
Efficient Topology Design in Time-Evolving and
Energy-Harvesting Wireless Sensor Networks

Fan Li∗ Siyuan Chen† Shaojie Tang‡ Xiao He∗ Yu Wang†
∗ School of Computer Science, Beijing Institute of Technology, Beijing, 100081, China.

† Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
‡ Department of Computer and Information Sciences, Temple University, Philadelphia, PA 19122, USA.

Abstract—Recent advances in ambient energy-harvesting tech-
nologies have made it possible to power wireless sensor networks
(WSNs) from the environment for long durations. However, the
energy availability in an energy-harvesting WSN varies with
time and thus may cause the network topology to evolve over
time. In this paper, we study the topology design problem in a
time-evolving and energy-harvesting WSN where the time-evolving
topology and dynamic energy cost are known a priori or can
be predicted. We model such a network as a node-weighted
space-time graph which includes both spacial and temporal
information. To reduce the cost of supporting time-evolving
networks with limited harvesting energy sources, we propose a
new efficient topology design problem which aims to put more
sensors into sleep while still maintaining the network connectivity
over time. We prove that the optimization problem of finding the
optimal awake sensor set with the minimum total cost is NP-hard.
Thus, we propose several topology design algorithms which can
significantly reduce the total cost of topology while maintaining
the connectivity over time. Simulation results from random time-
evolving and energy-harvesting WSNs demonstrate the efficiency
of the proposed methods.

I. INTRODUCTION

Wireless sensor networks (WSNs) are commonly powered
by batteries. For some applications where the network is
expected to operate for long durations, energy consumption
becomes a severe bottleneck and the most important issue
in the protocol design. Recent advances in ambient energy-
harvesting technologies have made it possible to power WSNs
from energy generated from the environment [1]–[6]. Various
energy sources including light, vibration or heat can be har-
vested by sensor nodes. Fig. 1(a) illustrates two examples of
sensor devices (from [3] and [4]) powered by solar cells.

Even though energy-harvesting technology can power
WSNs more perpetually than non-renewable energy sources
like batteries, the harvested energy is fundamentally different
from battery energy. Usually, it has a limit on the maxi-
mum rate at which the energy can be used. Furthermore,
the harvested energy availability and supported maximum
rate typically vary with time and space. For instance, when
harvesting solar energy, the minimum energy output for any

The work of F. Li is partially supported by the National Natural Science
Foundation of China under Grant No. 61370192 and 60903151, and the
Beijing Natural Science Foundation under Grant No. 4122070. The work of
Y. Wang is supported in part by the US National Science Foundation under
Grant No. CNS-0915331 and CNS-1050398. Y. Wang (yu.wang@uncc.edu)
is the corresponding author.

July 1 July 2 July 3 July 4 July 5 July 6 July 7
0

100

200

300

400

500

600

700

800

Time

D
ire

ct
 N

or
m

al
 Ir

ra
di

an
ce

 (
W

/m
2 )

(a) (b)
Fig. 1. (a) Example sensor nodes in energy-harvesting WSNs from [3]
(upper) and [4] (lower). (b) Solar irradiance data at a site in Oak Ridge
National Laboratory from July 1 to July 7, 2012. Data is obtained via [7].

solar cell would be near zero at night. Therefore, in energy-
harvesting WSNs the energy cost and energy replenishment at
each sensor are dynamic over time and space as well. Such
temporal and spatial variations of ambient energy sources and
consumption impose a great challenge in protocol design for
energy-harvesting WSNs.

The change of energy resources not only affects the com-
munication costs, but also causes network topology to evolve.
For example, when a sensor node powered by solar cell
temporally runs out of energy or has very low energy at night,
it may disappear from the network. Later, when the node is
recharged, it reappears. In addition, node mobility may also
lead to topological changes. Such dynamic topologies over
time domain in energy-harvesting WSNs are often ignored in
protocol design or simply modeled by pure randomness.

Fortunately, for certain types of energy-harvesting WSNs,
the temporal characteristics of energy resources and dynamic
topology could be known a priori or be predicted from histor-
ical tracing data. For instance, it is easy to discover temporal
patterns of energy resources in a solar energy-harvesting sys-
tem, since the change of solar irradiance over a place follows
regular patterns. Fig. 1(b) plots solar irradiance data at a site
in Oak Ridge National Laboratory over seven days (obtained
from the Measurement and Instrumentation Data Center at
US National Renewable Energy Laboratory [7]). It is obvious
that solar irradiance is low during the night and maximized
around noon everyday. This implies that it is easy to predict the
solar energy resources in an energy-harvesting WSN. Actually,
there has been several energy prediction methods [8]–[11] for
different energy-harvesting WSNs.



In this paper, we study the topology design problem for a
Time-evolving and Energy-harvesting Wireless Sensor Network
(TEWSN), by taking time-varying energy cost and time-
domain topological information into consideration. We assume
that the time-evolving topology and dynamic energy cost are
known a priori or can be predicted. We first model such
a TEWSN as a directed node-weighted space-time graph in
which both spacial and temporal information are preserved.
We then define the efficient topology design problem which
aims to build a sparser structure (also a space-time graph) from
the original space-time graph by putting a subset of sensors
into sleep (removing nodes from the original graph) such that
(1) the network is still connected over time and supports rout-
ing between any two sensors; (2) the total cost of the structure
is minimized. Notice that in energy-harvesting WSNs, it is
too expensive to maintain a dense structure and keep every
sensor awake for all the time. We formally show that this new
topology design problem is NP-hard, by connecting it with an
existing topology control problem for delay tolerant networks
(DTNs) [13]. We propose five different algorithms to construct
new network topologies which can significantly reduce the
total cost while maintaining the network connectivity over
time. We also discuss how to address the topology design
problem under different space-time graph models. Simulation
results over random TEWSNs demonstrate the efficiency of
our proposed methods.

Topology design has been well studied in ad hoc and sensor
networks [12]. Most efforts have been spent on how to con-
struct a power efficient structure from a static and connected
topology. Topology design over time-evolving network has
not been investigated except for in our recent work [13]–
[15], where link-weighted space-time graphs are used to model
time-evolving DTNs. The topology design problem over node-
weighted space-time graphs is much harder than those in
[13]–[15] and more suitable for energy-harvesting WSNs. We
believe that this study is the first work to investigate topology
design for time-evolving and harvesting WSNs by considering
time-varying nature of energy replenishment and dynamic
evolution of topology.

The rest of this paper is organized as follows. We first intro-
duce our space-time graph model in Section II, then formally
define the efficient topology design problem and prove its NP-
hardness in Section III. Five topology design algorithms for
TEWSNs are proposed in Section IV. Section V presents the
simulation results and Section VI discusses possible variations
of space-time graph models. We summarize related work in
Section VII and conclude the paper in Section VIII.

