincaré plot standard deviation along
the line of identity.

After obtaining the statistical features of physiological in-
formation, we next extract the statistical features of behavioral
information. We mainly count the occurrence times of these
four behaviors within 2 minutes as statistical features. Through
our observation, we find that the time interval between ad-
jacent fatigue behaviors is much longer than the duration
of these behaviors. Therefore, we start from detecting a
certain behavior in the 15 frame signal and end when the
behavior is not detected in the 15 frame signal and the whole
process represents that this behavior has occurred once. In this
way, we can get the times of these behaviors in 2 minutes,
which are denoted as TNodding , TY awning , TSighing and
TStretching . Then we use an SVM classifier to detect fatigue,
and use (Xi, Li) to represent the training sample, where Xi =[

Mean RR, SDNN,RMSSD,SD1,
· · · , SD2, TNodding, TY awning, TSighing, TStretching

]
. Li

represents the fatigue level, that is, the category of sample
Xi, which can be evaluated by FAS, as shown in Tab. I, with
a total of 5 levels. The SVM classifier uses Gaussian radial
basis function to map data to a feature space, which can be
expressed as:

y (X) =
∑
i

ciLiκ (Xi, S (i)) + b, (10)

where ci is the Lagrange multiplier, S (i) is the SVM classifier,
κ (·) is the Gaussian kernel function, and b is the bias.
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Fig. 9: Experiment setup.
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Fig. 10: Overall perfor-
mance.

IV. IMPLEMENTATION AND EVALUATION

In this section, we introduce the implementation details and
provide the evaluation results.

A. Experiment Setup

We implement WakeUp using the experimental devices
shown in Fig. 9, including a Raspberry Pi 4B, a regular
hexagonal 6-microphone array, an omni-directional speaker, a
respiration belt, and a laptop. We use the respiration belt and
the laptop camera to record users’ real respiration signals and
behavioral information, and utilize FAS to assess users’ fatigue
level. We recruit 20 volunteers (11 males and 9 females) and
conduct data collection in four different environments (i.e.,
dormitory, office, bedroom, and study room) for evaluation.
We end up collecting 2000 samples containing fatigue infor-
mation, of which 60% are used for training and the remaining
40% are used to evaluate WakeUp, and each sample contains a
2-minute signal. On one hand, we segment the 2000 samples
to train and evaluate the MobileViT network. On the other
hand, we extract the statistical features of the behavioral and
physiological information of the 2000 samples to train and
evaluate the SVM classifier. All procedures are approved by
the Institutional Review Board (IRB) at our institute.

B. Evaluation Methodology

We mainly evaluate WakeUp from the following aspects.
Accuracy. It is the most intuitive performance measure and

it is simply a ratio of correctly predicted observations to the
total observations.

Precision. It is the ratio of correctly predicted positive
observations to the total predicted positive observations.

Recall. It is the ratio of correctly predicted positive obser-
vations to the all observations in actual class.

F1-score. It is the harmonic mean of precision and recall.

C. Overall Performance

Overall performance includes three parts: ablation exper-
iment, behavioral information evaluation, and physiological
information evaluation.

1) Ablation Experiments: We evaluate the fatigue detec-
tion performance of single-information and multi-information
through ablation experiments. Fig. 10 shows the fatigue de-
tection performance using only behavioral information, only
physiological information, and the fusion of these two kinds
of information. It is obvious that the multi-information fusion
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Fig. 11: Detection results
of 5 fatigue levels.
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Fig. 12: Classification results
of MobileViT network.
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Fig. 13: Error of extracted respiration.
method achieves better detection performance. In particular,
the F1-score and accuracy of the multi-information fusion
scheme are at least 2.21% and 2.62% higher than those of
single-information, respectively, which fully shows the superi-
ority of the multi-information fusion fatigue detection scheme
compared with the single information detection scheme.

