
Efficient Distributed Low-Cost Backbone
Formation for Wireless Networks

Yu Wang, Member, IEEE, Weizhao Wang, Student Member, IEEE, and Xiang-Yang Li, Member, IEEE

Abstract—Backbone has been used extensively in various aspects (e.g., routing, route maintenance, broadcast, scheduling) for

wireless ad hoc or sensor networks recently. Previous methods are mostly designed to minimize the size of the backbone. However, in

many applications, it is desirable to construct a backbone with small cost when each wireless node has a cost of being in the backbone.

In this paper, we first show that previous methods specifically designed to minimize the backbone size may produce a backbone with

large cost. Then, an efficient distributed method to construct a weighted backbone with low cost is proposed. We prove that the total

cost of the constructed backbone is within a small constant factor of the optimum for homogeneous networks when either the nodes’

costs are smooth (i.e., the maximum ratio of costs of adjacent nodes is bounded) or the network maximum node degree is bounded.

We also show that, with a small modification, the backbone is efficient for unicast: The total cost (or hop) of the least cost (or hop) path

connecting any two nodes using backbone is no more than three (or four) times the least cost (or hop) path in the original

communication graph. Our theoretical results are corroborated by our simulation studies. Finally, we discuss several possible ad hoc

network applications of our proposed backbone formation algorithms.

Index Terms—Connected dominating set, clustering, distributed algorithm, wireless ad hoc networks.

�

1 INTRODUCTION

WIRELESS networks have drawn lots of attention in
recent years due to potential applications in various

areas. Many routing protocols have been proposed for
wireless ad hoc networks recently. The simplest routing
method is to flood the message, which not only wastes the
rare resources of wireless nodes but also diminishes the
throughput of the network. One way to avoid flooding is
to let each node communicate with only a selected subset
of its neighbors, or to use a hierarchical structure like the
Internet, e.g., connected dominating set (CDS) based
routing [1], [2], [3].

Efficient distributed algorithms for constructing con-
nected dominating sets in ad hoc networks were well
studied [1], [2], [3], [4], [5], [6], [7], [8]. Most of the proposed
methods try to minimize the number of clusterheads, i.e.,
the number of nodes in the backbone. However, in many
applications of ad hoc networks, minimizing the size of the
backbone is not sufficient. For example, different wireless
nodes may have different costs for serving as a clusterhead,
due to device differences, power capacities, and informa-
tion loads to be processed. Therefore, in this paper, for the
succinctness of our presentation, we assume that each
wireless node has a generic cost (or weight). The cost may
represent the fitness or priority of each node to be a
clusterhead. A lower cost means a higher priority. In

practice, the cost could represent the power consumption
rate of this node if a backbone with small power
consumption is needed, the robustness of this node if
fault-tolerant backbone is needed, or a function of its
security level if a secure backbone is needed. Therefore, by
defining different costs, our proposed low-cost backbone
formation algorithms can be used in various practical
applications. Recently, many proposed clustering algo-
rithms [9], [10], [11], [12], [13], [14], [15], [16], [17], [18] also
considered different weights as a priority criterion to decide
whether a node will be a clusterhead. However, the
ultimate goal of the majority of protocols is still to minimize
the size of the cluster (or backbone), not the total weight of
the cluster (or backbone). In this paper, we study how to
construct a sparse backbone efficiently for a set of weighted
wireless nodes such that the total cost of the backbone is
minimized and there is a cost (or hops) efficient route
connecting every pair of wireless nodes via the constructed
network backbone.

We propose a novel distributed method to generate a
weighted backbone with a good approximation ratio while
using a small communication cost. Our methods work not
only for homogeneous networks, but also for heterogeneous
networks. We prove that the total cost of the constructed
backbone is within minð4� þ 1; 18 logð�þ 1ÞÞ þ 10 times the
optimum for homogeneous networks when all nodes have
the same transmission range. Here, � is the maximum ratio
of costs of two adjacent wireless nodes and � is the
maximum node degree in the communication graph. Notice
that the advantage of our backbone is that the total cost is
small compared with the optimum when either the costs of
wireless nodes are smooth, i.e., two neighboring nodes’
costs differ by a small constant factor, or the maximum
node degree is low. The total number of messages of our
method is OðmÞ for any network composed of n wireless

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006 681

. Y. Wang is with the Department of Computer Science, University of North
Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223.
E-mail: ywang32@uncc.edu.

. W. Wang and X.-Y. Li are with the Department of Computer Science,
Illinois Institute of Technology, 10 W. 31st Street, Chicago, IL 60616.
E-mail: wangwei4@iit.edu, xli@cs.iit.edu.

Manuscript received 6 Dec. 2004; revised 31 May 2005; accepted 27 June
2005; published online 25 May 2006.
Recommended for acceptance by J. Wu.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0299-1204.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

devices and m total pairs of nodes that can directly receive
signals from each other. We also show that, with a small
modification, the constructed backbone is efficient for
unicast: The total cost (or hop) of the least cost (or hop)
path connecting any two nodes using backbone is no more
than 3 (or 4) times the least cost (or hop) path in the original
communication graph. This is significant since our back-
bone structure is much sparser than the original commu-
nication graph, which significantly reduces the cost of
routing without losing much ground on the performance of
unicast.

The rest of the paper is organized as follows: In Section 2,
we provide preliminaries necessary for describing our new
algorithms. In Section 3, we review the related work in
literature, including formation of connected dominating
sets and weighted clustering methods. Then, the possible
bad performances of several classical methods are shown
by examples in Section 4. Section 5 presents our new
weighted backbone formation algorithms and Section 6
gives the theoretical performance analysis of the proposed
algorithms. Section 7 presents some experimental results. In
Section 8, we discuss several possible network applications
of our proposed algorithms. Finally, we conclude our paper
in Section 9 by discussing dynamic maintenance of the
backbone and some future research directions.

2 PRELIMINARIES

In this section, we give some definitions and notations
that will be used later in our presentation. We assume
that all wireless nodes are given as a set V of n points in
a two-dimensional space. Each wireless node has an
omnidirectional antenna. This is attractive for a single
transmission of a node can be received by all nodes
within its vicinity. We always assume that the nodes are
almost static in a reasonable period of time. A commu-
nication graph G ¼ ðV ;EÞ over a set V of wireless nodes
has an edge uv between nodes u and v if and only if u
and v can communicate directly with each other, i.e.,
inside the transmission region of each other. Hereafter,
we always assume that G is a connected graph. Let dGðuÞ
be the degree of node u in a graph G and � be the
maximum node degree of all wireless nodes (i.e.,
� ¼ maxu2V dGðuÞ). Each wireless node u has a cost cðuÞ
of being in the backbone. Here, the cost cðuÞ could be the
value computed based on a combination of its remaining
battery power, its mobility, its node degree in the commu-
nication graph, and so on. We will discuss several possible
weight functions for different applications in Section 8. In
general, a smaller cðuÞ means that the node is more suitable
for being in the backbone. Let � ¼ maxij2E cðiÞ=cðjÞ, where ij
is the edge between nodes i and j, E is the set of
communication links in the wireless network G, and the
maximum operation is taken on all pairs of adjacent nodes i
and j in G. In other words, � is the maximum ratio of costs
of two adjacent nodes. We call � the cost smoothness of the
wireless networks. When � is bounded by some small
constant, we say the node costs are smooth.

When the transmission region of every wireless node is
modeled by a unit disk centered at itself, the communica-
tion graph is often called a unit disk graph, denoted by

UDGðV Þ, in which there is an edge between two nodes if
and only if their distance is at most 1. We also call such
wireless networks homogeneous networks.

We call all nodes within a constant k hops of a node u in
the communication graph G the k-local nodes or k-hop
neighbors of u, denoted by NkðuÞ, which includes u itself.
The k-local graph of a node u, denoted by GkðuÞ, is the
induced graph of G on NkðuÞ, i.e., GkðuÞ is defined on NkðuÞ,
and contains all edges in G with both endpoints in NkðuÞ.

A subset of vertices in a graph G is an independent set
if, for any pair of vertices, there is no edge between
them. It is a maximal independent set if no more vertices
can be added to it to generate a larger independent set. It
is a maximum independent set (MIS) if no other indepen-
dent set has more vertices. The independence number,
denoted as �ðGÞ, of a graph G is the size of the MIS of
G. The k-local independence number, denoted by �½k�ðGÞ, is
defined as �½k�ðGÞ ¼ maxu2V �ðGkðuÞÞ. It is well-known
that, for a unit disk graph, �½1�ðUDGÞ � 5 [19] and
�½2�ðUDGÞ � 18 [20].