II. NODE-WEIGHTED SPACE-TIME GRAPHS: MODELING
TIME-EVOLVING AND ENERGY-HARVESTING WSNS

To model the time-evolving and energy-harvesting wireless
sensor networks, we adopt the space-time graph model [16],
which has been used to model time-evolving DTNs [13]–
[15]. In all of these previous work, the space-time graph is
link-weighted, however, in our case we use node-weighted
version to model the dynamic energy cost at each sensor

space

v1

v2

v4

v3
v5

v1

v2

v4

v3
v5

v1

v2

v4

v5

v1

v2

v4

v3
v5

v3

time
t=1 t=2 t=3 t=4

(a) (b)

Fig. 2. A time-evolving and energy-harvesting WSN (TEWSN): (a) a
snapshot of the network at time t = 1, (b) the time-evolving topologies of
the network over four time slots.

node. Surprisingly, the topology design problem with node-
weighted version is much more challenging than those with
link-weighted space-time graphs.

We assume that the time is divided into discrete and equal
time slots, such as {1, · · · , T}. V = {v1, · · · , vn} is the set of
individual sensors in the network. Fig. 2 illustrates an example
of such TEWSNs. Let Gt = (V t, Et) be a graph representing
the snapshot of the network at time slot t and a link vtiv

t
j ∈

Et represents that nodes vi and vj can communicate with
each other at time t. Then, the dynamic network is described
by the union of all snapshots {Gt|t = 1, · · ·T}. For each
sensor vti at any time t, we assume that there are two costs
ct(v

t
i) and cr(v

t
i), which represent the cost to be awake for

transmitting packets and the cost to be awake for receiving
packets in this time slot, respectively. These costs change with
time due to variations of energy replenishment and capture
the time-varying and spatial differences properties of energy-
harvesting rates.

We then convert the sequence of static graphs {Gt} into
a node-weighted space-time graph G = (V, E), which is a
directed graph defined in both spacial and temporal spaces.
To capture whether a sensor node vi needs to be awake for
transmitting or receiving packets in each time slot t, two
nodes vt,ti and vt,ri are created for vi in time slot t. The
weights of them are c(vt,ti ) = ct(v

t
i) and c(vt,ri ) = cr(v

t
i).

For convenience, we also include two virtual nodes v0i and
vT+1
i for sensor vi as the starting point and ending point

of the time span. See Fig. 3 for illustrations. Thus, in the
space-time graph G, 2(T + 1) layers of nodes (2 layers per
time slot) are defined and each layer has n nodes. There are
2n(T + 1) nodes in total. Two kinds of links (spatial links
and temporal links) are added between consecutive layers in

G. A temporal link
−−−−→
vt,ti vt,ri (a horizontal link inside time slot t)

represents buffering packets at the node in the tth time slot1,

while a temporal link
−−−−−→
vt,ri vt+1,t

i (a horizontal link between time
slots t and t+ 1) is a virtual link connecting two consecutive

time slots. A spatial link
−−−−→
vt,ti vt,rk (a non-horizontal link inside

1Note that under this model the cost for vi to buffer packets in time slot
t is equal to the summation of ct(vti) and cr(vti). Later, we will relax such
assumption by defining new variations of space-time graphs in Section VI.



v1

2

v3

v4

5

v

v

2,r

2,r

2,r

2,r

2,r
v1

2

v3

v4

5

v

v

3,t

3,t

3,t

3,t

3,t v1

2

v3

v4

5

v

v

3,r

3,r

3,r

3,r

3,rv1

2

v3

v4

5

v

v

2,t

2,t

2,t

2,t

2,tv1

2

v3

v4

5

v

v

1,t

1,t

1,t

1,t

1,t v1

2

v3

v4

5

v

v

1,r

1,r

1,r

1,r

1,r v1

2

v3

v4

5

v

v

4,r

4,r

4,r

4,r

4,rv1

2

v3

v4

5

v

v

0

0

0

0

0 v1

2

v3

v4

5

v

v

5

5

5

5

5v1

2

v3

v4

5

v

v

4,t

4,t

4,t

4,t

4,t

t=1 t=2 t=3 t=4

Fig. 3. The corresponding space-time graph G of the time-evolving sensor
network in Fig. 2(b). The blue path shows a space-time route from v1 to v5.

time slot t) represents forwarding a packet from node vi to
its neighbor vk in the tth time slot (i.e., vivk ∈ Et). Notice
that the space-time graph defined here is different with those
in [13]–[15] for DTNs.

By defining the new space-time graph G, any communi-
cation operation in the time-evolving sensor network can be
simulated over this directed graph. As highlighted in Fig. 3,
the blue space-time path from v01 to v55 shows a particular
routing strategy to deliver the packet from v1 to v5 in the
network using 4 time slots: v1 sends the packet to v2 in the
first time slot, and v2 forwards it to v3 at t = 2, then v3 sends
it to v5 in the third time slot, at last v5 holds the packet for
the last time slot. Notice that in this space-time graph model,
only one-hop transmission is allowed within one time slot.

The connectivity of a space-time graph is defined as follows:
Definition 1: A space-time graph G is connected over time

period T if and only if there exists at least one directed path
between each pair of nodes (v0i , v

T+1
j ) (i and j in [1, n]).

This guarantees that the packet can be delivered between any
two nodes in the time-evolving network over the period of T .
Hereafter, we assume that the original space-time graph G is
always connected. In other words, without putting any sensor
into sleep, the evolving sensor network is connected over time.
Notice that the connectivity of a space-time graph is different
with the connectivity of a static graph. A connected space-time
graph does not require connectivity in each snapshot.

Given the costs of each sensor node in G, we can also define
the total cost of a space-time graph as the summation of costs
of all nodes in G, i.e., c(G) =

∑
v∈G c(v). Similarly, we can

define the total cost of a space-time path P as the summation
of costs of all nodes in path P (except for the endpoint nodes).
In G, the path connecting nodes u and v with the minimum cost
is defined as the least cost path PG(u, v). When the underlying
space-time graph is clear, we drop G from the symbol.

III. EFFICIENT TOPOLOGY DESIGN PROBLEM IN TEWSNS

We now define the efficient topology design problem
(ETDP) on node-weighted space-time graphs.

