
SignSpeaker: A Real-time, High-Precision
SmartWatch-based Sign Language Translator

Jiahui Hou
Univ. of Sci. and Tech. of China
Illinois Institute of Technology

jhou11@hawk.iit.edu

Xiang-Yang Li
University of Science and

Technology of China
xiangyangli@ustc.edu.cn

Peide Zhu, Zefan Wang
University of Science and

Technology of China
zpeide,wzefan@mail.ustc.edu

Yu Wang
U. of North Carolina at Charlotte

Yu.Wang@uncc.edu

Jianwei Qian
Illinois Institute of Technology

jqian15@hawk.iit.edu

Panlong Yang
Univ. of Sci. and Tech. of China

plyang@ustc.edu.cn

ABSTRACT
Sign language is a natural and fully-formed communication
method for deaf or hearing-impaired people. Unfortunately,
most of the state-of-the-art sign recognition technologies are
limited by either high energy consumption or expensive de-
vice costs and have a difficult time providing a real-time ser-
vice in a daily-life environment. Inspired by previous works
on motion detection with wearable devices, we propose Sign-
Speaker - a real-time, robust, and user-friendly American sign
language recognition (ASLR) system with affordable and
portable commodity mobile devices. SignSpeaker is deployed
on a smartwatch along with a smartphone; the smartwatch col-
lects the sign signals and the smartphone outputs translation
through an inbuilt loudspeaker. We implement a prototype
system and run a series of experiments that demonstrate the
promising performance of our system. For example, the av-
erage translation time is approximately 1.1 seconds for a
sentence with eleven words. The average detection ratio and
reliability of sign recognition are 99.2% and 99.5%, respec-
tively. The average word error rate of continuous sentence
recognition is 1.04% on average.

CCS CONCEPTS
• Human-centered computing Ubiquitous and mobile

computing; � Computing methodologies Neural

networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3300117

KEYWORDS
Mobile computing; Applications of machine learning

ACM Reference Format:
Jiahui Hou, Xiang-Yang Li, Peide Zhu, Zefan Wang, Yu Wang,
Jianwei Qian, and Panlong Yang. 2019. SignSpeaker: A Real-time,
High-Precision SmartWatch-based Sign Language Translator. In
The 25th Annual International Conference on Mobile Computing
and Networking (MobiCom ’19), October 21–25, 2019, Los Cabos,
Mexico. ACM, New York, NY, USA, 15 pages. https://doi.org/10.
1145/3300061.3300117

1 INTRODUCTION
Sign language, a form of communication, is composed of a
series of gestures and mainly used by the hearing-impaired
or speech-impaired [30]. As the Hearing Loss Association of
America [13] shows, in 2017, approximately 48 million adults
in America experience some degree of hearing loss. There
exists a barrier between the hearing-impaired and people
with normal hearing. Thus, American sign language recogni-
tion (ASLR) is essential and significant to help the hearing-
impaired to be understood by people with normal hearing.
Currently, there is a gap between existing sign language trans-
lators and a practical and mature sign recognition system in
terms of portability, affordability, and efficiency. Based on
the involved devices, existing works can be mainly catego-
rized into two groups: the vision-based and the signal/motion-
sensor-based. The former group recognizes sign language
by processing the images or video recordings of the sign-
ers [5, 26, 41, 49]. E.g., in [5, 49], the signer is required to
perform in front of a depth-camera like Kinect or Leap Mo-
tion. In motion-sensor-based methods [16, 18, 22, 27, 43],
multiple sensors are installed on fingers, palms, and wrists to
track the signer’s motions. In [27, 43], CyberGloves with 18
sensors and other 3-D motion tracking devices are combined
to capture the hand motions. Recently, smartwatch [6, 46, 52]
and WiFi [24] has also been used for sign language recogni-
tion.

https://doi.org/10.1145/3300061.3300117
https://doi.org/10.1145/3300061.3300117
https://doi.org/10.1145/3300061.3300117

Existing methods have several major limitations. Firstly,
their systems are designed in a well-controlled environment.
E.g., in vision-based methods, the lighting, background, and
distance between the signer and the camera all need to be care-
fully designed. Secondly, multiple expensive, sophisticated,
and dedicated devices, such as GyberGloves, are involved,
which may result in poor portability and unpredictable safety
hazards. Thirdly, they have high computational costs. Some
are implemented with dynamic time warping (DTW) [6] or
video processing, which is time-consuming. Lastly, most pre-
vious works (such as [24]) focus on recognizing individual
signs, which are much easier than continuously recognizing a
whole sentence. There is an inevitable transitive movement
connecting every two consecutive signs when a signer is per-
forming continuously, which, however, is not considered in
individual sign recognition.

