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Abstract—With the rapid development of mobile devices and
the fast increase of sensitive data, secure and convenient mobile
authentication technologies are desired. Except for traditional
passwords, many mobile devices have biometric-based authen-
tication methods (e.g., fingerprint, voiceprint, and face recogni-
tion), but they are vulnerable to spoofing attacks. To solve this
problem, we study new biometric features which are based on the
dental occlusion and find that the bone-conducted sound of dental
occlusion collected in binaural canals contains unique features of
individual bones and teeth. Motivated by this, we propose a novel
authentication system, TeethPass, which uses earbuds to collect
occlusal sounds in binaural canals to achieve authentication. We
design an event detection method based on spectrum variance
and double thresholds to detect bone-conducted sounds. Then,
we analyze the time-frequency domain of the sounds to filter
out motion noises and extract unique features of users from
three aspects: bone structure, occlusal location, and occlusal
sound. Finally, we design an incremental learning-based Siamese
network to construct the classifier. Through extensive experi-
ments including 22 participants, the performance of TeethPass in
different environments is verified. TeethPass achieves an accuracy
of 96.8% and resists nearly 99% of spoofing attacks.

I. INTRODUCTION

Nowadays, mobile devices are becoming powerful with a
large storage capacity. They are often used to process sensitive
information (e.g., private documents edit, health information
record, and online payment). However, the leakage of user
privacy data is increasingly serious. According to a survey
from Cisco [1], 89% of users care about privacy data security,
and 79% of them are willing to act to protect it. Another report
from IBM [2] shows that personally identifiable information,
such as login data, fingerprints, and voice, is the most fre-
quently lost or stolen type of data. Thus, it is necessary to
study a reliable and convenient authentication system.

To prevent the leakage of user privacy data, many authen-
tication methods are adopted on mobile devices (e.g., PIN
code, unlock pattern, and fingerprint). But the token used
by these methods is susceptible to being inferred or stolen.
Specifically, the PIN code and unlock pattern are the most
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popular authentication methods, but they are vulnerable to
attacks [3] and require tedious input by users. Besides, many
types of biometric features are studied for user authentication,
such as fingerprint [4], [5], voiceprint [6], [7], and face
recognition [9], [10], which are also adopted on commercial
systems (e.g., Apple Touch ID [11], TD VoicePrint [12], and
Amazon Rekognition [13]). However, these methods are vul-
nerable to replay attacks. For instance, an attacker can record
the victim’s face or voice, then replay the records to spoof
the authentication system. Even fingerprints can be stolen
through photos and made into fingerprint film for attacks.
Recently, more types of behavioural [14] and biometric [15]–
[17] features are leveraged to enhance the security of mobile
authentication. SmileAuth [15] adopts the image of users’
dental edge for authentication. LipPass [16] extracts features
of users’ speaking lips using audio devices on smartphones
for authentication. However, these methods require the user to
hold a phone towards the mouth, which is inconvenient and
works in a limited scenario. EarEcho [17] uses unique features
of human ear canal and assesses acoustic features of in-ear
sound for authentication. But it is susceptible to interference
from environments, such as position shift of device.

Motivated by the above limitations, we design a secure,
convenient, and reliable user authentication method, Teeth-
Pass, based on the bone-conducted sound [18]–[20] of dental
occlusion. Specifically, when a user occlude teeth, the occlusal
sounds are absorbed, reflected, and dispersed by the skull
and then transmitted to ear canals. Thus, the received sounds
present individual differences due to the unique density and
elasticity properties of his/her skull. With this characteristic,
the occlusal sound (received in ears) can be used for authenti-
cation. Additionally, wireless earbuds are used widely in recent
years. A survey [21] shows that the number of wireless earbuds
in 2024 will reach 520 million, and many users report that they
tend to wear earbuds all day. Most of all, commercial earbuds
(e.g., Apple AirPods Pro, Sony WF-1000XM4, and Bose
QuietComfort) have inward-facing microphones to collect the
sound in ear canals for noise reduction. These principles
inspire the basic idea of TeethPass: to use the inward-facing
microphones of earbuds to capture bone-conducted sounds of
dental occlusion, and then to extract the unique biometric



features from these sound for user authentication.
Despite its simple idea, three major challenges underlie

the design of TeethPass. Firstly, although the inward-facing
microphone is very close to the ear canal, it still can record air-
conducted noises (e.g., speaking, environment noise). Besides,
some daily activities also generate bone-conducted noises
(i.e., eating, speaking, and walking). So, how to distinguish
the bone-conducted occlusal sounds from the collected noisy
acoustic signal is the first challenge. Secondly, TeethPass
relies on unique bone-conducted occlusal sounds for user
authentication. Thus, how to extract unique biometric features
contained in the bone-conducted sounds to characterize the
skull biometrics and occlusal location diversity is the second
challenge. Finally, it is necessary for an authentication system
to collect as little registration data as possible to achieve user-
friendliness. Thus, we need to achieve an efficient authentica-
tion model with limited registration data.