Definition 2: Given a connected and node-weighted space-
time graph G, the aim of efficient topology design problem
(ETDP) is to construct a sparse space-time graph H, which is
a subgraph of G, such that H is still connected over the time
period T and the total cost of H is minimized.

v1

2

v3

v4

5

v

v

3,r

3,r

3,r

3,r

3,r v1

2

v3

v4

5

v

v

4,r

4,r

4,r

4,r

4,rv1

2

v3

v4

5

v

v

0

0

0

0

0 v1

2

v3

v4

5

v

v

1,t

1,t

1,t

1,t

1,t v1

2

v3

v4

5

v

v

1,r

1,r

1,r

1,r

1,r
v1

2

v3

v4

5

v

v

5

5

5

5

5v1

2

v3

v4

5

v

v

4,t

4,t

4,t

4,t

4,tv1

2

v3

v4

5

v

v

2,r

2,r

2,r

2,r

2,r

t=1 t=2 t=3 t=4

v1

2

v3

v4

5

v

v

2,t

2,t

2,t

2,t

2,t
v1

2

v3

v4

5

v

v

3,t

3,t

3,t

3,t

3,t

Fig. 4. Efficient topology design on time-evolving and energy-harvesting
WSNs (over the one shown in Fig. 3): a new connected subgraph H of G
where green nodes/links are removed from G).

The motivation of ETDP is to keep a few sensors awake
while guarantee the overall connectivity over certain time
period. In many energy-harvesting sensor networks, it is
too expensive to maintain a dense structure over time. Our
ETDP focuses on finding cost-efficient and sparse space-time
subgraph to be active as the underlying topology for the time-
evolving sensor network. Fig. 4 shows a possible solution of
the ETDP, where several sensor nodes are removed from the
original space-time graph but the connectivity over time is
preserved.

The newly defined topology design problem is different
from the standard space-time routing [16], [17], which aims to
find the most cost-efficient space-time path for a pair of source
and destination. The ETDP aims to maintain a cost-efficient
and connected space-time graph for all pairs of nodes. The
paths inside the constructed graph are not the least cost paths
for routing. Therefore, our goal is not to optimize the routing
performance but to improve the cost efficiency of the topology.

The topology design problem for a node-weighted space-
time graph is also quite different from the same problem
for a node-weighted static graph. For a static graph without
time domain, a spanning tree can achieve the goal of keeping
connectivity and all spanning trees have the same total cost
with the original graph. In a space-time graph, nodes in a
single snapshot may not be connected at all, thus the spanning
tree is not useful. Even assume that all nodes are connected
in each snapshot, a spanning tree over the whole space-time
graph is not a solution either, since it spans all nodes and does
not save any cost comparing with the original graph.

In [13]–[15], we have studied the topology design problem
for a link-weighted space-time graph. However, their solutions
cannot be directly used in the node-weighted version, since (1)
removing a node in the space-time graph causes multiple links
to be removed from the graph; (2) node costs are not easy to
converted or splitted to link costs; and (3) the construction
methods from a sequence of static graphs to the space-time
graph are different. In fact, like the directed Steiner tree
problem [18], [19], the node-weighted version of topology
design problem is much harder than the link-weighted version.

We now prove the NP-hardness of our newly defined
topology design problem ETDP by a reduction from a pre-
vious topology control problem over link-weighted space-
time graphs (TCP) [13], which has been proved an NP-hard



4

5

1
1

1

4

2
4

5

1
1

1

4

2

0

0
0

0

0

0
0

0
0

0

0

0

0

0

0

0

8

4

2

1

5

4

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

2.5

2

0.5

0.5 0.5

1

2

8

0.50.5

8

2

1

2.5

2

0.5

0.5

(a) G′ (b) G′′ (c) G′′′ (d) G
Fig. 5. Illustrations for NP-hardness proof of ETDP: (a) a link-weighted space-time graph G′ in TCP; (b) a link-weighted space-time graph G′′ with two
sets of free virtual links added in G′; (c) a node-weighted space-time graph G′′′ converted from G′′; and (d) a node-weighted space-time graph G converted
from G′′′ by splitting each node into two nodes.

problem. The TCP problem is defined as follows: given a
directed and link-weighted space-time graph G, find a sparser
structure H from the original space-time graph G such that (1)
the network is still connected over time; (2) the total link cost
of the structure is minimized.

Theorem 1: The efficient topology design problem (ETDP)
in a time-evolving and energy-harvesting WSN modeled by a
node-weighted space-time graph is NP-hard.

Proof: We first show how to reduce the TCP problem into
our ETDP problem. Given an instance of TCP with a link-
weighted space-time graph G′ where every link has a cost, as
shown in Fig. 5(a), we can construct an instance of ETDP on
a new node-weighted space-time graph G as follows.

Assume that the largest number of links in each time slot in
G′ is x. We add two sets of x virtual links at the beginning and
the ending of the space-time graph as shown in Fig. 5(b) and
assign 0 cost for them. Every node in the starting and ending
time slots needs to guarantee having at least one adjacent
virtual link. We use G′′ to denote the new link-weighted graph.

We then construct a new space-time graph G′′′ from G′′ by
mapping all links in G′′ into nodes in G′′′. Naturally, the costs
of links become costs of nodes. If two links e1 and e2 are
adjacent in G′′ (i.e., share a node), there will be a link in G′′′
connecting two nodes who represent e1 and e2. See Fig. 5(c).
Notice that to make the number of nodes in each time slot in
G′′′ the same (x), some virtual nodes may be needed. After
this step, we now have a node-weighted space-time graph.

The last step is to make the node-weighted space-time graph
G′′′ into the format of the one we defined in our ETDP
problem. A easy node splitting can achieve such goal. Each
node in G′′′ is split into two nodes with half of the original
cost. See Fig. 5(d) for illustrations. Notice that there are a few
horizontal links missing. It is easy to add an additional layer
with infinite node cost to solve the problem. Due to space
limit, we ignore such construction step here.

By this overall construction, it is easy to find a solution of
ETDP with the same cost in G for any solution of TCP in G′,
and vice versa. Since the construction of G can be done in
polynomial time and TCP problem is NP-hard, the ETDP on
node-weighted space-time graphs is also NP-hard.

Notice that the reduction above can only work from TCP
to ETDP, but not in the reverse direction. Therefore, ETDP is
computationally much harder than TCP.

Algorithm 1 Greedy Algorithm to Add Nodes (GrdAN)
Input: original space-time graph G = {E ,V}.
Output: new sparse space-time graph H.

1: Add nodes v0i and vT+1
i into H for all integers 1 ≤ i ≤ n.

2: Sort all remaining nodes in V based on their costs.
3: for all vti ∈ V (processed in increasing order of costs) do
4: if H is connected then
5: return H
6: else
7: Add vti into H; add all edges between vti and other

nodes already in H into H if such edges exist in G.

Algorithm 2 Greedy Algorithm to Delete Nodes (GrdDN)
Input: original space-time graph G = {E ,V}.
Output: new sparse space-time graph H.