In this paper, we devise a novel ASLR system using portable
and lightweight devices – a smartwatch and mobile phone,
which can be used anytime and anywhere. Traditional meth-
ods like hidden Markov model (HMM) could not achieve
high precision, because HMM is heavily based on the Markov
property that the probabilistic behavior of the process in the
future depends only upon its present value. Conversely, we
leverage deep learning models to implement an ASLR system,
in which the sequence of events that preceded or followed
are taken into account when given the present. Specifically,
we extract features from sequential motions (like the move-
ment of users’ hands or wrists) based on a smartwatch with
inbuilt motion sensors. The system then recognizes sequential
sign language data as text and translates it into voice via a
text-to-speech (TTS) software. The basic idea is to train an
end-to-end sentence-level model based on the sensing data
collected from accelerometer-embedded smartwatches. In this
work, we use a long short-term memory (LSTM) model [14]
trained with connectionist temporal classification (CTC)[10].

To build a high-precision ASLR system, several challenges
need to be addressed. (1) Fingerspelling as a way to spell out
words, which involves fine-grained finger tracking, is micro
and hard to recognize if merely based on the coarse, noisy
sensing data (collected from a smartwatch embedded with
an accelerometer sensor and a gyroscope sensor). (2) Signs
are diverse and complicated, and it is tough to recognize
continuous sign language because there is likely a wide range
of unpredictable movements between two signs, of which
the movement production depends on its prior and following
signs. E.g., the sign for “FATHER” is performed by repeatedly
tapping the forehead, and the sign for “NAME” is performed
in neutral space. An extra movement, from the forehead to
the neutral space will be introduced, if we perform two signs
in succession. (3) An individual can perform a wide spectrum
of signs, our system is supposed to support the diversities of
individuals and devices.

Our contributions are summarized as follows. To the best
of our knowledge, our system is the first smartwatch-based
end-to-end sentence-level sign language recognition system,
which hopefully provides a non-invasive, portable, and af-
fordable service for signers to express himself/herself to the
public. We extract fine-grained features and learn the model
of a smartwatch-based ASLR system. Our system achieves a
promising performance with a word error rate 1.04% on aver-
age. Besides, SignSpeaker is robust in different environments
and can be easily applied to new users.

The rest of this paper is organized as follows: Section 2 in-
troduces the background of sign language. Section 3 presents
an overview of our system. The high-level representation is
provided in Section 4, followed by the detailed system de-
signs in Sections 5 and 6. Implementation and evaluation are
presented in Sections 7 and 8, respectively. Section 9 reviews
the related works, while Section 10 concludes our work.

2 SIGN LANGUAGE
Our system focuses on American Sign Language (ASL) [39].

Isolated Signs. Manual signs are composed of 1, 900-word
signs, 26 alphabet signs, and 9 digit signs [38]. The alphabet
signs are used for spelling out undefined words [4], e.g., name.
Notably, there are 171, 476 words recorded in the 2nd edition
of the Oxford English Dictionary. Thus, understanding and
interpreting finger signs are inevitable when implementing a
sign language recognition system.

Right-handed signers use the right hand as the dominant
hand, while the left-handed signers use the left one. The non-
dominant hand is used mainly for two-handed signs. Some
of the two-handed signs have identical handshapes on both
hands, but the more common case is that two hands have
different handshapes [38]. The good news is that most two-
handed signs have different handshapes or movements in
the dominant hand, which provides an opportunity in build-
ing a sign language recognition system based on a single
smartwatch worn on the dominant hand. Besides, in order to
correctly produce signs, non-manual markers which consist of
various facial expressions are required in ASL system [23, 39].
In our system, we leave the smartwatch-based non-manual
markers identification be an open question.

Sentence-Level Sign Language. Grosjean et al. [12] an-
alyzed pauses for continuous sign language: there is a long
hold to indicate the end of sentences, a shorter pause as a
break between sentences, and the shortest pause to demarcate
the word boundaries. At the time of continuously performing
a sign, there is one special phenomenon called movement
epenthesis, which refers to the distortion and mixture during
the transition between two consecutive signs [41]. Specifi-
cally, the preceding and following signs have an impact on
the pronunciation of one sign. In this way, many extra and a
big unpredictable range of movements are produced between

Pre-processing

Sensing Data

M
o

d
el Se

lectio
n

Spectrogram

Model Training (Offline)

...

Semantic
Represent

Inferring (Online)

Inferring Process
Training Process

Raw DB

Fingerspelling
Recognition

Sentences
Recognition

Output Voice

T
e

xt to
 Sp

e
ech

Sign Language
Translation

Query Result Fe
atu

re
 Extractio

n
s

Figure 1: Workflow of our system.

signs. For example, an extra movement from the forehead to
the neural is inserted when performing “FATHER" followed
by “NAME", while an extra movement from the forehead
to the cheek near the ear will be introduced if performing
“FATHER" and “DEAF" in succession. These diverse and
unpredictable inserted movements increase challenges in con-
tinuous sign language recognition.

3 SYSTEM OVERVIEW
Our system should be designed carefully to ensure efficiency
and functionality (which can successfully handle fingerspelling
and sentence-level recognition). Fig. 1 depicts the architec-
ture of our system. Users can be data providers who collect
raw data using their smartwatches and store the raw data in
our database. Besides, users can use our system to express
themselves to people who do not understand sign languages.
There are two main components of our system: one compo-
nent is model training, the other is inferring process, both are
implemented on commodity hardwares.