A subset S of V is a dominating set if each node in V is
either in S or is adjacent to some node in S. Nodes from S
are called dominators, while nodes not in S are called
dominatees. Clearly, any maximal independent set is a
dominating set. A subset C of V is a connected dominating set
(CDS) if C is a dominating set and C induces a connected
subgraph. Consequently, the nodes in C can communicate
with each other without using nodes in V � C. A dominat-
ing set with minimum cardinality is called a minimum
dominating set (MDS). A CDS with minimum cardinality is
the minimum connected dominating set (MCDS). In ad hoc
networks, assume that each node u has a cost cðuÞ. Then, a
CDS C is called a weighted connected dominating set (WCDS).
A subset C of V is a minimum weighted connected dominating
set (MWCDS) if C is a WCDS with minimum total cost. In
this paper, we study efficient algorithms to construct a low-
cost backbone which can approximate the MWCDS well.

3 RELATED WORK

Efficient distributed algorithms for constructing connected
dominating sets in ad hoc networks were well studied [1],
[2], [3], [4], [5], [6], [7], [8]. The notion of cluster organization
has been used for wireless networks since their early
appearance. Baker et al. [5], [6] introduced a fully distributed
linked cluster architecture, mainly for hierarchical routing,
and demonstrated its adaptivity to network connectivity
changes. The notion of the cluster has been revisited by
Gerla et al. [21], [22] for multimedia communications, with
the emphasis on the allocation of resources to support
multimedia traffic in an ad hoc environment. Alzoubi et al.
[4] proposed a method to approximate a minimum connected
dominating set within 8 whose message complexity is
Oðn lognÞ and time complexity isOðnÞ for wireless networks
modeled by unit disk graphs. Alzoubi et al. [23] continued to
propose a localized method approximating the MCDS
within a constant time using a linear number of messages.
Marathe et al. [24] studied several approximation results for
unit disk graphs, such as methods for maximum independent
set, minimum vertex cover, minimum coloring, and minimum
dominating set. Existing clustering methods first choose some

682 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

nodes to act as coordinators of the clustering process, i.e.,
clusterheads. Then, a cluster is formed by associating the
clusterhead with some (or all) of its neighbors. Previous
methods differ on the criterion for the selection of the
clusterhead, which is either based on the lowest (or highest)
ID among all unassigned nodes [6], [22] or based on the
maximum node degree [21] or based on some generic weight
[10], [15]. In [8], Chen et al. also proposed a localized
algorithm to build CDS for topology maintenance, where a
node becomes a dominator when two of its neighbors cannot
reach each other either directly or via one or two dominators.
Similarly, Wu and Li [2] proposed their localized connected
dominating set method using a marking process where a node
is marked true if it has two unconnected neighbors. It is
shown that the set of marked nodes forms a CDS. They then
reduced the size of the CDS by applying two dominant
pruning rules. In [7], Dai and Wu further extended their
pruning rules to k-hop neighborhoods in order to achieve
better results. Recently, Kuhn and Wattenhofer [25] pro-
posed a new distributed MDS approximation algorithm
based on linear programming (LP) relaxation techniques.
For an arbitrary parameter k, their algorithm computes a
dominating set of expected size Oðk�2=k log �jMDSjÞ in
Oðk2Þ rounds where each node has to send Oðk2�Þ
messages of size Oðlog �Þ. Moreover, the authors further
gave the time lower bounds for the distributed approx-
imation of MDS in [26].

Many proposed clustering algorithms [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18] also considered different
weights as a priority criterion to decide whether a node will
be a clusterhead. Notice the ultimate goal of most protocols
is still to minimize the number of clusterheads (or the size
of the backbone), not the total weight of clusterheads (or the
backbone). For example, methods in [11], [16] considered
the stability or mobility of each node as the weight. They
preferred the node with high stability and low mobility to
be the clusterhead. In [13], the authors also combined the
stability with the degree of each node as the weight. The
higher priority is given to relatively stable and high degree
nodes. Methods in [12], [14] considered clustering in
heterogeneous sensor networks, where each node has a
different energy level. Most of them used the remaining
energy or energy consumption rate as the weight. Both [18]
and [17] considered two factors in the priority: available
energy and speed, though they used different equations to
combine them. In both [10] and [15], authors considered a
combined weight metric that takes into account several
system parameters like the node-degree, transmission
power, mobility, and battery power of the nodes. Most of
these proposed weighted clustering algorithms applied
simple greedy algorithms where the nodes with highest
priority (lowest cost) become clusterheads. For example,
[10] selects a node with the lowest cost among its unchosen
neighbors to serve as a clusterhead. These greedy heuristics
work well in practice, but we will show in Section 4 that
they may generate a backbone with a high cost compared
with the optimum. Some of these methods [12], [14] are
randomized algorithms; nodes become clusterheads ran-
domly with a weighted election probability. All of these
cluster methods do not guarantee any approximation ratio

of the weighed cluster (or backbone) compared with the
optimum. Notice that Basagni [9] gave an algorithm to solve
the maximal weighted independent set in wireless networks
and Basagni et al. [27] studied the performance of a greedy
clustering algorithm (highest weight nodes become cluster-
heads) for the maximum weighted independent set in peer-to-
peer networks, but, here, our solution for cluster is a
distributed approximation algorithm for the minimum
weighted dominating set and the minimum weighted connected
dominating set, which are well-known NP-hard problems. Li
and Wang [28] presented a centralized approximation
algorithm for the weighted maximum independent set for
some special graphs. Guha and Khuller [29] studied
centralized algorithms for the weighted minimum con-
nected dominating set in general graphs. By combining a
weighted set cover approximation algorithm and a node-
weighted Steiner tree approximation algorithm, they
achieved the approximation ratio 3 lnn. In [30], they further
improved the approximation ratio to 1:35 lnn, which is the
best ratio known. In addition, any approximation algorithm
with the ratio � for the unweighted (connected) dominating
set problem automatically gives the ratio � � � for the
weighted version. In particular, the known PTAS for the
dominating set in UDG [31] implies that the weighted
dominating set in UDG can be approximated with the ratio
ð1þ �Þ � � for arbitrary � > 0.

4 CLASSICAL GREEDY METHODS

DO NOT WORK WELL

Most of the methods proposed in the literature aim to find a
small dominating set for homogeneous networks. Many of
them are based on classical greedy algorithms. If we insist
on applying these greedy methods to approximate the
minimum weighted dominating set, they may produce a
backbone that is arbitrarily worse than the optimum. We
will show by examples that three classical methods do not
generate a dominating set whose cost is always comparable
with ours in the worst case.

The first method to generate a dominating set is to
generate a maximal independent set as follows [10], [19]:
First, all nodes are originally marked as WHITE, which
represents that the node is not assigned any role yet. A
node u sends a message IamDominator to all its one-hop
neighbors if it has the smallest cost (ID is often used if every
node has a unit cost) among all its WHITE neighbors. Node u
also marks itself Dominator. When a node v received a
message IamDominator from its one-hop neighbors, node v
then marks itself Dominatee. Node v then sends a message
IamDominatee to all its one-hop neighbors. Clearly, the
nodes marked with Dominator indeed form a dominating
set. We then show by example that the produced dominat-
ing set may be arbitrarily larger than the optimum solution.
Although the instance illustrated here uses UDG as the
communication graph, it is not hard to extend this to
general communication graphs. See Fig. 1a for an illustra-
tion. Assume that three wireless nodes u, v, and w are
distributed along a line with one-unit intervals. The nodes’
costs of u, v, and w are 1, 1, and 1� �, respectively. The
dominators selected by the first method are nodes w and u

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 683

and the total cost of the solution is1. However, the optimal
solution is formed by v with a total cost 1. Our method
presented later does produce a dominating set of total
cost 2� �.

The second method of constructing a dominating set [3]
is based on the minimum weighted set cover [32]. The
method can be described in a centralized way as follows: In
each round, we select an unselected node i with the
minimum ratio cðiÞ=di, where di is the number of nodes not
covered by previously selected dominators. It is well-
known that this centralized method produces a dominating
set whose total cost is no more than logð�þ 1Þ times the
optimum, where � is the maximum original degree of all
nodes. In [4], Alzoubi et al. gave an example (as in Fig. 1b)
with a family of instances for which the size of the solution
computed by the second method is larger than the optimum
solution by a logarithm factor when all nodes have the same
weight. Again, though the instance illustrated here uses
UDG as the communication graph, we can easily extend
this to a general communication graph. For the detail of this
example, see [4]. Moreover, this method is expensive to
implement in a distributed way. It is expensive to find the
node i with the minimum ratio cðiÞ=di among all unchosen
nodes. Our method described later will produce a dominat-
ing set whose size is no more than five times the optimum
for unit weighted UDG. More importantly, our method is a
fully distributed method.