1: H = G.
2: Sort all remaining nodes in V based on their costs.
3: for all vti ∈ V (processed in decreasing order of costs)

do
4: if H is connected then
5: Remove vti and all its adjacent edges from H.
6: else
7: return H

IV. TOPOLOGY DESIGN ALGORITHMS FOR TEWSNS

Since ETDP over node-weighted space-time graphs is NP-
hard, in this section, we propose five different heuristics
to construct a sparse structure that fulfills the connectivity
requirement over a node-weighted space-time graph. Within
this section, we use ñ and m̃ to denote the number of nodes
and links in the original space-time graph G, respectively.
Notice that ñ = O(nT ) while m̃ = O(n2T ).

A. Simple Greedy Heuristics: Adding or Removing Nodes

The first two heuristics share the same principle: greedily
adding or removing single node to/from the graph until the
connectivity requirement is achieved or broken. The only
difference between them is the processing order of nodes.

The first algorithm starts with a graph only including nodes
in the first and last layers (nodes v0i and vT+1

i for 1 ≤ i ≤ n).
Then it greedily adds in more nodes until the connectivity of



G is achieved. During the process, it selects the node with
smaller cost first. See Algorithm 1 for detail. The second
algorithm starts with the original space-time graph G and
gradually deletes the node with the largest cost if it does not
break the connectivity of the graph. Algorithm 2 shows the
detail. Hereafter, we denote these two methods as GrdAN and
GrdDN, respectively. Both GrdAN and GrdDN can obviously
satisfy the connectivity requirement ofH. The time complexity
of either GrdAN or GrdDN is O(nñ(m̃+ ñ log ñ)) since there
are at most ñ rounds of connectivity checks.

There are a few possible variations of GrdAN and/or
GrdDN. For example, instead of sorting nodes based on
node costs, both can use node degree as the criterion. For
example, in GrdAN, selecting the node with larger node degree
first could accelerate the process to meet the connectivity
requirement. In addition, GrdDN can start deleting nodes from
a sparse connected space-time graph instead of the original
graph G. Thus, any output from our proposed algorithms
(including those introduced later) can be used as the input
of GrdDN to save computation, since they are sparser than G.

B. Greedy Algorithms: Adding Paths or Bunches

While GrdAN adds one node to H in each round to make it
connected, the next two greedy algorithms add an entire path
or a group of paths (called a bunch) to H in each round.

One naive method for maintaining the network connec-
tivity is keeping all least cost paths from v0i to vT+1

j for
i, j = 1, · · · , n. However, the output of such method may
contain more links than necessary. Hereafter, we use a set X
to represent the set of all pairs of (v0i , v

T+1
j ) for all integers

1 ≤ i, j ≤ n. The third algorithm is still based on the union
of all least cost paths, but it clears the cost of used nodes in
previous rounds so that they are free for reuse in later rounds.
Recall that we need to connect n2 pairs of nodes in X . As
shown in Fig. 6(a), in each round the algorithm picks the least
cost path between a pair of nodes in X which is the minimum
among all least cost paths connecting any pair of nodes in
X . Then it adds all nodes and links along this path into H,
clears the costs of these nodes to zeros, and removes this pair
from X . This procedure is repeated as shown in Fig. 6(a).
After n2 rounds, all pairs of nodes in X are guaranteed to be
connected by paths in H. It is obvious that the output of this
method is much sparser than the union of all least cost paths.
Algorithm 3 gives the detailed algorithm. We refer to this
method as greedy method based on least cost path (GrdLCP).
The time complexity of GrdLCP is O(n3(m̃+ ñ log ñ)) since
in each round n times of Dijkstra’s algorithm are running on
the space-time graph and there are n2 rounds.

Next, we present a more complex greedy algorithm (as
shown in Algorithm 4) which is inspired by a method proposed
by Charikar and Chekuri [19] for directed generalized Steiner
network (DGSN) problem [20]. The DGSN problem is also a
NP-hard problem and defined as follows. Given a directed
link-weighted graph G and a set of X = {(ai, bi)} of k
node pairs, find the minimum cost subgraph H of G such
that for each node pair (ai, bi) ∈ X , there exists a directed

t=T+1t=0

u2

u3

u1

3w
2w
1w

qp

t=T+1t=0

(a) GrdLCP (b) GrdLDB
Fig. 6. Illustrations of GrdLCP (Algorithm 3) and GrdLDB (Algorithm 4):
(a) GrdLCP repeatly adds one least cost path into the topology to connect one
pair of nodes in X . (b) GrdLDB repeatedly adds one bunch with least density
into the topology to connect multiple pairs of nodes in X . Both algorithms
terminate when all pairs of nodes in X are connected.

Algorithm 3 Greedy Algorithm based on Least Cost Path
Input: original space-time graph G = {E ,V}.
Output: new sparse space-time graph H.

1: H ← ϕ; X = {(v0i , v
T+1
j )} for all i and j in [1, n].

2: while X ̸= ϕ do
3: Find the least cost path for every pair nodes in X , and

assume path PG(v
0
i , v

T+1
j ) has the least cost among

these paths.
4: Add all nodes and links in PG(v

0
i , v

T+1
j ) to H.

5: Set the costs of all nodes in PG(v
0
i , v

T+1
j ) in G to zeros.

6: X ← X − (v0i , v
T+1
j ).

7: return H

Algorithm 4 Greedy Algorithm based on Least Density Bunch
Input: original space-time graph G = {E ,V}.
Output: new sparse space-time graph H.

1: H ← ϕ; k = n2; X = {(v0i , vTj )} for all 1 ≤ i, j ≤ n.
2: while X ̸= ϕ do
3: d←∞;B1← ϕ.
4: for all pairs (p, q) ∈ V × V do
5: for all pairs (v0i , v

T
j ) ∈ X do

6: s[v0i , v
T
j ]← c(v0i , p) + c(q, vTj ).

7: Sort all s[v0i , v
T
j ] in increasing order of s, and let

(ul, wl) refer to the lth pair in this sorted list.
8: for l going from 1 to k do
9: Let B be the bunch connecting first l node-pairs.