To address the above challenges, we first analyze occlusion
events and typical daily actions. We find that the duration
of an occlusion event is much shorter than that of eating
and speaking. In addition, the frequency of occlusal sounds
ranges from 100Hz to 2.5kHz, while the frequencies of bone-
conducted sounds of walking and speaking are mainly below
300Hz. Thus, occlusion events can be distinguished from
daily actions in terms of duration and the ratio between Power
Spectral Density (PSD) of different frequency bands. Then, to
characterize a user’s skull biometrics and occlusion location,
we extract 3 biometric features, including the dispersion [22]
related to the physical properties of bone and tissue, the acous-
tic delay related to the occlusal location, and Mel-Frequency
Cepstral Coefficients (MFCC) of the bone-conducted sound.
Finally, a Siamese network-based [23] authentication scheme
is designed for registered users. It is worth mentioning that we
apply data augmentation methods (i.e., time warping and time-
frequency masking) to the limited training data for improving
user experience. Combined with incremental learning [24], we
can quickly update the parameters of the Siamese network to
authenticate the newly registered user.

We implement TeethPass by using 3 kinds of earphones
with inward-facing microphones. We recruit 22 participants
(13 males and 9 females) and ask them to put on earphones
for occlusion in diverse scenarios. We also simulate different
attacks to test the anti-attack ability of our system. The
results demonstrate that TeethPass is accurate in different
environments, and can resist various spoofing attacks.

Our contributions are summarized as follows:
• We propose a novel authentication system, TeethPass,

which uses earbuds to collect bone-conducted sounds of
dental occlusion in binaural canals. To the best of our
knowledge, we are the first to sense occlusal sounds by
earbuds for authentication.

• We propose effective methods to filter out interferences of
daily actions. We also design 3 unique biometric features
for authentication, including physical features of bone and
tissue, location features of occlusion, and integral features
of occlusal sounds.

• We build an authentication scheme based on the Siamese
network. And we combine the scheme with incremental
learning, which can quickly update the parameters of the
network for authenticating newly registered users.

• We evaluate TeethPass by using 3 prototypes in different
application scenarios. The results show that TeethPass can
authenticate users with an average accuracy of 96.8%,
and resist 98.9% of spoofing attacks.

II. RELATED WORK

In this section, we review 3 kinds of biometrics-based
authentication systems related to TeethPass.

1) Voiceprint-based user authentication: Among various
biometric-based authentication methods, voiceprint is one of
the most commonly used biometrics for authentication. But
traditional voiceprint-based methods [6]–[8] are vulnerable to
replay attacks. To improve security, VoicePop [25] leverages
pop noises that are produced when a user is breathing and
can be hardly maintained in records to achieve authentication.
LipPass [16] extracts unique features from users’ speaking lips
leveraging active acoustic sensing on smartphones. EarPrint
[26] aims to extend voiceprint by building on body sounds that
transmit from the throat to the ear for authentication. However,
these systems require users to speak and are not suitable in
some environments (e.g., library and conference room).

2) Teeth-based user authentication: Teeth biometrics, such
as size, shape, and edge envelope, are intrinsically unique
among individuals [27]. SmileAuth [15] extracts dental edge
features by slightly moving the smartphone to capture a few
images from different camera angles for authentication. An
authentication approach [28] utilizes the contour information
of teeth to extract coarse-grained features and further employs
voice data to improve the accuracy. But these methods are
sensitive to light and vulnerable to replay attacks due to a
lack of liveness detection. Most recently, BiLock [29] extracts
features from the sounds generated by a user’s occlusion,
which are recorded by the built-in microphone of a smartphone
placed close to the user’s lips. However, it only uses air-
conducted occlusal sounds for authentication, so its principle
is more similar to traditional voiceprint-based authentication,
which makes it vulnerable to spoofing attacks and noises.

3) In-ear authentication: Recently, the development of
smart earbuds provides a new way for user authentication.
EarEcho [17] extracts the features by emitting sounds from the
earphone. The sounds are reflected through the ear canal which
can be recorded by inward-facing microphones. An authentica-
tion system [30] utilizes the microphone-integrated earphone
to capture the static ear canal geometry. It extracts features of
the reflected signals from a ear canal to distinguish different
users. EarDynamic [31] makes earbuds emit an inaudible
signal to probe the ear canal. Then the signal reflected from
the ear canal are captured by the inward-facing microphone
that can be further utilized to extract the deformation of the
ear canal. However, most of these methods require earphones
to emit ultrasound, and may impair the health of users if users
are exposed to the ultrasound with high volume [32].
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(a) The CWT of user #1.
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(b) The CWT of user #2.
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(c) The CWT of user #3.
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(d) t-SNE visualization.

Fig. 1: Inter-user study.

Different from these works, TeethPass uses earbuds to
collect bone-conducted sounds of dental occlusion in binaural
canals to achieve authentication, which can effectively resist
both replay attacks and mimic attacks. Furthermore, the sound
of dental occlusion is more imperceptible and unobtrusive than
voice, so it is more socially acceptable.