The third method to select the dominating set is
proposed by Bao and Garcia-Luna-Aceves [18]. Unlike
the previous two methods, this is a fully localized method
and it can be executed in two rounds using synchronous
communication model. A node decides to become a
dominator if either one of the following two criteria are
satisfied: 1) The node has the smallest cost in its one-hop
neighborhood or 2) the node has the smallest cost in the
one-hop neighborhood of one of its one-hop neighbors.
We show by an example that the produced dominating set
may be arbitrarily larger than the optimum solution. See
Fig. 1c for an illustration of an instance in UDG. Assume
that 2nþ 1 wireless nodes are distributed as shown in Fig.
1c. The nodes’ costs of ui, vi, and w are 1, 1� �, and
1� 2�, respectively. The dominators selected by the third
method are nodes w and vi (0 � i < n) and the total cost

of the solution is nð1� �Þ þ 1� 2�. However, the optimal
solution formed by node w and seven nodes from ui has a
total cost 8� 2�. It is easy to show that seven unit disks
centered at 7 nodes among some ui can cover all ui. Our
method described later will produce an optimal dominat-
ing set in this special case.

5 LOW-COST BACKBONE FORMATION ALGORITHMS

In this section, we propose a distributed algorithm that
constructs a low-cost backbone (weighted connected dom-
inating set) for a wireless ad hoc network G. We will prove
that the total cost of the constructed backbone is no more than

minð�½2�ðGÞ logð�þ 1Þ; ð�½1�ðGÞ � 1Þ� þ 1Þ þ 2�½1�ðGÞ

times the optimum solution. Notice that, for homogeneous
wireless networks modeled by UDG, it implies that the
constructed backbone has a cost no more than

minð18 logð�þ 1Þ; 4� þ 1Þ þ 10

times the optimum.
We assume that each node knows the IDs and costs of

all its one-hop neighbors, which can be achieved by
requiring each node to broadcast its ID and cost to its
one-hop neighbors initially. This protocol can be easily
implemented using synchronous communications as was
done in [5], [6]. Our method has the following two
phases: The first phase (clustering phase) is to find a set
of wireless nodes as the dominators1 and the second
phase is to find a set of nodes, called connectors, to
connect these dominators to form the final backbone.
Notice that these two phases could interleave in the
actual construction method. We separate them just for the
sake of easy presentation.

5.1 Finding Dominators

We now propose our method of constructing a dominating
set whose total cost is comparable with the optimum
solution. Our method first constructs a maximal indepen-
dent set (MIS) using node weight as selection criterion. For
each node v in MIS, we then run a local greedy set cover

684 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

1. We will interchange the terms clusterhead and dominator. A node that
is not a clusterhead is also an ordinary node or dominatee.

Fig. 1. Examples where the greedy methods fail to produce low-cost weighted connected dominating sets. (a) Example for greedy 1. (b) Example

from [4] for greedy 2. (c) Example for greedy 3.

method on the local neighborhood N2ðvÞ to find some nodes

(GRDYv) to cover all one-hop neighbors of v. If GRDYv has a
total cost smaller than v, then we use GRDYv to replace v,

which further reduces the cost of MIS. Our method is

illustrated in Algorithm 1. For the example illustrated by

Fig. 1a, the MIS will be two nodes w and u, whose cost is
large. Node u is PossibleDominator and, thus, performs the

local set cover. Clearly, N2ðuÞ ¼ fu; v; wg andN1ðuÞ ¼ fu; vg.
The local set cover will select v to cover all nodes in

N1ðuÞ since v covers both nodes in N1ðuÞ. Note that
cðvÞ < cðuÞ, so node u will let v be a dominator. The other

PossibleDominator w will keep itself as a dominator since

the local set cover gets worse solution than itself. The

final dominating set is then fv; wg, which is close to
optimum fvg.

Algorithm 1 Construct Low-Cost Dominating Set

1: First, assume that all nodes are originally marked WHITE.

2: A node u sends a message ItryDominator to all its one-hop
neighbors if it has the smallest cost among all its WHITE

neighbors. Node u also marks itself PossibleDominator.

3: When a node v received a message ItryDominator from its

one-hop neighbors, node v then marks itself Dominatee.

Node v then sends a message IamDominatee to all its one-

hop neighbors.

4: When a node w receives a message IamDominatee from

its neighbor v, node w removes node v from its list of
WHITE neighbors.

5: Each node u marked with PossibleDominator collects the

cost and ID of all of its two-hop neighbors N2ðuÞ.
6: Using the greedy method for minimum weighted set

cover (like the second method), node u selects a subset of

its two-hop neighbors to cover all the one-hop neighbors

(including u) of node u. If the cost of the selected subset,

denoted by GRDYu, is smaller than the cost of node u,
then node u sends a message YouAreDominator(w) to

each node w in the selected subset. Otherwise, node u

just marks itself Dominator.

7: When a node w receives a message YouAreDominator(w),

node w marks itself Dominator.

5.2 Finding Connectors

The second step of weighted connected dominating set

formation is to find some connectors (also called gateways)

among all the dominatees to connect the dominators. The

connectors and the dominators form a CDS (also called the
backbone). Several methods [5], [6], [19], [21], [23] have been

proposed in the literature to find the connectors. However,

all of these methods only consider the unweighted scenario

and they generally do not produce a weighted connected
dominating set (WCDS) with a good approximation ratio.

Given a dominating set S, let V irtG be the graph
connecting all pairs of dominators u and v if there is a path

in the original graph G connecting them with, at most, three

hops. It is well-known that V irtG is connected [4]. It is

natural to form a CDS by finding connectors to connect any
pair of dominators u and v if they are connected in V irtG.

This strategy was used in several previous methods, e.g.,

[4], [5], [6], [19], [22].

Our connector selection method for WCDS is also based
on this observation. First, we define two dominators u and v
as neighboring dominators if they are at most three hops
away, i.e., they are neighbors in V irtG. Let LCPðu; v;GÞ
denote the least cost path uv1v2 � � � vkv between nodes u and
v on a weighted graph G, and Lðu; v;GÞ denote the total cost
of nodes on path LCPðu; v;GÞ excluding u and v, i.e.,

Lðu; v;GÞ ¼
X

1�i�k
cðvkÞ:

For every pair of neighboring dominators u and v, our
method will find the shortest path with at most three hops
to connect them. The nodes on this shortest path will be
assigned a role of connector. Our method uses the following
data structures and messages:

1. DkðvÞ is the list of dominators that are k hops away
from a node v.

2. Pkðv; uÞ is the least cost path from v to u using at
most k hops. (Notice u and v may be less than k hops
away.)

3. OneHopDominatorListðv;D1ðvÞÞ: Nodes D1ðvÞ are the
dominators of node v that are one hop from v.

4. TwoHopDominatorðv; u; w; cðwÞÞ: Node u is a two-
hop dominator of node v and the path uwv has the
least cost.

Algorithm 2 illustrates our method in detail. By combin-
ing all the dominators and the connectors selected by the
algorithms, we get a WCDS (the backbone). Notice that
since we run MST on V irtG, the constructed backbone is a
sparse graph, i.e., it has only a linear number of links.

Algorithm 2 Low-cost Connector Selection
1: Every dominatee node v broadcasts to its one-hop

neighbors the list of its one-hop dominators D1ðvÞ using

message OneHopDominatorListðv;D1ðvÞÞ. When a node w

receives OneHopDominatorListðv;D1ðvÞÞ from one-hop

neighbor v, it puts the dominator u 2 D1ðvÞ to D2ðwÞ if

u =2 D1ðwÞ. Update the path P3ðz; uÞ as uvw if it has a

smaller cost.

2: When a dominatee node w received messages
OneHopDominatorList from all its one-hop nodes, for

each dominator node u 2 D2ðwÞ, node w sends out

message TwoHopDominatorðw; u; x; cðxÞÞ, where wxu is

the least cost path P2ðw; uÞ.
3: When a dominator z receives a message

TwoHopDominatorðw; u; x; cðxÞÞ from its neighbor w, it

puts u to D3ðzÞ if u 62 D2ðzÞ and updates the path P3ðz; uÞ
as uwxz if cðwÞ þ cðxÞ has a lower cost.

4: Each dominator u builds a virtual edge fuvuv to connect

each neighboring dominator v. The length of fuvuv is the

cost of path P3ðu; vÞ. Notice that here the cost of end

nodes u and v is not included. All virtual edges form an

edge weighted virtual graph V irtG in which all

dominators are its vertices.

5: Run a distributed algorithm to build an MST on graph

V irtG. Let VMST denote MST ðV irtGÞ.
6: For any virtual edge e 2 VMST , select each of the

dominatees on the path corresponding to e as a

connector.

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 685

6 PERFORMANCE GUARANTEE

In this section, we first study the performance of the
proposed weighted backbone in terms of the total node cost.
Then, by a small modification of the backbone formation
algorithm, we can make our weighted backbone more
efficient for unicast routing.