10: if d(B) ≤ d then
11: d← d(B); k1 = l; B1← B.
12: H ← H+B1; k = k − k1;
13: X ← X − {(u1, w1), · · · , (uk1, wk1)}.
14: return H

path from ai to bi in H . Since the space-time graph G is
a directed graph, our topology design problem is a special
case of a node-weighted version of DGSN problem with
X = {(v0i , v

T+1
j )} for all i, j ∈ [1, n]. In this case, the

number of node pairs is k = n2. For the DGSN problem,
the current best approximation guarantee is O(k1/2+ϵ) by
[20]. However, it is too complex to be practical. Our fourth
algorithm keeps finding a group of paths to connect several



pairs of nodes in X . Each group of paths is defined as a
structure, called a “bunch”, where these paths share a portion
of paths (i.e., have the same subpath formed by a single or
multiple links). Assume a bunch B connects l pairs of nodes
in X (assume the node pairs are (ui, wi) for i = 1, · · · , l)
and the l paths from ui to wi share a portion from node
p to q. See Fig. 6(b) for illustrations. Recall that PG(u, v)
is the least cost path between u and v. We use c(u, v) to
represent its cost, i.e., c(u, v) = c(PG(u, v)).Let s[ui, wi]
represent the cost of PG(ui, p) plus the cost of PG(q, wi), i.e.,
s[ui, wi] = c(ui, p)+c(q, wi). Then, the total cost of bunch B
which connects l-pair of nodes in X is c(B) = c(p) + c(q) +
c(p, q) + s[u1, w1] + s[u2, w2] + · · ·+ s[ul, wl]. We then can
define the density of this bunch as d(B) = c(B)/l, which
implies how much cost per connection is used to connect
l pairs of nodes. The fourth greedy algorithm considers all
possible bunches and greedily selects the bunch with the
smallest density in each round. After a bunch is selected, all
nodes and links in the bunch are added to the subgraph H
and X is also updated accordingly. The algorithm terminates
until all n2 pairs of nodes are connected by bunches. The
output is the union of selected bunches. Fig. 6(b) shows the
procedure. We refer to this method as greedy method based
on least density bunch (GrdLDB). GrdLDB’s time complexity
is O(n4ñ2 log n), since the outer while-loop runs n2 times in
the worst case; the outer for-loop runs O(ñ2) times; and the
sorting can be done in O(n2 logn). Notice that an all-to-all
shortest path algorithm needs to be performed once to prepare
c(u, v) for all nodes u and v in the beginning of the algorithm.
Although the overall time complexity is high, this algorithm
can achieve approximation-guarantee in term of the total cost
compared with the optimal solution. In [19], Charikar et al.
proved that the greedy algorithm based on bunch selection can
give an approximation ratio of O(k2/3log1/3k) for the DGSN
problem. Therefore, we have the following theorem for our
topology design problem, since k = n2.

Theorem 2: Algorithm 4 (GrdLDB) gives an approximation
ratio of O(n4/3 log1/3 n) for the efficiency topology design
problem in node-weighted space-time graph.

Similar to GrdLCP, GrdLDB can be modified to the follow-
ing version. In each round, reset the cost of nodes to zero once
they are added to the current solution. Nonetheless, doing so
will lose the approximation ratio (in Theorem 2).

C. Simple Heuristic: Search over Least Cost Path Trees

Last, we give a simple heuristic based on the least cost path
tree. The basic idea is quite simple and as follows. For a node
vti in G, we construct two least cost path trees rooted at it and
reaching all nodes at the beginning and ending of the space-
time graph: one least cost path tree to reach every node vT+1

i

and one least cost path tree to reach all nodes v0i (all directed
links need to be reversed). If both trees can be founded, the
union of them can be a possible solution for the topology
design problem. Our algorithm tries all intermediate nodes
vti in G, and chooses the one with the minimum cost as the
output. See Algorithm 5 for the detail. We call this algorithm

Algorithm 5 Search Algorithm over Least Cost Path Trees
Input: original space-time graph G = {E ,V}.
Output: new sparse space-time graph H.

1: Calculate all-to-all least cost paths in G.
2: H ← ϕ.
3: for all vti ∈ G, 1 ≤ t ≤ T do
4: Let LCPT1 be the least cost path tree rooted at vti and

reaching v0j , 1 ≤ j ≤ n.
5: Let LCPT2 be the least cost path tree rooted at vti and

reaching vT+1
j , 1 ≤ j ≤ n.

6: Let LCPTs = LCPT1 ∪ LCPT2 and c(LCPTs) be the
cost of LCPTs.

7: if c(H) > c(LCPTs) then
8: H = LCPTs.
9: return H

search algorithm over least cost path trees (LCPT). Clearly, it
is possible that LCPT cannot find any solution, e.g., in the
example shown in Fig. 4. However, our simulation results
show nice performances of this algorithm especially when the
graph is dense. Since an all-to-all shortest path algorithm needs
to be performed only once to prepare all least cost path trees,
the time complexity of LCPT is O(ñm̃ + ñ2 log ñ). Hence,
this algorithm is very practical.

D. Refining Node Cost with Node Degree

Note that in all of algorithms above, we use the node cost as
the metric to select nodes or paths to add. The intuitive behind
it is trying to use nodes with less cost in the constructed H.
However, adding nodes with less cost may not improve the
connectivity significantly. On the other hand, adding a node
with highest node degree in G may significantly improve the
connectivity of H. Based on this observation, we can refine
the node cost c(v) of v using its node degree d(v) in G. The
new cost c′(v) = c(v)/d(v), which implies the cost per node
degree. By this simple modification, we can have a set of new
algorithms. For any algorithm Y , we use Y ′ to denote the new
version with the refined node cost.

V. SIMULATIONS

We evaluate our proposed topology design algorithms,
namely, GrdAN, GrdDN, GrdLCP, GrdLDB, and LCPT, over
random time-evolving and energy-harvesting WSNs. We im-
plement all these algorithms (each with two versions: one uses
cost c(v) and the other uses refined cost c′(v) ) in a simulator
developed by our group. In all simulations, we take four
metrics as the performance measurements for any topology
design algorithm:

• Total Number of Selected Nodes: the total number of
nodes in the constructed H, denoted by n(H).

• Total Number of Selected Edges: the total number of
edges in the constructed H, denoted by m(H).

• Total Cost: the total cost of the constructed topology H
(output of the algorithm), i.e., c(H) =

∑
v∈H c(v).



0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

network density (p)

ra
tio

 o
f s

el
ec

te
d 

no
de

s

GrdAN
GrdDN
GrdLCP
GrdLDB
LCPT
GrdAN′
GrdDN′
GrdLCP′
GrdLDB′
LCPT′

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

network density (p)

ra
tio

 o
f s

el
ec

te
d 

ed
ge

s

GrdAN
GrdDN
GrdLCP
GrdLDB
LCPT
GrdAN′
GrdDN′
GrdLCP′
GrdLDB′
LCPT′

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

network density (p)

ra
tio

 o
f t

ot
al

 c
os

t

GrdAN
GrdDN
GrdLCP
GrdLDB
LCPT
GrdAN′
GrdDN′
GrdLCP′
GrdLDB′
LCPT′

(a) n(H)/n(G) (b) m(H)/m(G) (c) c(H)/c(G)
Fig. 7. Simulation results on random networks (n = 10 and T = 10) with different densities. The number of nodes/edges and total cost of H are divided
by those of G, which illustrates how much saving is achieved by the proposed algorithms, compared with the original network without topology design.