Fig. 11 presents the detection performance of these three
detection schemes for five fatigue levels. When the fatigue
degree is low, the F1-score of the detection scheme based
on behavioral information is significantly lower, because the
occurrence probability of fatigue behavior is relatively low,
which can greatly affect the performance of fatigue detection.
However, the F1-score of the detection scheme based on
physiological information has only a small fluctuation, which
also shows the feasibility and reliability of using RRV to detect
fatigue. In addition, it is obvious that the multi-information
based fatigue detection scheme has excellent detection perfor-
mance under various fatigue levels, and the F1-score is above
96.62%, which fully reflects the great potential of the multi-
information fusion scheme in fatigue detection, and once again
proves the effectiveness and robustness of WakeUp.

2) Behavioral Information Evaluation: Fig. 12 shows the
classification effect of the MobileViT network on nodding,
yawning, sighing, and stretching. It can be seen that the
values of these four indicators of all behavioral information are
more than 93%, which shows that the MobileViT network has
good classification performance and can extract user behav-
ioral information well. It can also reflect the effectiveness of
behavioral information feature extraction. In addition, we note
that the values of the two indicators of yawning and sighing are
lower than those of nodding and stretching. The main reason is
that yawning and sighing have a small range of activity, which
affects the feature extraction effect of these two behaviors.

3) Physiological Information Evaluation: For respiration
signals, the two most important evaluation indicators are
respiration rate and respiration interval. We use the error
of these two indicators to evaluate the effect of respiration
signal extraction. The estimation error of respiration rate is
defined as the absolute value of the difference between the
estimated respiration rate and the groundtruth. The unit is
beats per minute (bpm). The estimation error of respiration
interval is defined as the absolute time difference between the
estimated respiration interval and the groundtruth, which is an
important indicator to measure the accuracy of the boundaries

of each respiration. The unit is second. We use the cumulative
distribution function (CDF) to quantify these two errors, and
the results are shown in Fig. 13. Fig. 13(a) shows the CDF
of respiration rate error, with an average error of 1.12bpm.
Fig. 13(b) shows the CDF of respiration interval error, with
an average error of 0.61s. In addition, from the results shown
in Fig. 10 and Fig. 11, we can see that the extracted respiration
signal and some common features of the calculated RRV are
sufficient for the purpose of fatigue detection.

D. Impact of Different Factors

1) Impact of Interference: The user’s reflected signal can
be affected by the surrounding environment. In III-B, we
propose to use microphone array to locate the user and use
beamforming to suppress these effects and enhance the user’s
reflected signal. Now we verify the effectiveness of inter-
ference cancellation through experiments. We investigate the
impact of people walking around, typing, clicking, talking, and
music on WakeUp with and without interference cancellation.
The results are shown in Fig. 14. Obviously, in either case,
the implementation of interference cancellation is beneficial
to improve the performance of WakeUp. In particular, when
there are people walking around, no interference cancellation
has a huge impact on the performance of WakeUp, the F1-
score is only 72.43%, mainly because people have a certain
impact on users’ behavioral information and physiological
information, especially physiological information, WakeUp
may not be able to distinguish the respiration signals of users
and people around. Typing and clicking have a slight impact on
WakeUp. These two small movements may affect the detection
performance of yawning and sighing, but these movements are
close to the desktop, and we can use interference cancellation
technology to remove them. Talking and music have little
impact on WakeUp, as WakeUp mainly sends and receives
high-frequency signals, and these two sounds mainly contain
low-frequency components.

2) Impact of Distance: Next, we evaluate the impact of
the distance between the user and the smart speaker on the
performance of WakeUp. We increase the distance between
the device and the user from 0.3m to 2.1m every 0.1m. Fig.
15 shows the F1-score of WakeUp at different distances. When
the distance between the user and the device is less than
2.1m, WakeUp can run well, and its F1-score is more than
95.02%, which can meet the requirements of all environments.
In addition, we also find that when the distance is closer
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(0.3 ∼ 0.4m), it does not mean that its F1-score can be higher,
the main reason is that WakeUp may not be able to capture
all the reflected signals of user’s behavioral information. When
the distance is far (1.6 ∼ 2.1m), the F1-score decreases due
to weak reflection signal.