6.1 Total Cost of the Backbone

Remember, we want to build a backbone whose total node
cost is as low as possible. We will show that the backbone
constructed by our method is comparable to the optimum
when the network is not dense or the costs of the nodes do
not have a dramatic change, i.e., they are smooth. The
following analysis is on homogeneous networks, but it can
be extended to general heterogeneous networks without
difficulty. Before describing our result, we first review an
important observation of the dominating set on UDG, which
will play an important role in our proofs later. After
clustering, one dominator node can be connected to many
dominatees. However, it is well-known that a dominatee
node can only be connected to at most five independent
nodes in the UDG model. In other words, the 1-local
independence number of UDG, �½1�ðUDGÞ, is 5. Generally, it is
well-known that, for each node, there are, at most, a
constant number (�½k�ðUDGÞ) of independent nodes that
are, at most, k units away. The following lemma, which
bounds the number of independent nodes within k units
from a node v, is proved in [19] by using a simple area
argument.

Lemma 1. For every node v, the number of independent nodes
inside the disk centered at v with radius k units, �½k�ðUDGÞ, is
bounded by a constant ‘k ¼ ð2kþ 1Þ2.

The bounds on ‘k can be improved by a tighter analysis. In
[20], Li and Wan gave a detailed proof to show that, for
UDG, the number of independent nodes in a two-hop
neighborhood (not including the one-hop neighbors) is, at
most, 13, while the number of independent nodes in one-
hop neighborhoods is, at most, 5. Therefore, there are, at
most, 18 independent nodes inside the disk centered at a
node v with radius 2, i.e., �½2�ðUDGÞ ¼ 18.

Theorem 2. Algorithm 1 constructs a dominating set whose total
cost is no more than minð18 logð�þ 1Þ; 4� þ 1Þ times the
optimum for networks modeled by UDG.

Proof. First, we prove the total cost of the maximal
independent set MIS formed by all PossibleDominator
nodes is no more than 4� þ 1 times the optimum.
Assume node u is a node from the optimum OPT . If u
is not a PossibleDominator node, then there are, at most,
five PossibleDominator nodes around u. Let vu1 ; v

u
2 ; � � � ; vu5

denote them. The cost of one of these five nodes is
smaller than the cost of u; otherwise, node u will be
selected as a PossibleDominator node. Without loss of
generality, let cðvu1Þ � cðuÞ. We also know that cðvui Þ �
� � cðuÞ for 2 � i � 5. Thus,

P
1�i�5 cðvui Þ � ð4� þ 1ÞcðuÞ. If

we summarize the inequalities for all nodes in the
optimum dominating set OPT , we get

X
u2OPT

X
1�i�5

cðvui Þ � ð4� þ 1Þ
X

u2OPT
cðuÞ ¼ ð4� þ 1ÞcðOPT Þ:

Notice that every node in MIS will appear as vui for at
least one node u 2 OPT since OPT is a dominating set.
Thus, cðMISÞ ¼

P
v2MIS cðvÞ �

P
u2OPT

P
1�i�5 cðvui Þ. It

follows that cðMISÞ � ð4� þ 1ÞcðOPT Þ.
Then, we prove the total cost of the nodes selected by

the greedy method in Step 6 of Algorithm 1 is no more
than 18 logð�þ 1Þ times the optimum. Assume that
node u runs the greedy algorithm and gets the subset
as GRDYu, and the cost of the selected subset cðGRDYuÞ
is at most cðuÞ. It is well known that the dominating set
generated by the greedy algorithm for set cover is no
more than log f times the optimum if every set has at
most f items. Here, we know that every dominator can
cover at most � dominatees, thus

cðGRDYuÞ � logð�þ 1Þ � cðLOPTuÞ:

Here, LOPTu is an optimum dominating set (using
nodes from N2ðuÞ) when the set of nodes to be covered
are the one-hop neighborhood of u (including u).
Assume that OPTu is the subset of the global optimum
solution, denoted as OPT, for MWCDS, which falls in
the two-hop neighborhood of u, i.e.,

OPTu ¼ OPT
\
N2ðuÞ:

Obviously, OPTu is a dominating set for N1ðuÞ. Thus, we
have cðLOPTuÞ � cðOPTuÞ since LOPTu is the local
optimum. Therefore,

cðGRDYuÞ � logð�þ 1Þ � cðLOPTuÞ � logð�þ 1Þ � cðOPTuÞ:

Considering all nodes in the MIS, we get

cðGRDY Þ �
X

u2MIS

cðGRDYuÞ � logð�þ 1Þ �
X

u2MIS

cðOPTuÞ:

Remember that, for each node v, the number of
independent nodes in the two-hop neighborhood of v is
bounded by 18. Therefore, each dominator is counted at
most 18 times (once for each node u 2MIS that selects v
to GRDYu). Thus,

P
u2MIS cðOPTuÞ � 18cðOPT Þ.

For each node u in MIS, we either use u as a
dominator or use GRDYu as dominators, whichever
has a smaller cost. Then, the total weight of the final
dominating set is at most

X
u2MIS

minðcðuÞ;cðGRDYuÞÞ

� minð
X

u2MIS

cðuÞ;
X

u2MIS

cðGRDYuÞÞ

� minð4� þ 1; 18 logð�þ 1ÞÞ � cðOPT Þ:

This finishes our proof. tu
Notice that, here, the approximation ratio is

minð18 logð�þ 1Þ; 4� þ 1Þ:

So, if one of logð�þ 1Þ and � is a constant, the approxima-
tion ratio is a constant. Our analysis is also pessimistic as
our simulation shows that the practical performance is
much better than this theoretical bound. It is easy to
generalize the above result to heterogeneous networks.

Theorem 3. For a network modeled by a graph G, Algorithm 1
constructs a dominating set whose total cost is no more

686 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

than minð�½2�ðGÞ logð�þ 1Þ; ð�½1�ðGÞ � 1Þ� þ 1Þ times the
optimum.

Now, we need to prove the total cost of connectors
selected by Algorithm 2 is also bounded. The following
lemma about the relationship between Lðu; v;GÞ and
Lðu; v; V irtGÞ will be used in the proof:

Lemma 4. For any pair of dominators u and v,

Lðu; v; V irtGÞ � 2 � Lðu; v;GÞ:

Proof. Notice that the original graph is node weighted,
while the virtual graph V irtG is edge weighted.
Here, let cðeÞ be the weight of edge e ¼ guiujuiuj and
cðeÞ ¼ Lðui; uj; GÞ. We assume that path uv1v2 � � � vkv is
the least cost path connecting u and v in the original
graph G, as shown in Fig. 2.

For any dominatee node p in the original commu-
nication graph, it must be dominated by at least one
dominator. Thus, we can assume that node ui is node vi’s
dominator, as shown in Fig. 2. For dominators ui and
uiþ1, we argue that the length of guiuiþ1uiuiþ1 is, at most, the
summation of the cost of vi and viþ1. Notice that
uiviviþ1uiþ1 is a three-hop path between ui and uiþ1

whose length is cðviÞ þ cðviþ1Þ. Thus, the length of guiuiþ1uiuiþ1

is, at most, cðviÞ þ cðviþ1Þ. Thus, we have cð guiuiþ1uiuiþ1Þ �
cðviÞ þ cðviþ1Þ for 1 � i � k� 1. Similarly, we also have
cðguu1uu1Þ � cðv1Þ and cðgukvukvÞ � cðvkÞ. Summing all these
inequalities, we get

Lðu; v; V irtGÞ � cðguu1uu1Þ þ cðfvkvvkvÞ þ
Xk�1

i¼1

cð guiuiþ1uiuiþ1Þ � 2
Xk
i¼1

cðviÞ:

This finishes our proof. tu

In graph G, we set all dominators’ cost to 0 to obtain a
new graph G0. Assume Topt is the tree with the minimum
cost that spans all dominators selected by Algorithm 1. The
following lemma shows that there exists a tree T 0opt whose
cost equals the cost of Topt and every dominatee node u in
T 0opt has a node degree at most �½1�ðGÞ.
Lemma 5. There exists a tree T 0opt in G0 spanning all dominators

selected in Algorithm 1 and connectors in this tree have degree
at most �½1�ðGÞ.

Proof. We prove this by construction. Consider any optimum
cost tree Topt spanning all dominators. In tree Topt, assume
there exist some connectors whose degrees are greater
than �½1�ðGÞ. We choose any one of them as the root. The
depth of a connector is defined as the hops from this
connector to the root in Topt. We process all connectors u in
Topt whose degree is greater than �½1�ðGÞ in an increasing
order of their depths. Notice that, as we will see later, the
depth of a node does change in our construction, but it will
only increase. Assume that currently we are processing a

node u with more than �½1�ðGÞ neighbors. Clearly, there
are at least two neighbors of u in tree Topt that are
connected, say p, q. Notice either p’s or q’s depth is greater
than u since u only has one parent. Without loss of
generality, we assume that p’s depth is bigger than u’s
depth. We then remove edge uq and add edge pq. Then, u’s
degree decreases by 1 while all other connectors whose
depth is less than or equal to u’s remains unchanged and
p’s degree increases by 1. Notice this will result in a new
tree spanning all dominators while keeping the cost of the
tree unchanged. Update the depth of node q and all nodes
of the subtree rooted at q (the depths will increase by 1).
Repeat the above iteration until all nodes are processed. It
is obvious that the above process will terminate. The
resulting tree is T 0opt. tu

For tree T 0opt, we define its weight cðT 0optÞ as the sum of the
cost of all connectors. We also define cðT Þ ¼

P
e2T cðeÞ for

an edge weighted tree T . Lemma 5 implies that there is an
optimum tree connecting all dominators with node degree
at most 5 for networks modeled by UDG.