• Running Time: the total time to generate the output
topology H.

For all the simulations, we repeat the experiment for multiple
times and report the average values of these metrics. It is clear
that a desired topology should have small total cost, small edge
number, and small node number.

Generating Random Space-Time Graphs: To simulate
random TEWSNs, we first generate a sequence of static
random graphs Gt to denote the time-evolving network. We
consider a network with n sensors and spreading over T time
slots. For each time slot t, we randomly generate the graph
Gt using the classical random graph generator. Basically, for
each pair of nodes vi, vj , we insert the edge of vivj with a
fixed probability p. This probability can control the density
of the network. The larger value of p is, the denser is the
network. p = 1.0 implies that the topology in each time slot
is a complete graph. For each node, we randomly pick its
costs from 1 to 100 for each time slot. After generating {Gt},
we then convert it into its corresponding space-time graph G
with 2n(T + 1) nodes. All topology design algorithms take
the same G as the input.

Simulation Results: We first test our algorithms over a set
of 10-node 10-time-slot time-evolving networks (i.e., n = 10
and T = 10). We vary the network density parameter p from
0.2 to 1.0 and generate 100 time-evolving networks for each
case. Fig. 7 and Fig. 8 show the results.

Figs. 7 (a)-(c) show the ratio between the number of selected
nodes/edges or total cost of the generated graph H and that of
the original graph G when p increases. This ratio implies how
much saving is achieved by the topology design algorithm,
compared with the original network without topology design.
From the results, all proposed algorithms can significantly
reduce the cost of maintaining the connectivity over time. Even
with the least density (p = 0.2), most of algorithms (except
for GrdAN, GrdAN’, and GrdLDB) can save more than 50%
cost, 50% nodes and around 60% edges. For p = 1.0, more
than 60% cost, around 70% nodes and 90% edges are saved
by all algorithms. With increasing density of the network,
the ratios of used cost/node/edge decrease. This indicates that
more saving can be achieved by all algorithms with dense
networks. For all of the results, the algorithms with refined cost

(using the node degree) usually have better performance than
those with original node cost. This shows that the refinement
is effective, especially for the total cost measurement. The
improvement of such refinement is significant for GrdLDB.
For the number of selected nodes/edges, both versions of
LCPT, GrdDN, and GrdLCP plus GrdLDB’ have nice and
similar performances. However, in term of total cost, GrdLCP’,
GrdLDB’ and LCPT/LCPT’ have the best performances. No-
tice that GrdDN/GrdDN’ can delete many nodes and links, but
not save a lot of costs. In addition, GrdAN performs poorly
over all measurements, since it adds too many nodes/edges
until it achieves the connectivity. Finally, even though GrdLDB
has the theoretical approximation bound, GrdLCP and LCPT
perform much better in practice.

Fig. 8 shows the average running time of each algorithm.
It is clear that only GrdDN/GrdDN’ needs a lot of time
with a denser space-time graph. Other methods are kind of
stable. Compared with LCPT/LCPT’ and GrdLCP/GrdLCP’,
GrdLDB/GrdLDB’ uses more time, which is consistent
with our theoretical analysis of time complexity. Obviously,
LCPT/LCPT’ and GrdLCP/GrdLCP’ are nice choices for
both running time and performances. However, recall that
LCPT/LCPT’ may find no solution for certain networks.

We also perform simulations on a set of random networks
with larger size and longer time period to test the scalability
of our algorithms. Due to space limit, we do not include the
detailed results here. The results and conclusions are consistent
with the previous set of simulations. With larger networks, all
algorithms can save more costs while spend more time.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

network density (p)

av
er

ag
e 

ru
nn

in
g 

tim
e 

(m
se

cs
)

GrdAN
GrdDN
GrdLCP
GrdLDB
LCPT
GrdAN′
GrdDN′
GrdLCP′
GrdLDB′
LCPT′

Fig. 8. Average running time of each algorithm on the random networks.



VI. VARIATIONS ON SPACE-TIME GRAPH MODEL

Notice that in our node-weight space-time graph model
(presented in Section II) we assume that the cost of buffering
packets at time slot t is equal to the summation of ct(v

t
i) and

cr(v
t
i). This may not be true in real sensor networks. In this

section, we discuss three possible relaxations on this model.
In all of them, directed links from vt,ti to vt,ri are removed.

Fig. 9(a) illustrates the first modified model by adding new
horizontal links from vt,ti to vt+1,t

i and from vt,ri to vt+1,r
i for

each node vi at any time slot t. In the figure, we use dash lines
to represent these new links. Note that we do not include all
of them to avoid messing the figure. Instead, we only include
those for v1 and v5. By adding these links, node vi can buffer
the packet for one time slot with cost of either ct(v

t
i) or cr(v

t
i).

In other words, the buffering cost is min(ct(v
t
i), cr(v

t
i)).

However, in some cases, the buffering cost could be much
smaller than either ct(v

t
i) or cr(v

t
i). In such cases, each sensor

can have a separated buffering cost as cb(v
t
i) which is different

from either ct(v
t
i) or cr(v

t
i). Then a new space-time graph

can be defined as shown in Fig. 9(b). Now three sets of
nodes are in each time slot representing sensors awake for
transiting, receiving and buffering packets, respectively. For

each new node vt,bi , four horizontal links are added:
−−−−−−→
vt−1,t
i vt,bi ,−−−−−−→

vt−1,b
i vt,bi ,

−−−−−−→
vt,bi vt+1,t

i , and
−−−−−−→
vt,bi vt+1,b

i . Similarly, we only draw
new links of v1 in the figure for the clarity.

In all models above, a sensor node needs to be awake and
cost energy to buffer packets. However, in some cases, sleeping
sensor can still buffer packets without costing any energy (or
at least ignorable). Therefore, we also give a model where
buffering packets does not have any cost. See Fig. 9(c) for
illustrations. In this model, whenever a node receives a packet,
it can buffer it freely for all the remaining time periods. This
is implemented by adding a set of new virtual links. Fig. 9(c)
shows those links for node v1.

For all three variations, our proposed algorithms can still be
used to build the sparse space-time structures to maintain the
connectivity over time.