III. PRELIMINARY

In this section, we first introduce attack models and theoret-
ical analysis of occlusal sound, then exploit the feasibility of
using bone-conducted sounds of occlusion for authentication.

A. Attack Model

Voiceprint-based and teeth-based authentication systems of-
ten suffer from spoofing attacks. Here we list two main types
of spoofing attacks for off-the-shelf authentication, i.e., mimic
attack and replay attack. We also consider an extreme scenario
in which the spoofers implement mimic attacks and replay
attacks at the same time to achieve hybrid attacks.

1) Mimic attack: To attack a voiceprint-based authenti-
cation, spoofers first observe the way of speaking when
legitimate users login, then practice to mimic the tone, speed,
and pronunciation to perform the attack. If spoofers attempt
to conduct mimic attacks on TeethPass, they first need to
know which teeth and how much force users use to occlude
when using TeethPass. Then, they can wear users’ earbuds and
mimic the dental occlusion to spoof TeethPass.

2) Replay attack: The voiceprint-based authentication re-
quires users to make sounds, leading to a high probability that
spoofers eavesdrop and record the voice of legitimate users.
Then the spoofers can spoof the authentication system by
playing back the recorded voice. For our system, spoofers may
collect air-conducted sounds of dental occlusion at a location
close to the users, and replay them to perform attacks.

3) Hybrid attack: We also consider an extreme situation,
that is, spoofers can not only collect the air-conducted sounds
of dental occlusion but also know the occlusal location and
force of users during authentication. So they can mimic the
occlusion of users while playing the recorded occlusal sounds
by speakers in spoofers’ mouths.
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Fig. 2: Intra-user study.

B. Theoretical Analysis of Occlusal Sound

Bone-conducted sounds of dental occlusion have unique
biometric features. On the one hand, previous research [33]
shows that dental structure is stable over time, and even a
single tooth of a person is unique. The uniqueness is caused by
the diversities of dental shape, size, and so on. Occlusion [34]
refers to the action between the upper and lower teeth when
they approach each other, so the occlusal sound has unique
features for an individual. On the other hand, the occlusal
sound passes through the maxilla, mandible, and zygoma,
finally arrives at the auditory meatus. These bones have unique
physical features [35], such as shape, bone-muscle ratio, and
density, which lead to the unique dispersion, absorption, and
refection of occlusal sounds. Given the theoretical analysis of
bone-conducted sounds of occlusion, we conduct feasibility
experiments to verify the uniqueness of occlusal sounds.

C. Feasibility Study

To verify the feasibility, we collect occlusal sounds of 7
users. Before collection, we explain the principle of TeethPass
to them. Then, they are asked to find comfortable occlusal
locations and practice occlusion a few times. We use a pair of
inward-facing microphones to record bone-conducted sounds.
The experiments are conducted in a quiet environment.

1) Inter-user study: Firstly, we ask 3 users to occlude with
the same teeth. The Continuous Wavelet Transform (CWT)
results of their bone-conducted sounds are shown in Fig.
1(a)(b)(c). The results show noticeable individual differences
refer to duration time, frequency range, and energy distribu-
tion. Besides, the occlusal sounds collected from all users
are visualized in Fig. 1(d) with the t-distributed Stochastic
Neighbor Embedding (t-SNE) [36] method. We can find that
the occlusal sound of each user shows a unique and consistent
pattern, which presents that the individual difference in skull
biometrics can be captured by the bone-conducted sounds.

2) Intra-user study: Then, we study the bone-conducted
sounds of a user when occluding with different teeth. Fig.
2(a)(b)(c) show the results of CWT on the bone-conducted
sounds of three locations (i.e., left, middle, and right teeth).



Air Noise Removal

Normalization

Noise Reduction

Event Detection

Spectrum Variance

Start/End Detection

Length Unification

Motion Removal

Walking Removal

Speaking Removal

Eating Removal

Feature Extraction

Skeletal Feature

Location Feature

Integral  Feature

Frequency Selection

Register

Login

Siamese Network

Training

Model

Authentication

User Spoofer

Fig. 3: System architecture of TeethPass.

We can see that when the same user occludes different teeth,
the time-frequency domain features are different. Fig. 2(d)
shows the bone-conducted sounds after visualization of 2 users
at 3 locations. The result demonstrates that different occlusal
locations also lead to different occlusal sounds.

IV. SYSTEM DESIGN
In this section, we first present the system overview of

TeethPass and then detail the behind techniques.

A. System Overview

Fig. 3 shows the architecture of TeethPass, which can be
divided into two phases, i.e., register phase and login phase.