Theorem 6. The connectors selected by Algorithm 2 have a total
cost no more than 2 � �½1�ðGÞ times the optimum for networks
modeled by G.

Proof. Let KG be another virtual complete graph whose
vertices are all dominators selected in Algorithm 1 and
whose edge length equals the cost of the least cost path
between two dominators on original graph G. Following,
we argue the weight of MST on graph KG is at most
�½1�ðGÞ times the weight of tree T 0opt.

For spanning tree T 0opt, we root it at an arbitrary
node and duplicate every link in T 0opt (the resulting
structure is called DT 0opt). Clearly, every node in DT 0opt
has an even degree now. Thus, we can find an Euler
circuit, denoted by ECðDT 0optÞ, that uses every edge of
DT 0opt exactly once, which is equivalent to saying that
every edge in T 0optðGÞ is used exactly twice. Conse-
quently, every node vk in V ðT 0optÞ is used exactly
dT 0optðvkÞ times. Here, dGðvÞ denotes the degree of a
node v in a graph G. Thus, the total weight of the
Euler circuit is at most �½1�ðGÞ times cðT 0optÞ, i.e.,

cðECðDT 0optÞÞ � �½1�ðGÞ � cðT 0optÞ:

Notice that, here, if a node vk appears multiple times in

ECðDT 0optÞ, its weight is also counted multiple times in

cðECðDT 0optÞÞ.
If we walk along ECðDT 0optÞ, we visit all dominators

and the length of any subpath between dominators ui
and uj is not smaller than Lðui; uj; GÞ. Therefore, the cost
of ECðDT 0optÞ is at least cðMST ðKGÞÞ since MST ðKGÞ is
the minimum cost tree spanning all dominators and the
edge uiuj in MST ðKGÞ corresponds to the path with the
least cost between ui and uj. In other words,

cðECðDT 0optÞÞ � cðMST ðKUDGÞÞ:

Consequently, we have

cðMST ðKGÞÞ � cðECðDT 0optÞÞ � �½1�ðGÞ � cðT 0optÞ: ð1Þ

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 687

Fig. 2. Lðu; v;GÞ � 2 � Lðu; v; V irtGÞ.

Now, we prove the weight of MST ðV irtGÞ is at most
two times the weight of MST ðKGÞ. For any edge
e ¼ uiuj 2MST ðKGÞ, from Lemma 4, we have

cðeÞ � Lðui; uj; GÞ �
Lðui; uj; V irtGÞ

2
:

For each edge e ¼ uiuj 2MST ðKGÞ, we connect them in
graph V irtG using path LCPðui; uj; V irtGÞ. This con-
structs a connected subgraph MST 0 on graph V irtG
whose cost is not greater than twice the weight of
MST ðKGÞ. Thus,

cðMST ðV irtGÞÞ � cðMST 0Þ � 2 � cðMST ðKGÞÞ: ð2Þ

The theorem follows by combining (1) and (2):

cðMST ðV irtGÞÞ � 2cðMST ðKGÞÞ � 2�½1�ðGÞ � cðT 0optÞ:

tu

Notice that Theorem 6 also implies the following side-
product result: Given a group of receivers in a node
weighted network, the connectors found through VMST
have a total cost no more than 2�½1�ðGÞ times the minimum
cost multicast tree. For the special case of UDG, the total
cost of the connectors is no more than 10 times the optimum
multicast tree. Here, we assume that the receivers have
cost 0.

Combining Theorem 3 and Theorem 6, we get the
following theorem, which is one of the main contributions
of this paper.

Theorem 7. For any communication graph G, our algorithm
constructs a weighted connected dominating set whose total
cost is no more than

minð�½2�ðGÞ logð�þ 1Þ; ð�½1�ðGÞ � 1Þ� þ 1Þ þ 2�½1�ðGÞ

times the optimum.

Specifically, for homogeneous wireless networks
modeled by a unit disk graph, our algorithm constructs
a weighted connected dominating set whose total cost
is no more than minð18 logð�þ 1Þ; 4� þ 1Þ þ 10 times the
optimum.

6.2 Unicast Performance

After we construct the backbone WCDS, if a node u wants
to broadcast a message, it follows the following procedure.
If node u is not a dominator, then it sends the message to
one of its dominators. When the message reaches the
backbone, it will be broadcast along the virtual minimal
spanning tree. Previously, we prove that the total cost of
WCDS is no more than a constant times the optimum,
which implies that our structure is energy efficient for
broadcast. Notice that in the construction of the low-cost
backbone we apply MST (virtual minimal spanning tree) to
reduce the total cost of the backbone, it makes the backbone
very sparse, which may hurt the performance of the unicast
routing since less-power-efficient paths can be used for
routing. Therefore, when considering unicast routing, we
can remove the MST step and use the paths in V irtG as the
backbone. Specifically, we can modify our backbone

formation algorithms by 1) removing steps 5, 6, and 7
(collecting two-hop information and running the greedy
algorithm for the set over) from Algorithm 1, 2) modifying
PossibleDominator to Dominator in step 2 of Algorithm 1,
and removing steps 5 and 6 (building VMST) from
Algorithm 2. Notice that the changes to Algorithm 1 are
not necessary, as we will see later. Let UWCDS be the
constructed backbone. If a node u wants to unicast a
message, it follows the following procedure: If node u is not
a dominator and node v is not a neighbor of u, u sends the
message to one of its dominators. Then, the dominator will
transfer the message to the target or a dominator of the
target through the backbone. Now, we prove that the
backbone is a spanner for the unicast application, i.e., every
route in the constructed network topology is efficient.
Remember, a route is efficient if its total cost (or total hop
number) is no more than a constant factor of the minimum
total cost (or hop number) needed to connect the source and
the destination in the original communication graph. The
constant is called cost (or hops) stretch factor.

Theorem 8. For any communication graph, the cost stretch factor
of UWCDS is, at most, 3.

Proof. Consider any source node s and target node t that
are not connected directly in the original communica-
tion graph G. Assume the least cost path LCPðs; t; GÞ
from s to t in G is �Gh

ðs; tÞ ¼ v1v2:::vk, where v1 ¼ s and
vk ¼ t, as illustrated by Fig. 2. We construct another
path in UWCDS from s to t and the total cost of this
path is at most three times the cost of the least cost
path LCPðs; t; GÞ.

For any dominatee node p in original communication
graph G, we will show that there must exist one
dominator q whose cost is not greater than p’s cost.
First, from our selection procedure of the maximal
independent set, node p is not selected to MIS implies
that, at some stage, there is a neighbor, say, u, with
smaller cost selected to MIS, which will be PossibleDo-
minator. Notice that this PossibleDominator node u may
not appear in our final structure. However, this node is
not selected only if cðGRDYuÞ is smaller than cðuÞ. Notice
that, clearly, there is at least one node, say v, in GRDYu
that dominates node p since p is a one-hop neighbor of
node u and GRDYu covers all one-hop neighbors of u
(including u). Clearly, all dominators in GRDYu have
costs no more than cðuÞ from cðGRDYuÞ � cðuÞ. If node u
is in final structure, we set q as u; otherwise, set q as node
v. We denote node q as p’s small dominator. Notice that q
and p can be the same node.