3) Impact of Environment: We evaluate the performance
of WakeUp under four different environments (i.e., dormitory,
office, bedroom, and study room), and the results are shown in
Fig. 16. It can be seen that different environments have little
impact on WakeUp, with an average F1-score of more than
95.73%. However, it should be noted that since we use line-
of-sight signals, there are no obstructions between users and
devices when we evaluate the impact of these environments
on WakeUp. WakeUp may not work properly when there is
an obstruction between the device and the user, which is the
limitation of our work.

4) Impact of Body Orientation: When the device is placed
in different positions, the user’s body orientation relative to
the device is different, which may have a certain impact on
the performance of WakeUp. Therefore, we study the impact
of different body orientations on WakeUp. For convenience,
we denote the orientation of the user facing the device as
0◦, the left is −90◦ ∼ 0◦ area, and the right is 0◦ ∼ 90◦

area. We measure F1-scores of five angles in the −60◦ ∼ 60◦

area at three distances (0.5m, 0.7m, and 0.9m), and the
results are shown in Fig. 17. WakeUp performs best when
the user is at 0◦ relative to the device. When the angle
increases from 0◦ to 60◦ (or decreases to −60◦), the F1-
score gradually decreases. But overall, the F1-score is above
94%. In particular, when the angle is greater than 60◦ (or
less than −60◦), the reflected signals from the user’s chest
and mouth may be difficult to receive, and the performance
of WakeUp can be poor. Therefore, we recommend users to
place the device at −60◦ ∼ 60◦ to obtain accurate detection
results.

5) Impact of Clothing: In daily life, users may wear various
types of clothes, so we evaluate the impact of different clothes
on WakeUp. We evaluate the performance of WakeUp under
four different dressing scenarios, including T-shirt, sweater,
coat, and sweater+coat. The experimental results are shown
in Fig. 18. In any case, the average F1-score is greater than
95.16%. However, we also find that when users wear thin
clothes (i.e., T-shirt), the F1-score can be higher, while when
users wear thick clothes (i.e., sweater+coat), the performance
of WakeUp can be slightly affected. We believe that the
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possible reason for the performance degradation is that thicker
clothes can attenuate the signal more, so the received chest
reflection signal is weak, which can affect the effect of
physiological information extraction.

6) Impact of Mask: Many people wear masks during the
COVID-19 pandemic. For this reason, we also evaluate the
impact on WakeUp with and without masks, and the results
are shown in Fig. 19. Wearing a mask has a certain impact
on WakeUp, and the F1-score can drop by 2.41% to 3.12%.
The main reason is that wearing a mask may make it difficult
to receive the reflected signal of the mouth, which can affect
the detection accuracy of yawning and sighing, and in turn,
affect the performance of WakeUp. But in general, even
when wearing masks, the F1-score is still more than 93%,
so WakeUp can still work reliably.

V. CONCLUSION

In this paper, we propose WakeUp, a non-contact system
that fuses multiple information to detect fatigue in a fine-
grained way, to improve people’s health levels and work
efficiency. WakeUp uses microphone arrays to locate users
and adopts beamforming to eliminate interference from the
surrounding environment. It can also use the transmitted
and reflected FMCW signals to obtain IF signals and phase
changes, so as to obtain the user’s behavioral information and
physiological information at the same time. WakeUp fuses
these two kinds of information by extracting the statistical
features and combines an SVM classifier to carry out fine-
grained fatigue level detection. Extensive experiments show
that WakeUp can detect fatigue with an accuracy of 97.28%.
We also prove the effectiveness and robustness of WakeUp
under different experimental settings.
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