VII. RELATED WORK

Modeling Time-Evolving Networks: How to model time-
evolving networks has been studied in both mobile ad hoc
networks (MANETs) [16], [17], [25] and DTNs [26], [27].
Xuan et al. [17] first study routing problem in a fixed schedule
dynamic network and use an evolving graph (an indexed
sequence of static subgraphs of a given graph) to capture
the evolving characteristic of such a dynamic network. [25],
[27] also use evolving graphs to evaluate various ad hoc
and DTN routing protocols. Shashidhar et al. [16] study the
routing problem in dynamic networks modeled by space-time
graphs. Liu and Wu [26] model a cyclic mobispace as a
probabilistic space-time graph in which an edge between two
nodes contains a set of probabilistic contacts. However, all of
these previous work only focus on the routing issue in dynamic
networks.

v1

2

v3

v4

5

v

v

2,r

2,r

2,r

2,r

2,r
v1

2

v3

v4

5

v

v

3,t

3,t

3,t

3,t

3,t v1

2

v3

v4

5

v

v

3,r

3,r

3,r

3,r

3,rv1

2

v3

v4

5

v

v

2,t

2,t

2,t

2,t

2,tv1

2

v3

v4

5

v

v

1,t

1,t

1,t

1,t

1,t v1

2

v3

v4

5

v

v

1,r

1,r

1,r

1,r

1,r v1

2

v3

v4

5

v

v

4,r

4,r

4,r

4,r

4,rv1

2

v3

v4

5

v

v

4,t

4,t

4,t

4,t

4,t v1

2

v3

v4

5

v

v

5

5

5

5

5v1

2

v3

v4

5

v

v

0

0

0

0

0

t=1 t=2 t=3 t=4

(a) buffering cost is min(ct(v
t
i), cr(v

t
i))

v1

2

v3

v4

5

v

v

2,r

2,r

2,r

2,r

2,r
v1

2

v3

v4

5

v

v

3,t

3,t

3,t

3,t

3,t v1

2

v3

v4

5

v

v

3,r

3,r

3,r

3,r

3,rv1

2

v3

v4

5

v

v

2,t

2,t

2,t

2,t

2,t v1

2

v3

v4

5

v

v

4,r

4,r

4,r

4,r

4,rv1

2

v3

v4

5

v

v

4,t

4,t

4,t

4,t

4,t v1

2

v3

v4

5

v

v

5

5

5

5

5v1

2

v3

v4

5

v

v

0

0

0

0

0 v1

2

v3

v4

5

v

v

1,r

1,r

1,r

1,r

1,rv1

2

v3

v4

5

v

v

1,t

1,t

1,t

1,t

1,t
v1

2

v3

v4

5

v

v

1,b

1,b

1,b

1,b

1,b v1

2

v3

v4

5

v

v

4,b

4,b

4,b

4,b

4,b

t=1 t=2 t=3 t=4

1

2

v3

v4

5

v

v

2,b

2,b

2,b

2,b

v1

2

v3

v

5

v

v

3,b

3,b

3,b

3,b

3,b

4

v2,b

(b) buffering cost is a separated cost

v1

2

v3

v4

5

v

v

2,r

2,r

2,r

2,r

2,r
v1

2

v3

v4

5

v

v

3,t

3,t

3,t

3,t

3,t v1

2

v3

v4

5

v

v

3,r

3,r

3,r

3,r

3,rv1

2

v3

v4

5

v

v

2,t

2,t

2,t

2,t

2,tv1

2

v3

v4

5

v

v

1,t

1,t

1,t

1,t

1,t v1

2

v3

v4

5

v

v

1,r

1,r

1,r

1,r

1,r v1

2

v3

v4

5

v

v

4,r

4,r

4,r

4,r

4,rv1

2

v3

v4

5

v

v

4,t

4,t

4,t

4,t

4,t v1

2

v3

v4

5

v

v

5

5

5

5

5v1

2

v3

v4

5

v

v

0

0

0

0

0

t=1 t=2 t=3 t=4

(c) no buffering cost
Fig. 9. Other space-time graph models for the time-evolving and energy-
harvesting WSNs: the corresponding new space-time graphs G of the network
in Fig. 2(b) under different models.

Topology Control in Wireless Sensor Networks: Topology
control has drawn a significant amount of research interests
in MANETs and WSNs [12]. Primary topology control al-
gorithms aim to maintain network connectivity and conserve
energy. Most of them can be classified into two categories:
geometrical structure-based [21], [22] and clustering-based
[23], [24]. These topology control protocols deal with topology
changes by re-performing the construction algorithm. How-
ever, they all assume that the underlying communication graph
is fully connected at any moment and they do not consider the
time domain knowledge of network evolution.

Topology Design for Time-Evolving Networks: Topology
design over time-evolving networks has been studied in our
recent work [13]–[15], where a link-weighted space-time
graph is used to model the time-evolving DTN. Multiple
heuristics have been proposed to build sparse topologies
over time which can maintain the network connectivity with
possible additional properties (such as satisfying spanner or
reliability requirements). In this paper, we focus on topology
design for a node-weighted space-time graph, which is a much
harder optimization problem than the one with link-weighted.
Removing a single node in the space-time graph may cause
multiple links to be removed. Previous solutions for link-
weighted problem cannot be directly used in this new problem.



Sleep Scheduling in Wireless Sensor Networks: Various
sleep/wakeup scheduling schemes [28]–[30] have been pro-
posed to save energy by employing scheduled duty cycles in
WSNs. E.g., Lu et al. [28] propose several techniques for
minimizing communication latency while providing energy-
efficient periodic sleep cycles for nodes in WSNs. Ke-
shavarzian et al. [29] introduce a multi-parent forwarding
technique and propose a heuristic algorithm for assigning
parents to the nodes in the network. Recently, there are also
several studies on sleep scheduling for low-duty-cycle wireless
sensor networks [31]–[33]. Most of these studies aim to design
new data forwarding methods to optimize data delivery, end-
to-end delay, or energy consumptions. Usually, they assume
static networks with constant and uniform energy resources.
In this paper, we focus on the overall topology design over
time-evolving and energy-harvesting networks where network
topology could change over time and energy resources are
dynamic and nonuniform.

VIII. CONCLUSION

Harvesting energy from the ambient environment is a
promising approach to solve the energy problem in WSNs.
However, the energy availability and cost in energy-harvesting
WSNs vary across time and space, thus may cause the
network topology to evolve over time. In this paper, we
study the new topology design problem in time-evolving and
energy-harvesting WSNs, modeled by node-weighted space-
time graphs. We first prove that this problem is NP-hard, and
then propose several algorithms to reduce the cost of topology
while maintaining the connectivity over time. Simulation re-
sults from random networks demonstrate the efficiency of our
methods. We believe that this paper presents the first step in
exploiting topology design problem for TEWSNs.