For each node vi in the path LCPðs; t; GÞ, let ui be its
small dominator if vi is not a dominator, else let ui be vi
itself. Notice that there is a three-hop path uiviviþ1uiþ1 in
the original communication graph G. Then, from Algo-
rithm 2, we know there must exist one or two connectors
connecting ui and uiþ1 and also the cost summation of
these connectors is at most the cost summation of vi and
viþ1. We define a path, denoted by LCPðs; t; UWCDSÞ, to
connect s and t in UWCDS as the concatenation of all
paths LCPðui; uiþ1; V irtGÞ, for 1 � i � k� 2, and a least
cost path (with � two hops) connecting uk�1 and t.
Remember that the path LCPðui; uiþ1; V irtGÞ is only the

688 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

least cost path among all paths connecting ui and uiþ1

using at most three hops.
We then show that the path LCPðs; t; UWCDSÞ has a

cost no more than three times the path LCPðs; t; GÞ,
where LCPðs; t; GÞ is the least cost path connecting s and
t in the original communication graph G. Clearly,

Xk�2

i¼1

Lðui; uiþ1; V irtGÞ � cðv1Þ þ 2 �
Xk�2

i¼2

cðviÞ þ cðvk�1Þ:

Notice that, in our unicast routing algorithm, when the
target node t is within two hops of the dominator
node uk�1, node uk�1 will not send the data to dominator
node uk. Instead, if target t is a one-hop neighbor of
node uk�1, it will send data directly to node t; otherwise,
node uk�1 will find a least cost node, say w, to connect
directly to the target node t. Obviously, cðwÞ � cðvk�1Þ
since node vk�1 connects uk�1 and target t. Thus, the total
cost of the path in the constructed backbone is

Xk�2

i¼1

Lðui; uiþ1; V irtGÞ þ Lðuk�1; t; V irtGÞ þ
Xk�1

i¼1

cðuiÞ

� cðv1Þ þ 2
Xk�2

i¼2

cðviÞ þ cðvk�1Þ þ cðvk�1Þ þ
Xk�1

i¼1

cðviÞ

< 3
Xk�1

i¼1

cðviÞ:

This finishes our proof. tu
Similarly to the proof in [19], we can prove the following

theorem:

Theorem 9. For any communication graph (not necessarily a
UDG), the hops stretch factor of UWCDS is, at most, 4.2

6.3 Message and Time Complexity

Compared with data processing, a wireless node spends
more energy in data communication. Here, we show that
our algorithms are efficient in term of communication
complexity.

Theorem 10. Algorithm 1 uses OðnÞ messages if the networks
are modeled by UDG and the geometry information of all
nodes is known.

Proof. First, for messages ItryDominator and IamDominatee,
every node sends out at this kind of message, at most,
once. Thus, the total number of these two messages is
OðnÞ. Second, for each PossibleDominator node, it needs
to collect the costs and IDs of all of its two-hop
neighbors. This step may cost lots of communications
(at most, OðmÞ messages when no geometry information
is known, where m is the number of links in the original
UDG). Recently, Calinescu [33] proposed a communica-
tion efficient method (using OðnÞ messages) to collect
N2ðuÞ for every node u, when the geometry information
is known for networks modeled by UDG. Third, after

applying the greedy method, node u may send a
message YouAreDominator to node v, but, since the
number of independent nodes u in two hops of v is
bounded by a constant, the total number of this kind of
message is also OðnÞ. Consequently, Algorithm 1 uses
OðnÞ messages. tu

It is easy to show that Algorithm 1 uses OðmÞ messages
for a general network or when the geometry information of
all nodes is unknown. For Algorithm 2, the number of
messages in the first three steps is at most OðmÞ. Obviously,
we can construct the minimum spanning tree on V irtG
using Oðmþ n lognÞ number of messages. In practice, we
may not need to construct the minimum spanning tree
exactly: A localized approximation of the minimum span-
ning tree [34], which has a message complexity only OðnÞ,
may perform well enough. In addition, if only unicast is
running on the backbone, we can ignore the MST construc-
tion. Then, the message complexity is only OðmÞ.

We also study the time complexity of our algorithms. For
Algorithm 1, the first four steps take, at most, OðnÞ in time.
To collect the information of two-hop neighbors, we apply
the method proposed by Calinescu [33], which also takes, at
most, OðnÞ in time. Notice that the time complexity of the
greedy method in [3] (based on the set covering method in
[32]) is, at most, Oðm�Þ, where m is the number of nodes
participating in the algorithm and � is the maximum node
degree. So, the sixth step of Algorithm 1 takes at most
Oð�2�Þ, where �2 is the maximum number of two-hop
neighbors. Since �2 � n and �2 � �2, the sixth step takes at
most Oð�3Þ (or Oðn�Þ). Therefore, the time complexity of
Algorithm 1 is Oðn�Þ in the worst case. For Algorithm 2, the
most time-consuming step is to build an MST on V irtG.
Obviously, we can construct the MST using, at most, Oðmþ
n lognÞ time.

7 SIMULATION RESULTS

In this section, we conduct simulations on random net-
works to evaluate the performances of our proposed
weighted backbone and compared them with previously
greedy algorithms. The simulation platform was developed
by the authors using C++. In the simulation, we assume
nodes have unlimited buffering and ignore all possible
retransmissions at the MAC and PHY layers. The main
purpose of these simple settings of simulations is only to
evaluate the nonnetwork performances (geometric proper-
ties) of the different backbones formed by different
algorithms, such as the total weight of the backbone and
the hop (or cost) spanning ratios of the backbone.

7.1 Practical Implementation

Since the distributed construction of MST in Algorithm 2 is
expensive in terms of message complexity (Oðmþ n lognÞ),
we implement a localized approximation of MST, localized
minimum spanning tree (LMST) [34] to reduce the messages
to OðnÞ. For a general edge weighted graph G, the k-local
minimum spanning tree (LMSTkðGÞ) contains a directed
edge uv�! if edge uv belongs to MST ðNkðuÞÞ. In our case, for
the edge weighted graph V irtG, each dominator node u will
first collect all dominator nodes that are at most k hops

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 689

2. Actually, the bound is 3þ 2
k , where k is the number of hops of the

shortest hop path in the original communication graph. The basic idea of
the proof is similar with the idea used in proof of Lemma 4 and illustrated
by the example in Fig. 2. Since one-hop neighbors can directly communicate
with each other, for any nodes that are at least two hops away, the bound
is 4.

away in V irtG. Typically, k is 1 or 2 in our methods. Node u
then constructs the minimum spanning tree MST ðNkðuÞÞ
and keeps all edges uv 2MST ðNkðuÞÞ. The union of all such
selected links forms the LMST. Notice that, here, the weight
of a link uv is the cost of the least cost path (with � 3 hops)
connecting u and v in G. It is easy to prove that the global
minimum spanning tree MST ðGÞ is a subgraph of the local
minimum spanning tree LMSTkðGÞ. Unfortunately, in the
worst case, the total cost of LMSTkðGÞ could be arbitrarily
larger than the cost of MST ðGÞ. However, our simulations
show that it is within a small constant factor on average.
The advantage of using the LMST instead of the global MST
is the significant reduction in the communication cost.

7.2 Performance Comparisons

In our experiments, we randomly generated a set V of
n wireless nodes with random costs drawn from ½1; 100� and
the induced UDGðV Þ and, then, tested the connectivity of
UDGðV Þ. If it is connected, we construct different clustering
algorithms on UDGðV Þ to form dominating sets and
measure the total costs of these dominating sets. Then, we
apply our new method to construct the weighted backbone.
We test the total cost of the final backbone and measure the
average and maximum cost/hop spanning ratios. In the
experimental results presented here, n wireless nodes are
randomly distributed in a 500 m� 500 m square, and the
transmission range is set to 100 m. We tested all algorithms
by varying n from 50 to 275, where 50 vertex sets are
generated for each case. The average and the maximum
were computed over all these 50 vertex sets. Note, the
parameter setting of our experiments here is just for
demonstrations. We have tried various other settings, and

the results and performances are stable. Due to space
limitations, we cannot present all of them here.

7.2.1 Cost of Dominators

First, we compare our algorithm with the three previous
greedy algorithms to find a dominating set (DS). Fig. 3 gives
an example of the original communication graph with node
costs (Fig. 3a)) and different DSs by different greedy
methods (Figs. 3b, 3c, 3d, and 3e; the black squares are
the dominators). We plotted the performances (average
total cost of the backbone and average number of
dominators) of all methods in Fig. 4. Our method produces
a DS whose cost is significantly less than that produced by
the MIS-based method (greedy 1) and is on a similar level to
the other two methods. In addition, our method produces a
DS whose size is significantly less than that produced by the
method in [18] (greedy 3) and is on a similar level with
other two methods. The set-cover-based method (greedy 2)
is the only one that is comparable with our method for both
metrics. However, it is a centralized method, while ours is a
distributed method with a small communication cost.

7.2.2 Cost of Backbone

After getting the dominating set (Fig. 3e) by Algorithm 1,
we apply Algorithm 2 to find the connectors. Fig. 5e shows
the backbone after adding some connectors to the dominat-
ing set. Notice that we used the local minimum spanning
tree to find the connectors instead of the global minimum
spanning tree. (That is why the graph WCDS in Fig. 5e is
not a tree.) We also apply Algorithm 2 to find the
connectors for the other three greedy methods for compar-
ison, and the results are shown in Figs. 5a, 5b, and 5c. We

690 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

Fig. 3. Different dominating sets by different greedy methods from the same unit disk graph. (a) UDG. (b) Greedy 1. (c) Greedy 2. (d) Greedy 3.

(e) Our method.