In the register phase, TeethPass aims to collect data from a
user and train the classifier. Before collection, the user needs
to find a comfortable occlusal location and practice occlusion
a few times. During collection, the user occludes teeth several
times, and occlusal sounds are recorded by a pair of inward-
facing microphones in the ears. The recorded sounds first go
through Air Noise Removal, including normalization, noise
reduction, and frequency selection, to reduce air-conducted
ambient noises. Then, TeethPass performs Event Detection to
segment each bone-conducted sound event. Specifically, we
calculate spectrum variance to capture the energy in different
frequency bands of sound, then adopt a double-threshold
method to detect the start and end points of each event. Since
the sound may reach ears at different times, we unify the length
of each event received by the two microphones. Some daily
actions (i.e., eating, speaking, and walking) also produce bone-
conducted sounds and can be captured by Event Detection,
so the events that contain these daily actions are removed in
Motion Removal. We analyze each event’s duration and PSD to
distinguish occlusion from the daily actions. For each occlusal
event, three biometric features are extracted, including the
dispersion related to physical properties of bone, the acoustic
delay related to occlusal location, and the MFCC related to
bone-conducted sound. Finally, the extracted features are used
to train a Siamese network in Authentication.
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Fig. 4: Occlusal sound spectrums of air and bone conduction.

In the login phase, TeethPass first records bone-conducted
sounds by a pair of inward-facing microphones in the ears.
Then, through Air Noise Removal, Event Detection, and Mo-
tion Removal, and Feature Extraction, the features are sent to
the Authentication module to determine whether a user is a
legitimate user or a spoofer.

B. Air Noise Removal

When a user puts on earbuds, TeethPass starts to moni-
tor sounds in ear canals in real-time. Although the inward-
facing microphone faces the ear canal, it may still record
air-conducted ambient noises, such as human voice and road
noise. Thus, the raw recorded sounds need to be processed to
filter out these noises. To ensure real-time, we add a sliding
window to the sounds. We find that the duration of the bone-
conducted occlusal sound is usually between 10ms and 20ms,
so the length of the sliding window is 50ms and it slides 10ms
each time. The sound in each window is a frame.

1) Normalization: There may be a slight difference in the
tightness and angle of the earbuds each time the user puts
on them, so the volume of sounds recorded by inward-facing
microphones may be unstable. Before noise reduction, we
normalize each frame. The most common method is peak
normalization [37]–[39], which adjusts the sounds based on
the highest volume level in each frame. However, it leads to
the problem that the average volume is inconsistent across
frames. So we use another normalization based on loudness,
which adjusts the average volume of each frame to a desired
volume. We set the desired volume to −24dB, which is the
same as the standard loudness recommended by ATSC [40].

2) Noise reduction: Then, we reduce air-conducted ambient
noises in each frame to improve the signal-to-noise ratio. Con-
sidering the limited computing capability of mobile devices,
we adopt power spectral subtraction which has the advantages
of small computation and high processing speed. Suppose
the audio signal of a frame is x(m), and X(k) denotes the
fast Fourier transform (FFT) results of x(m). The amplitude
|X̂(k)| after spectral subtraction can be calculated by∣∣∣X̂ (k)

∣∣∣2 =

{
|X(k)|2 − a×D(k), |X (k)|2 > a×D(k),

b×D(k), |X (k)|2 < a×D(k),
(1)

where a and b are constants, representing the over-subtraction
factor and the spectral floor parameter, respectively. D(k)
denotes the amplitude of environmental noise recorded by
outward-facing microphones. Through inverse FFT of |X̂(k)|,
we get the audio signal x̂(m) after noise reduction. It is
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Fig. 5: The process of event detection.

obvious that power spectral subtraction can reduce the impact
of different noise caused by the different environments.

In addition, we study whether air-conducted sounds of
occlusion affect noise reduction. Fig. 4(a) shows the air-
conducted occlusal sound received by the outward-facing mi-
crophone. We can see that the energy of the sound conducted
by air is much lower than that conducted by bone (Fig. 4(b)).
Since the air-conducted sounds attenuate faster than bone-
conducted sounds [41]. It proves that air-conducted occlusal
sounds do not affect noise reduction.

3) Frequency selection: Finally, we use a band-pass filter
to select the frequency band of occlusal sounds. Through our
observations, we find that most bone-conducted sounds of
dental occlusion range from 100Hz to 2.5kHz. Therefore,
we adopt a Butterworth band-pass filter ranging from 100Hz
to 2.5kHz for each frame. After filtering, we can eliminate
other out-band interferences and prepare for Event Detection.

C. Event Detection

After Air Noise Removal, the sound in each frame almost
only contains bone-conducted sound. Then, we detect and
segment each bone-conducted sound event caused by user’s
actions. A common event detection method is based on Short
Time Energy (STE) [24], [42], [43], which is widely used in
speech recognition and motion detection. But we find that the
energy of bone-conducted sound of dental occlusion varies
greatly with frequency, while most other bone-conducted
sounds are more evenly distributed in the spectrum. Thus, we
divide the spectrum into several bands and study an event
detection method based on spectrum variance.