The topology design problem studied here has certain lim-
itations. (1) In our ETDP problem, only connectivity between
nodes in first time slot and the last time slot is considered. If a
packet arrives in the middle of T , it may not be able to reach
the destination at the end of T via the constructed topology.
However, in most TEWSNs (such as the ones shown in Fig. 1
and those in [4]–[6], [26], [34]), the energy patterns and
topology evolution are periodic. Thus, the delivery of packets
is guaranteed in such cases. (2) Our model assumes that all
communication links are reliable. However, this may not be
true due to lossy nature of wireless channels. One possible way
to relax this assumption is introducing a probability for each
link to reflect its “reliability”. Then a new topology design
problem can be defined by adding reliable constraint over
the topology, which is more complex and challenging. We
have obtained some preliminary results [15] in non-energy-
harvesting networks and leave the complete study of such a
problem as our future work. (3) We may also consider the
effect of interferences among multiple transmissions within
the same time slot, which is ignored in this study. (4) We will
perform experiments over real testbeds of TEWSNs and eval-
uate the effects of topology design over their performances.

REFERENCES

[1] K. Lin, J. Hsu, S. Zahedi, et al., “Heliomote: Enabling long-lived sensor
networks through solar energy harvesting,” in ACM Sensys, 2005.

[2] C. Park and P. Chou, “Ambimax: Autonomous energy harvesting plat-
form for multi-supply wireless sensor nodes,” in IEEE SECON, 2006.

[3] G. Chen, M. Fojtik, et al., “A millimeter-scale nearly-perpetual sensor
system with stacked battery and solar cells,” in IEEE ISSCC, 2010.

[4] A. Kansal, et al., “Power management in energy harvesting sensor
networks,” ACM Trans. Embed. Comput. Syst., vol. 6, no. 4, 2007.

[5] C. Vigorito, D. Ganesan, et al., “Adaptive control of duty-cycling in
energy-harvesting wireless sensor networks,” in IEEE SECON, 2007.

[6] A. Kansal, et al., “Harvesting aware power management for sensor
networks,” in ACM/IEEE Design Automation Conference, 2006.

[7] The Measurement and Instrumentation Data Center (MIDC),
http://www.nrel.gov/midc/ornl rsr/.

[8] J. Piorno, C. Bergonzini, D. Atienza, et al., “Prediction and management
in energy harvested wireless sensor nodes,” in Wireless VITAE, 2009.

[9] C. Bergonzini, et al., “Algorithms for harvested energy prediction in
batteryless wireless sensor networks,” in IEEE IWASI, 2009.

[10] J. Lu, et al., “Accurate modeling and prediction of energy availability in
energy harvesting real-time embedded systems,” in IEEE IGCC, 2010.

[11] A. Cammarano, et al., “Pro-energy: A novel energy prediction model
for solar and wind energy harvesting WSNs,” in IEEE MASS, 2012

[12] Y. Wang, “Topology control for wireless sensor networks,” Book chapter
in “Wireless Sensor Networks and Applications”, edited by Y. Li, M.
Thai and W. Wu, Springer, 2007.

[13] M. Huang, S. Chen, Y. Zhu, B. Xu, et al., “Topology control for time-
evolving and predictable delay-tolerant networks,” in IEEE MASS, 2011.

[14] M. Huang, S. Chen, et al., “Cost-efficient topology design problem in
time-evolving delay-tolerant networks,” in IEEE Globecom, 2010.

[15] M. Huang, S. Chen, F. Li, et al., “Topology design in time-evolving
delay-tolerant networks with unreliable links,” in IEEE Globecom, 2012.

[16] S. Merugu, M. Ammar, et al., “Routing in space and time in networks
with predictable mobility,” GaTech, Tech. Rep. GIT-CC-04-07, 2004.

[17] B. Xuan, A. Ferreira, and A. Jarry, “Computing shortest, fastest, and
foremost journeys in dynamic networks,” J. of Foundations of Computer
Science, vol. 14, no. 2, pp. 267–285, 2003.

[18] P. Klein and R. Ravi, “A nearly best-possible approximation algorithm
for node-weighted Steiner trees,” J. Algorithms, 19(1): 104–115, 1995.

[19] M. Charikar and C. Chekuri, “Approximation algorithms for directed
Steiner problems,” J. Algorithms, vol. 33, no. 1, pp. 73–91, 1999.

[20] C. Chekuri, et al., “Set connectivity problems in undirected graphs and
the directed steiner network problem,” in ACM-SIAM SODA, 2008

[21] N. Li, J. C. Hou, and L. Sha, “Design and analysis of a MST-based
topology control algorithm,” in IEEE INFOCOM, 2003.

[22] Y. Wang and X.-Y. Li, “Localized construction of bounded degree and
planar spanner for wireless ad hoc networks,” Mobile Networks and
Appli, vol. 11, no. 2, pp. 161–175, 2006.

[23] A. D. Amis, R. Prakash, D. Huynh, and T. Vuong, “Max-min d-cluster
formation in wireless ad hoc networks,” in IEEE INFOCOM, 2000

[24] Y. Wang, W. Wang, and X.-Y. Li, “Efficient distributed low-cost back-
bone formation for wireless networks,” in ACM MobiHoc, 2005.

[25] J. Monteiro, et al., “Performance evaluation of dynamic networks using
an evolving graph combinatorial model,” in IEEE WiMob, 2006.

[26] C. Liu, J. Wu, “Routing in a cyclic mobispace,” in ACM MobiHoc, 2008.
[27] L. Arantes, A. Goldman, and M. dos Santos, “Using evolving graphs to

evaluate DTN routing protocols,” in ExtremeCom Workshop, 2009.
[28] G. Lu, N. Sadagopan, B. Krishnamachari, et al., “Delay efficient sleep

scheduling in wireless sensor networks,” in IEEE INFOCOM, 2005.
[29] A. Keshavarzian, H. Lee, and L. Venkatraman, “Wakeup scheduling in

wireless sensor networks,” in ACM MobiHoc, 2006.
[30] Y. Zhou and M. Medidi, “Sleep-based topology control for wakeup

scheduling in wireless sensor networks,” in IEEE SECON, 2007.
[31] Y. Gu and T. He, “Dynamic switching-based data forwarding for low-

duty-cycle wireless sensor networks,” IEEE Transactions on Mobile
Computing, vol. 10, no. 12, pp. 1741–1754, 2011.

[32] Z. Li, Y. Peng, et al., “LBA: Lifetime balanced data aggregation in low
duty cycle sensor networks,” in IEEE INFOCOM, 2012.

[33] Y. Cao, S. Guo, and T. He, “Robust multi-pipeline scheduling in low-
duty-cycle wireless sensor networks,” in IEEE INFOCOM, 2012.

[34] T. Al-Khdour and U. Baroudi, “An energy-efficient distributed schedule-
based communication protocol for periodic wireless sensor networks,”
Arab. Jour. for Sci. and Eng., vol. 35, no. 2B, pp. 155-168, 2010.