Fig. 4. Total cost and number of clusterheads of different greedy methods (number of nodes: from 50 to 275).

also implement a variation of another connected dominat-
ing set method by Wu and Li [2]. Their method uses a
marking process plus two dominant pruning rules to build the
CDS. We modified it to compare costs instead of IDs in the
dominant pruning rules. The resulting CDS is shown in
Fig. 5d. Obviously, their method generates more domina-
tors than other methods; the reason is that they did not use
MST (or LMST) in the formation. Also, their original
method is used to minimize the size of CDS, not its total
cost. Notice that more dominators in the backbone means
better performances during the unicast routing. We plot the
total cost of the weighted backbone in Fig. 6a. As expected,
the total cost of the backbone produced by our method is
less than that produced by the MIS-based method (greedy
1) and that produced by Wu and Li’s method. However, the
results from the other two greedy methods are slightly
better than ours (though on a similar level). The main
reason is that we use the same MST-based method to select
the connectors for all greedy methods. One interesting
observation is that, though the size of the backbone
becomes stable when the network becomes denser, the
average total cost of the backbone for greedy methods
decreases over the increasing of the network density. This
may be due to that dense network provides more
candidates for backbone with potential lower costs.

7.2.3 Cost of Unicast Routing

For unicast, we can simplify Algorithm 2 by directly using
VirtG as the final backbone. Spanning ratios of the final
unicast backbone are plotted in Fig. 6b. Notice that the
average cost and hop spanning ratios are indeed small

(almost 1). The maximum cost spanning ratio is less than 3.
The maximum hop spanning ratio is no more than 4. These
map well to the theoretical bounds, which are 3 and 4,
respectively.

8 PRACTICAL APPLICATIONS IN AD HOC

NETWORKS

As we mentioned in the introduction, the proposed
distributed algorithms for MWCDS can be used in ad hoc
networks to form a low-cost network backbone for unicast
routing or broadcasting application. The cost which we used
as the input of our algorithms could be a generic cost,
defined by various practical applications. Here, we list some
possible weights that may be used in ad hoc networks.

Energy Consumption Rate. Most backbone-based uni-
cast routing or broadcasting protocols [1], [2], [3] deliver
packets only through the backbone or restrict the flooding
packets in the backbone; thus the nodes serving as
clusterheads or connectors in the backbone consume
more energy than ordinary nodes. If we use the energy
consumption rate at each node as its weight, using the
proposed low-cost backbone formation algorithm, we can
achieve an energy efficient backbone, where the total
energy consumption of this backbone is at most constant
times the energy consumption of the optimum. Also, the
unicast carried on the backbone is power efficient,
compared with the least energy consumption path in
the original communication graph. Another way to build
energy-efficient backbone is to select nodes with the
maximum remaining energy.

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 691

Fig. 5. Different connected dominating sets by different methods from the same unit disk graph. (a) Greedy 1. (b) Greedy 2. (c) Greedy 3. (d) Wu and

Li’s method. (e) Our method.

Fig. 6. Performance of backbones (number of nodes: from 50 to 200). (a) Total cost. (b) Spanning ratio.

Fault-Tolerant Rate. Fault tolerance is also an important
issue in wireless networks since nodes are mobile and in a
dynamic environment. If each node estimates its probability
of being faulty and we treat it as the weight, we can use our
proposed algorithm to build a fault-tolerant backbone for
routing. The fault-tolerant rate can be evaluated by
considering the mobility (stability, speed) of the node, the
quality of links (link failures) around the node, the
interference level at the node, or another metric. Some
research along this line has been done in [11], [13], [16].
Assume that pi is the probability that the wireless node
vi 2 V will have a fault in computing or communicating
with its neighbors. Two possible criteria could be used to
measure the fault-tolerant quality of a backbone (i.e., a
CDS S � V):

P
vi2S pi or �vi2Spi. In the first case, the cost of

node vi is assigned as cðviÞ ¼ pi, while, in the latter case, the
cost of vi is assigned as cðviÞ ¼ log pi. Then, building the
most fault-tolerant backbone is equivalent to finding a CDS
with the minimum total cost.

Security Level. Our proposed algorithm can also be
applied in designing secure routing protocols. Since ad hoc
networks lack a central authority for authentication and key
distribution, security is hard to achieve. In [35], Liu et al.
proposed a dynamic trust model for an ad hoc network
where each node has a security level by observing its
neighbor. By using the security level information obtained
by their method, we can apply our low-cost method to build
a backbone for routing with high security. We could assign
the cost to a node using a method analog to the case of fault
tolerance discussed above.

More different metrics can be considered as the weight in
our method, such as traffic load, signal overhead, battery
level, and coverage. As done in [10], [15], we can also use a
combined weight function to integrate various metrics in
consideration to form a more robust and efficient backbone
for wireless ad hoc networks in general applications.

Beside forming the backbone for routing, our weighted
clustering algorithm (Algorithm 1) can also be used in other
applications, such as selecting the mobile agents to perform
intrusion detection in ad hoc networks [37] (to achieve more
robust and power efficient agent selection) or selecting the
rendezvous points to collect and store data in sensor
networks [36] (to achieve the energy efficiency and storage
balancing).

9 SUMMARY AND FUTURE WORK

In this paper, we present a new algorithm to construct a
sparse structure for network backbone in wireless ad hoc
networks. A communication efficient distributed algorithm
was presented for the construction of a weighted connected
dominating set, whose size is guaranteed to be within a
small constant factor of the minimum (when either � or � is
a constant). We also show that, with a small modification,
the constructed backbone is efficient for both cost and hops
(though losing the low cost property). This topology can be
constructed locally. Our simulations confirmed that our
new backbone indeed performs well in random networks.

In our algorithms, we assume that the nodes are almost-
static in a reasonable period of time. However, in some
ad hoc network applications, the network could be highly
dynamic. Therefore, after the generation of the weighted

backbone, the dynamic maintenance of the backbone is also
an important issue. Two major events may cause the
backbone to become obsolete: 1) topology changes due to
node moving, node joining or leaving, or node failure and
2) weight changes when weights are assigned based on some
observed status of nodes. Note that some of the practical
weights we discussed above change frequently, such as
battery level and quality of links. Thus, a dynamic update
method for our backbone is needed. Usually, there are two
kinds of update methods: on-demand update or periodical
update. Most of the existing clustering algorithms are
invoked periodically, while some algorithms (e.g. [10])
perform the updating only when it is required. Our
algorithm can adapt and combine both these update
methods. If no major topology change or no remarkable
weight change occurs, no update will be performed until
some preset timer expires. This kind of global update also
ensures the load balance throughout the network. But, for
some major topology change (e.g., a clusterhead dies) or
tremendous change of weights (e.g., a big drop of security
level), an on-demand update will be performed. Notice that,
since our algorithm is a localized algorithm,3 the update
process can be performed only in a local area where the
change occurs, i.e., the backbone is easy to maintain locally
when the nodes move around. However, it remains an open
problem how to update the topology efficiently while
preserving the approximation quality.

Remember that we use the following assumptions on the
wireless network model: an omnidirectional antenna and a
single transmission received by all nodes within the vicinity
of the transmitter. The problem studied here will become
much more complicated if we relax some of these
assumptions. It is also interesting to see the practical
performance differences of all proposed methods, such as
the methods by Baker et al. and Alzoubi et al. and our
methods proposed here, in a mobile environment.

ACKNOWLEDGMENTS

The work of Y. Wang was supported, in part, by funds
provided by the University of North Carolina at Charlotte.
The work of X.-Y. Li is partially supported by US National
Science Foundation CCR-0311174.

REFERENCES

[1] J. Wu and H. Li, “A Dominating-Set-Based Routing Scheme in Ad
Hoc Wireless Networks,” Telecomm. Systems J., vol. 3, pp. 63-84,
2001.

[2] J. Wu and H. Li, “On Calculating Connected Dominating Set for
Efficient Routing in Ad Hoc Wireless Networks,” Proc. Third Int’l
Workshop Discrete Algorithms and Methods for Mobile Computing and
Comm., 1999.

[3] B. Das and V. Bharghavan, “Routing in Ad-Hoc Networks Using
Minimum Connected Dominating Sets,” Proc. IEEE Int’l Conf.
Comm., 1997.

[4] K.M. Alzoubi, P.-J. Wan, and O. Frieder, “New Distributed
Algorithm for Connected Dominating Set in Wireless Ad Hoc
Networks,” Proc. IEEE Hawaii Int’l Conf. System Sciences, 2002.

[5] D.J. Baker and A. Ephremides, “The Architectural Organization of
a Mobile Radio Network via a Distributed Algorithm,” IEEE
Trans. Comm., vol. 29, no. 11, pp. 1694-1701, Nov. 1981.

692 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 7, JULY 2006

3. By using a localized minimum spanning tree (LMST) instead of MST,
our distributed algorithm becomes a localized algorithm.

[6] D.J. Baker, A. Ephremides, and J.A. Flynn, “The Design and
Simulation of a Mobile Radio Network with Distributed Control,”
IEEE J. Selected Areas in Comm., vol. 2, pp. 226-237, 1984.