1) Spectrum variance calculation: Firstly, we apply a slid-
ing window with a length of 2.5ms that slides 1ms each time
on each frame. The audio signal in the i-th window is xi(m),
we divide the amplitude |Xi(m)| obtained by the FFT into q
sub-bands evenly. And each sub-band is formed as

Si(n) =

1+(n−1)p+(p−1)∑
k=1+(n−1)p

|Xi(k)|, n ∈ [1, q], (2)

where p is the number of frequency points in each sub-band.
Then, the spectrum variance Di can be calculated by

Di =
1

q − 1

q∑
k=1

[
Si(k)− 1

q

q∑
s=1

Si(s)

]2
. (3)

By analyzing Eq. 3, we find that the greater the fluctuation
between the frequency bands, the greater the Di. Fig. 5
shows the bone-conducted sounds of two occlusion and the
corresponding spectrum variance. It is shown that spectrum
variance can be used to capture the occlusal sounds well.

2) Start/End detection: Then, we adopt a double-threshold
method [44] to detect the start and end points of each event.
Specifically, we first set a threshold T1 on spectrum variance,
and the segment which is larger than T1 can be considered to
contain an event. Then, another threshold T2 (T2 < T1) is set
to find the start and end points of the event. We search from
the beginning of the segment to the left and find the first point
that intersects with T2 as the start point of the event. In the
same way, we search from the ending of the segment to the
right to find the end point of the event. Fig. 5 also shows the
detection results of start and end points on occlusal sounds
and spectrum variance. We can see that the double-threshold
method identifies start and end points precisely.

3) Length unification: We collect bone-conducted sounds
using a pair of inward-facing microphones and process the
sounds of the two microphones separately. Since the user can
choose the occlusal location arbitrarily, the occlusal sound
conducts to the two ear canals in different paths, which causes
the start and end points of the occlusal sounds received by
the two microphones to be different. To facilitate Feature
Extraction later, we unify the length of two events received
by the two microphones. Specifically, we choose the smaller
one of the two start points as the new start point of the two
events, and the larger one of the two end points as the new end
point of the two events. After length unification, each occlusal
sound produces two events with the same length.

D. Motion Removal

Although we filter out most of the air-conducted ambient
noises in the Air Noise Removal, some actions also produce
bone-conducted sounds (i.e., eating, speaking, and walking)
and are extracted from Event Detection, so we need to remove
these non-occlusion events from the detected events.

1) Eating removal: When users eat, they usually need to
use their teeth to chew food. In the process of chewing, the col-
lision and friction between teeth and food can produce bone-
conducted sounds. And different foods may lead to different
bone-conducted sounds. We experiment with different foods
and find that the frequency range of eating is similar to that
of occlusion, as shown in Fig. 6. However, the duration of
an eating event is generally greater than 250ms, while the
duration of an occlusal event is usually between 10ms and
20ms. So we can determine whether the event is eating or not
by analyzing the duration time.
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2) Speaking removal: The human voice is produced by the
vibration of vocal cords, which can also be transmitted to the
ear canal through bone conduction. Relevant research [45] and
our experiment show that the base frequency of human voice is
between 80Hz and 300Hz, while the frequency of occlusion
is between 100Hz and 2.5kHz, as shown in Fig. 6. To detect
whether the event is speaking, we calculate the energy ratio
of the PSD of the 100Hz-300Hz to the PSD of the 100Hz-
2.5kHz. If the energy ratio is greater than a threshold, we
consider that the event is speaking. It should be noted that
users can not authenticate while eating or speaking, so we
just discards these two events when they are detected.

3) Walking removal: Authentication while walking is a
common scenario, and we find that the inward-facing mi-
crophone receives a noticeable sound as soon as the heel
touches the ground. So we need to filter out bone-conducted
sounds of walking from the recorded sounds. Fig. 6 shows
the spectrum of the bone-conducted sound of walking, we
can see that the frequency of the sound produced by heel
landing is mainly concentrated below 100Hz. The frequency
difference between walking and occlusion is mainly caused
by the different propagation paths. The sound produced by
the heel landing needs to travel through the entire body to
reach the ear canal, while the occlusal sound can reach the ear
canal through a very short path. To remove the interference
of walking, we adopt a band-pass filter ranging from 100Hz
to 2.5kHz in Air Noise Removal. Thus, before the event
detection, we can filter out bone-conducted sounds of walking.

E. Feature Extraction

To accurately authenticate users and resist spoofing attacks,
it is necessary to extract reliable biometric features from
bone-conducted sounds of dental occlusion. In this section,
we present approaches for extracting three features from the
skeletal structure, occlusal location, and occlusal sound.

1) Skeletal feature: When the upper and lower teeth collide
with each other, surface acoustic waves (SAWs) are generated.
SAWs can travel along the surface of teeth and bone. Relevant
research [46] shows that bone is a dispersive medium, which
means that the speed of SAWs is related to the frequency of
SAWs and physical properties of the bone (e.g., density, elas-
tic, and inertia properties). The speed of the high-frequency
part of the SAWs is faster than that of the low-frequency part,
which causes that the SAW spreads out and changes shape as

it travels. Based on this, we try to extract the dispersion of
occlusal sound as the skeletal feature.

Fig. 7 shows the events of a dental occlusion detected
by two inward-facing microphones. We can see that the
high-frequency sound first reaches the microphones, then
the low-frequency sound, so we calculate the distance δL(i)
(and δR(i)) between two zero-crossing points. The zero-
crossing sequence of left channel is defined as ZSL =
[δL(1), δL(2), · · · , δL(n)]. The zero-crossing sequence of right
channel ZSR is similar. We regard ZSL and ZSR as the
skeletal features related to the physical properties of bones.

2) Location feature: Users can choose any location of teeth
to register, so the paths and times of occlusal sounds from dif-
ferent locations to the two microphones are also different. We
analyze the delay between the two occlusal sounds received by
two microphones as the location feature. However, different
paths may cause different dispersion of occlusal sounds,
which makes the delay calculation based on cross-correlation
not accurate enough. To solve this problem, we first divide
the sound into 5 frequency bands and then compute cross-
correlation Rl,r(i) for each band. Finally, we get the cross-
correlation sequence Rl,r = [Rl,r(1), Rl,r(2), · · · , Rl,r(5)] as
the location feature.

3) Integral feature: Finally, we extract the integral feature
contained in the occlusal sound. In recent years, MFCC [37] is
commonly applied as the sound feature in speech recognition
and sound classification. Thus, we calculate MFCC for each
occlusal event. Before extracting MFCC, the occlusal sound
is first cut into 36 frames with overlap. Then, we extract 12-
dimensional MFCCs, 12-dimensional first-order derivatives (∆
MFCCs), and 12-dimensional second-order derivatives (∆2

MFCCs) from each frame. We combine the 36-dimensional
features of 36 frames to form a 36×36 bicolor image. Due to
the use of two microphones, we can get two bicolor images
as shown in Fig. 8. Finally, we combine the two images into
a two-channel image with size of 36× 36× 2.

F. Authentication

After getting three biometric features, we design two meth-
ods for user authentication. First, we classify the integral
features. Traditional classifiers (e.g., SVM, RF, and DNN)
usually need a large number of positive and negative data to
train classifiers, so they are not suitable for the single-user
situation. To solve this problem, TeethPass leverages a Siamese
network [47] as the classifier, which is especially suitable for
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Fig. 9: Structure of the Siamese network.

solving the classification problem with unknown numbers of
classes and few training data. The basic idea of the Siamese
network is to use a pair of networks with the same structure
and weights to compute a similarity for two inputs.

Fig. 9 shows the structure of the Siamese network, which
has two identical sub-networks. Each sub-network mainly
consists of three convolutional (Conv) layers, two max pooling
layers, and a fully connected (FC) layer. Given a pair of
integral features as the inputs, the Siamese network can extract
user identity information through two identical sub-networks
and compute the distance of user identity information as the
similarity of the inputs. In the training phase, suppose the
weights of the sub-network are W , then the loss function is

L(W ) =

N∑
i=1

Y (Di
W )2 + (1− Y ) max(M −Di

W , 0)2, (4)

where Di
W denotes the Euclid distance of the i-th pair of

input features. M is the margin that represents the decreased
interval. If the input features are from the same user, then
Y = 1, otherwise, Y = 0. The network is trained to minimize
the loss L(W ). In other words, we try to minimize the distance
between the features of the same user and maximize the
distance between the features of different users.

We first pre-train the network. We ask 4 volunteers to collect
bone-conducted sounds of occlusion. Then, any two integral
features form a pair of inputs which are sent to the network for
pre-training. After that, the network has the preliminary ability
to distinguish integral features from different users. We deploy
the network on a mobile device, when a new user registers
the device, the user is required to perform occlusion several
times to extract the integral features. To reduce the time of
occlusion, we augment the integral features by using time-
warping and frequency-time masking [26], [48]. Then, the
user’s integral features are combined with the integral features
of himself/herself, the 4 volunteers, and other registered users
(if any) to form new pairs of inputs. To reduce training cost,
we borrow ideas from incremental learning [24] to make the
network authenticate the new user. Specifically, instead of
retraining the network completely, we continue to train on
the existing network using the new pairs of inputs. In the
login phase, the network compares the similarity between the
received integral feature and each registered user’s integral
feature on the device. If the similarities are all less than
a threshold, we consider there is a spoofer, otherwise, the

(a) Prototype #1 (b) Prototype #2 (c) Prototype #3

Microphone Microphone Microphone

Fig. 10: Prototype earphones.

identity is assigned to the registered user with the highest
similarity.

In the registration phase, we also collect skeletal features
of the new user and average zero-crossing sequences to get
Z̃SL and Z̃SR. In the login phase, we calculate zero-crossing
difference between ZSL of the received skeletal feature and
Z̃SL of the registered user assigned by the network as
DSL = 1

n

∑n
k=1[δL(k) − δ̃L(k)]. Then we get DSR of the

right channel in the same way. For the location feature, we
use the same method to calculate cross-correlation difference
DRL,R. If any two of DSL, DSR, and DRL,R are less than
corresponding thresholds, the user is considered legitimate.