[7] F. Dai and J. Wu, “An Extended Localized Algorithm for
Connected Dominating Set Formation in Ad Hoc Wireless
Networks,” IEEE Trans. Parallel and Distributed Systems, vol. 15,
no. 10, pp. 908-920, Oct. 2004.

[8] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris, “Span: An
Energy-Efficient Coordination Algorithm for Topology Mainte-
nance in Ad Hoc Wireless Networks,” Wireless Network, vol. 8,
no. 5, pp. 481-494, 2002.

[9] S. Basagni, “Finding a Maximal Weighted Independent Set in
Wireless Networks,” Telecomm. Systems, vol. 18, nos. 1-3, pp. 155-
168, Sept. 2001.

[10] M. Chatterjee, S.K. Das, and D. Turgut, “WCA: A Weighted
Clustering Algorithm for Mobile Ad Hoc Networks,” J. Cluster
Computing, vol. 5, no. 2, pp. 193-204, 2002.

[11] C. Bettstetter and R. Krausser, “Scenario-Based Stability Analysis
of the Distributed Mobility-Adaptive Clustering (DMAC) Algo-
rithm,” Proc. Second ACM Int’l Symp. Mobile Ad Hoc Networking and
Computing, 2001.

[12] W.R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocol for Wireless Micro-
sensor Networks,” Proc. 33rd Hawaii Int’l Conf. System Sciences,
2000.

[13] U.C. Kozat, G. Kondylis, B. Ryu, and M. Marina, “Virtual
Dynamic Backbone for Mobile Ad Hoc Networks,” Proc. IEEE
Int’l Conf. Comm., 2001.

[14] G. Smaragdakis, I. Matta, and A. Bestavros, “SEP: A Stable
Election Protocol for Clustered Heterogeneous Wireless Sensor
Networks,” Proc. Second Int’l Workshop Sensor and Actor Network
Protocols and Applications, 2004.

[15] G. Chen, F. Nocetti, J. Gonzalez, and I. Stojmenovic, “Connectiv-
ity-Based k-Hop Clustering in Wireless Networks,” Proc. 35th
Ann. Hawaii Int’l Conf. System Sciences, 2002.

[16] M. Min, F. Wang, D.-Z. Du, and P.M. Pardalos, “A Reliable Virtual
Backbone Scheme in Mobile Ad-Hoc Networks,” Proc. First IEEE
Int’l Conf. Mobile Ad-Hoc and Sensor Systems, 2004.

[17] H. Liu and R. Gupta, “Selective Backbone Construction for
Topology Control,” Proc. First IEEE Int’l Conf. Mobile Ad-Hoc and
Sensor Systems, 2004.

[18] L. Bao and J.J. Garcia-Luna-Aceves, “Topology Management in
Ad Hoc Networks,” Proc. Fourth ACM Int’l Symp. Mobile Ad Hoc
Networking and Computing, 2003.

[19] K. Alzoubi, X.-Y. Li, Y. Wang, P.-J. Wan, and O. Frieder,
“Geometric Spanners for Wireless Ad Hoc Networks,” IEEE
Trans. Parallel and Distributed Processing, vol. 14, no. 4, pp. 408-421,
Apr. 2003.

[20] X.-Y. Li and P.-J. Wan, “Theoretically Good Distributed CDMA/
OVSF Code Assignment for Wireless Ad Hoc Networks,” Proc.
11th Int’l Computing and Combinatorics Conf. (COCOON), 2005.

[21] M. Gerla and J.T.-C. Tsai, “Multicluster, Mobile, Multimedia
Radio Network,” Wireless Networks, vol. 1, no. 3, pp. 255-265, 1995.

[22] C.R. Lin and M. Gerla, “Adaptive Clustering for Mobile Wireless
Networks,” IEEE J. Selected Areas in Comm., vol. 15, no. 7, pp. 1265-
1275, Sept. 1997.

[23] K.M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-Optimal
Connected Dominating Sets in Mobile Ad Hoc Networks,” Proc.
Third ACM Int’l Symp. Mobile Ad Hoc Networking and Computing,
2002.

[24] M.V. Marathe, H. Breu, H.B. Hunt III, S.S. Ravi, and D.J.
Rosenkrantz, “Simple Heuristics for Unit Disk Graphs,” Networks,
vol. 25, pp. 59-68, 1995.

[25] F. Kuhn and R. Wattenhofer, “Constant-Time Distributed Dom-
inating Set Approximation,” Proc. 22nd ACM Symp. Principles of
Distributed Computing, 2003.

[26] F. Kuhn, T. Moscibroda, and R. Wattenhofer, “What Cannot Be
Computed Locally!” Proc. 23rd ACM Symp. Principles of Distributed
Computing, 2004.

[27] S. Basagni, I. Chlamtac, and A. Farago, “A Generalized Clustering
Algorithm for Peer-to-Peer Networks,” Proc. Workshop Algorithmic
Aspects of Comm., 1997.

[28] X.-Y. Li and Y. Wang, “Simple Heuristics and PTASs for
Intersection Graphs in Wireless Ad Hoc Networks,” Proc. ACM
Sixth Int’l Workshop Discrete Algorithms and Methods for Mobile
Computing and Comm. (DIALM), 2002.

[29] S. Guha and S. Khuller, “Approximation Algorithms for Con-
nected Dominating Sets,” Algorithmica, vol. 20, no. 4, pp. 374-387,
1998.

[30] S. Guha and S. Khuller, “Improved Methods for Approximating
Node Weighted Steiner Trees and Connected Dominating Sets,”
Information and Computation, vol. 150, no. 1, pp. 57-74, 1999.

[31] H.B. Hunt, M.V. Marathe, V. Radhakrishnan, S.S. Ravi, D.J.
Rosenkrantz, and R.E. Stearns, “NC-Approximation Schemes for
NP- and PSPACE-Hard Problems for Geometric Graphs,”
J. Algorithms, vol. 26, no. 2, pp. 238-274, 1998.

[32] V. Chvátal, “A Greedy Heuristic for the Set-Covering Problem,”
Math. Operations Research, vol. 4, no. 3, pp. 233-235, 1979.

[33] G. C�aalinescu, “Computing 2-Hop Neighborhoods in Ad Hoc
Wireless Networks,” Proc. Int’l Conf. Ad-Hoc Networks and Wireless
(AdHoc-Now), 2003.

[34] X.-Y. Li, Y. Wang, and W.-Z. Song, “Applications of k-Local MST
for Topology Control and Broadcasting in Wireless Ad Hoc
Networks,” IEEE Trans. Parallel and Distributed Processing, vol. 15,
no. 12, pp. 1057-1069, Dec. 2004.

[35] Z. Liu, T. Joy, and R. Thompson, “A Dynamic Trust Model for
Mobile Ad Hoc Networks,” Proc. 10th IEEE Int’l Workshop Future
Trends in Distributed Computing Systems, 2004.

[36] R. Zheng, G. He, I. Gupta, and L. Sha, “Time Indexing in Sensor
Networks,” Proc. First IEEE Int’l Conf. Mobile Ad-Hoc and Sensor
Systems, 2004.

[37] O. Kachirski and R. Guha, “Intrusion Detection Using Mobile
Agents in Wireless Ad Hoc Networks,” Proc. IEEE Workshop
Knowledge Media Networking, 2002.

Yu Wang received the PhD degree in computer
science from the Illinois Institute of Technology
in 2004 and the BS and MS degrees in computer
science from Tsinghua University, China, in
1998 and 2000, respectively. He is an assistant
professor in the Department of Computer
Science at the University of North Carolina at
Charlotte. His current research interests include
computer networks, wireless networks, mobile
computing, algorithm design, and artificial intelli-

gence. He is a member of the ACM, the IEEE, and the IEEE
Communications Society.

Weizhao Wang received the BS and MS
degrees in computer science from Shanghai
Jiaotong University, China, in 1999 and 2002.
He is currently a PhD candidate in the Depart-
ment of Computer Science at the Illinois Institute
of Technology. His current research interests
include wireless networks, game theory, algo-
rithm design, and next generation Internet. He is
a student member of the IEEE and a member of
ACM SIGACT.

Xiang-Yang Li received the bachelor’s degrees
in computer science and business management
from Tsinghua University, China, in 1995 and
the MS and PhD degrees in 2000 and 2001,
respectively, from the Department of Computer
Science at the University of Illinois at Urbana-
Champaign. He has been an assistant professor
of computer science at the Illinois Institute of
Technology since 2000. His research interests
span the wireless ad hoc networks, game

theory, computational geometry, and cryptography and network
security. He is a member of the ACM, the IEEE, and the IEEE
Communication Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WANG ET AL.: EFFICIENT DISTRIBUTED LOW-COST BACKBONE FORMATION FOR WIRELESS NETWORKS 693

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