V. IMPLEMENTATION AND EVALUATION
In this section, we introduce the implementation details and

provide the evaluation results.

A. Experiment Setup

There are several commercial earbuds equipped with
inward-facing microphones. But due to hardware limitations,
we can not get sound data from inward-facing microphones.
Thus, we implement TeethPass by attaching a microphone in
front of the speaker in an earphone, which is similar to most
commercial earbuds. We design 3 prototypes, as shown in Fig.
10. We recruit 22 participants (13 males and 9 females, aged
from 18 to 52), 15 of them register TeethPass as legitimate
users, and the rest 7 participants are spoofers. Each legitimate
user chooses a comfortable prototype earphone and occlusal
location. The occlusal sounds are recorded in 4 environments,
including lab, park, car, and mall. Finally, we collect more
than 2,000 occlusal sounds for legitimate users. Part of the
data collected in the lab are used to train the network, and
the remaining data are used as the test set. Spoofers perform
mimic, replay, and hybrid attacks on TeethPass. All procedures
are approved by the Institutional Review Board (IRB) at our
institute.

B. Evaluation Methodology

We mainly evaluate TeethPass from the following aspects.
Confusion matrix. Each row and each column of the

matrix represent the ground truth and the authentication result,
respectively. Each entry represents the percentage of a user that
is classified into each identity.

False reject rate (FRR). The probability that TeethPass
authenticates a legitimate user as a spoofer.

False accept rate (FAR). The probability that TeethPass
authenticates a spoofer as a legitimate user.
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TABLE I: Response time during an authentication.
Phase ANR ED MR FE Train Auth Total
Reg(s) 0.3 0.2 0.1 0.2 3 None 3.8

Login(ms) 58 45 28 54 None 92 277

C. Overall Performance

We first evaluate the overall performance of TeethPass. Fig.
11 shows the confusion matrix of 15 legitimate users (denoted
as U1, U2, · · · , U15) and 7 spoofers (denoted as SP ). It
shows that TeethPass achieves an average accuracy of 96.8%
for users authentication and 98.9% for the detection of 3 types
of attacks. Among the legitimate users, the lowest accuracy
is 90.8% (user #5). The results indicate that TeethPass can
accurately authenticate legitimate users and detect spoofers.

We compare the performance of TeethPass with that of
WeChat voiceprint lock [49] and BiLock [29]. Fig. 12 shows
the FRR of the 3 systems in 4 environments. We can see that
the FRR of TeethPass is 1.6%, which is slightly better than
1.9% and 3.1% of WeChat and BiLock in the lab. But in
cars and malls with loud ambient noises, the FRR of WeChat
and BiLock increase over 5.0% and 3.9% respectively, while
TeethPass keeps a stable FRR with a slight increase to 2.3%.
With the help of noise reduction methods, TeethPass has stable
performance in various environments. Another reason is that
the shell of the earphone also helps to isolate ambient noises.

D. Performance on User Experience

1) Occlusion time for registration: In the register phase,
more times of occlusion can improve the effect of training
the network. But too many times of occlusion may lead to a
poor user experience. Hence, we evaluate the FRR and FAR
of TeethPass under different occlusion times for registration,
and the results are shown in Fig. 13. It is obvious that with
the occlusion time increases, the FRR and FAR of TeethPass
decrease sharply at the beginning. And TeethPass only needs
5 occlusion to achieve 1.9% FRR and 1.1% FAR, which is
mainly because we design a suitable Siamese network and
adopt data augmentation. In order to balance performance and
usability, we fix the occlusion times to 5 in all the evaluations.

2) Occlusion time for successful login: In the login phase,
we evaluate the occlusion times required for successful au-
thentication under 4 environments. Fig. 14 shows CDF of the
occlusion times. We can see that more than 93% of login
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operations are successful with only one occlusion under each
environment. And an average of 98.8% of login operations
can be successfully authenticated within 4 occlusion, which is
acceptable for users. In some special environments, such as
a very loud sound source near the user, TeethPass requires
5 or more occlusion to successfully authenticate the user.
Thus, when there occurs 5 consecutive times of unsuccessful
authentication, the device is automatically locked for a while.

3) Authentication response time: Then we study the re-
sponse time of TeethPass from receiving an occlusal sound
to producing the authentication result. During the evaluation,
all the registration and login data are transmitted to a PC with
a 3.2GHz Intel i7 CPU and 16GB memory. Table I shows the
average response times of Air Noise Removal (ANR), Event
Detection (ED), Motion Removal (MR), Feature Extraction
(FE), Network Training (Train), and Authentication (Auth). In
the registration phase, the training of the network takes the
most time, and the total response time for each new user
to register TeethPass is about 3.8s. But response time of
registration has little impact on user experience. In the login
phase, TeethPass can produce authentication results within
280ms after the user completes the occlusion, which indicates
that TeethPass can achieve a satisfactory user experience.

4) Earphone wearing depth: The types and depths of ear-
phones that each user is accustomed to wearing are different,
so we study the impact of different earphone types and depths
on system performance. The occlusal sounds are collected at
different in-ear depths, including deep, moderate, and shallow
positions. It can be seen from Fig. 15 that prototype #1 has
the lowest FRR at all three depths since it has the most stable
wearing way. The FRR of prototype #2 increases slightly at
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shallow depth, but its in-ear structure can ensure that the FRR
is less than 2.2%. Prototype #3 adopts a semi-in-ear structure,
so its wearing stability and sound insulation are not good,
causing FRR to rise to about 2.6% at shallow depth. In general,
the type of earphone has a certain impact, while the wearing
depth of the earphone has little effect on performance.

5) Oral environment: We also evaluate the impact of differ-
ent oral environments on system performance. We ask users to
use TeethPass before and after sleeping, brushing teeth, eating,
drinking water, drinking milk, and drinking cola, respectively.
Fig. 16 shows that the FRR after sleeping, eating, and drinking
milk increases slightly, while brushing teeth and drinking
water can reduce the FRR. In particular, we find that drinking
cola has a great impact on system performance, the FRR after
drinking cola increases to 3.2%. The reason may be that the
ingredients with high viscosity (e.g., caramel color and syrup)
in cola adhere to the surface of teeth, resulting in the change
of biometric features of the occlusion.

In addition, the oral environment may change over time.
To evaluate the robustness of TeethPass over time, we collect
occlusal sounds of the users for more than 3 months. Fig.
17 shows the authentication FRR of 1, 10, 20, 30, 60, and
90 days after registration. We can observe that TeethPass can
maintain high performance over a long time. Specifically, the
FRR of TeethPass is still less than 2.3% after 90 days. It
is worth noticing that two users extract wisdom teeth during
the experiment, and the FRR after teeth extraction does not
increase significantly.

E. Performance on Attack Resistance

In order to prove that TeethPass can resist attacks described
in Section III-A, we conduct several experiments to verify the
effectiveness of the three biometric features under the mimic
attack, replay attack, and hybrid attack. Spoofers use the same
prototype earphone as the legitimate user to attack TeethPass.

1) Mimic attack: To conduct mimic attacks, we assume that
spoofers know which teeth and how much force the legitimate
user uses to occlude. Fig. 18 shows the FAR of mimic attacks
under different environments. It shows that the FAR is over
1.8% in the lab when using only integral features. But when
two or all features are used, the average FAR is stable at about
1.2%, which indicates that TeethPass using all three features
can resist mimic attacks well. The reason is that although the
spoofer can mimic the location and force of occlusion of the

legitimate user, the biometric features of the spoofer’s teeth
and bones are still different from those of the legitimate user.

2) Replay attack: To conduct replay attacks, we place
a microphone at different distances to the user’s mouth to
eavesdrop on the air-conducted sound of dental occlusion and
then replay it to the prototype earphone to attack. Fig. 19
depicts the results of replay attacks at different eavesdropping
distances. It is obvious that when the distance is greater than
20cm, the FAR is reduced to 1% by using only integral
features, since the air-conducted sounds of occlusion are more
close to impulse waves and decay fast. In addition, due to the
fact that the air-conducted sound does not contain skeletal and
location features, the FAR of TeethPass using all features is
lower than that using only integral features.

3) Hybrid attack: Finally, we consider that the spoofer
mimics the occlusion of the user while playing the eaves-
dropped occlusal sound by a speaker in the spoofer’s mouth.
The setting of eavesdropping is the same as that in replay
attacks. Fig. 19 shows the results of hybrid attacks at different
eavesdropping distances. When the distance is greater than
20cm, the FAR is reduced to about 1%. But at smaller
distances, the FAR of hybrid attacks is higher than that of
replay attacks. In actual scenarios, it is difficult to eavesdrop
on users in such a short distance. Generally, TeethPass can
resist various attacks effectively in different environments.

VI. CONCLUSION AND FUTURE WORK

In this paper, we design and implement TeethPass, which
uses inward-facing microphones in earbuds to collect bone-
conducted sounds of dental occlusion in binaural canals to
achieve authentication. We present effective methods to filter
out interferences of ambient noises and daily actions. We
extract biometric features, including physical features of bone
and tissue, location features of occlusion, and integral features
of occlusal sound, then adopt a Siamese network based on in-
cremental learning as the classifier. The extensive experiments
show that it achieves an average authentication accuracy of
96.8%, and resists 98.9% of spoofing attacks.

The experiments are conducted without other music being
played by earphones. In the future, we will try to work around
this limitation by analyzing the correlation between the played
and received sounds. We will further integrate TeethPass with
other existing authentication methods to provide users with
all-round authentication services.
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