Model Training. We propose to extract elementary fea-
tures to represent raw data, which is illustrated in Section 4.
Then, an end-to-end model is applied to recognize continuous
sign language. With the enormous power of deep learning, we
extract isolated signs after training. Besides, leveraging the
context dependence, a complementary component, CTC, then
helps to recognize continuous sentence-level sign language
correctly. Fig. 4 describes the sentence recognition model.

Inferring. In this phase, sensing data is continuously col-
lected from a worn smartwatch on users’ dominant hand,
which is the input of our system. There are two independent
models in our system: one is used to identify the fingerspelling
(manual signs can also be supported), the other is used to rec-
ognize sentence-level sign language. In this way, we segment
the input sequences with a pause detection and select the
corresponding model based on the length of the segmented
data sequence. The details are discussed in Section 6.2. After
phasing the collected data, we use the corresponding model to

interpret. Sign language is then translated into text, followed
by a voice translation via a fully-fledged TTS technique.

4 SIGN LANGUAGE REPRESENTATION
In this section, we will explore the relationship between sign
gestures and data of motion sensors in a smartwatch, and
learn the semantic representation of sign gestures.

4.1 Sign Language and Activity Recognition
Recently, accelerometer and gyroscope have attracted re-
searchers’ attention in human activity recognition [19, 37, 48].
Equipped with those sensors, smart wearable devices provide
an opportunity to build a sign language recognition system.
Specifically, the production of sign language can be roughly
modeled as a sequence of hands, and arms motions, and of
which the differences are embedded in the magnitude vec-
tors of involved sensors. We can implement an easy-to-use
ASLR system by analyzing sensing data collected from a
smartwatch.

4.2 Semantic Representation of ASL
Intuitively, we can implement an ASLR system by recogniz-
ing and matching similar patterns of sign language with the
template (e.g., using DTW). However, it is onerous and time-
consuming to generate a standard template for each specific
sign because of the wide spectrum of signs pronounced by
different signers. We instead use a statistical model-based
method to represent and identify sign language, in which
the meaningful information of each specific sign is learned
from the sensing data. Since the raw sensing data obtained
from multiple sensors (i.e., channels) may contain various
noises, we need to learn meaningful features from these data.
In this work, we leverage the power of deep neural network
(e.g., recurrent neural network, RNN) to capture high-level
motion features and semantically represent sensing data in
low-dimension.

Feature Extraction. Given a length T signal sequence of
sensors, we have a three-dimensional matrix, i.e., T × Sd ×
Ad . T represents the total sample number, which varies with
signs. Sd is the number of involved sensors. Ad stands for
the number of axes of each sensor. We then require to extract
features from a sequence of sensing data, and the features are
represented as a T × Sd ×Ad data matrix.

One intuition to extract features is to reconstruct an accu-
rate 3-D trajectory, like previous Kinect-based methods [49].
However, data collected from those micro-electromechanical
system (MEMS) sensors are far from insufficient to recon-
struct the 3-D trajectory due to inherent mechanical noises.
Moreover, roughly reconstructing the 3-D trajectory conflicts
with the real-time translation requirement.

Generally, there are time-domain features and frequency-
domain features [3]. Time-domain features include mean,

standard deviation, etc. Since each sign is composed of dif-
ferent gestures and hand motions, each of them has unique
frequency features. We then extract frequency spectrum and
time-domain features from this time-series data. The noises
from gyroscope and accelerator features are roughly removed
by using Kalman filter [45] and moving average filters [33].
Then, we use the power band produced by fast Fourier trans-
form (FFT) to represent the frequency spectrum. Besides
the first FFT coefficient, which directly represents the time-
domain component (i.e., the mean), we also capture other
time-domain features. For time series input collected from
multiple sensors, we make use of FFT coefficients and gener-
ate a spectrogram which represents signal strength of signals
at various frequencies over time. That is, we choose features
in both frequency and time domains and use spectrogram as
inputs.

Specifically, FFT produces features of time-series signal
in the frequency domain. After converting to the frequency
domain, a signal sequence with length T is represented as
f (D). We then have a three-dimension matrix i.e., T × Sd ×
Fd , in which T stands for the sample size, Sd is the number
of involved sensors, and Fd is the frequency feature sizes,
respectively. The size of Fd is associated with the cut-off
frequency band of FFT. We concatenate all channels and
generate spectrograms to represent our data in high dimension,
which is regarded as a F̃d ×T matrix, where F̃d = Fd × Sd .

High-level Representation. Next, we learn meaningful
features from spectrograms so that our system is extended to
recognize sign language with various noises/errors coming
into the signal. Moreover, sensing data collected from dif-
ferent users may exhibit great diversities, unexpected errors
can be ignored if we implement a statistical model and learn
semantic features. To handle time series data, RNN models,
which take temporal correlation into account, are a better
choice to learn features when compared to other types of ma-
chine learning methods (e.g., convolutional neural network
models, SVM). We use LSTM [14], one of special type RNN
models, in our design. LSTM networks have an effective abil-
ity to semantically represent sequential data by removing or
adding information during learning such that the sequence
of events that preceded and followed are taken into account
when given the present. In brief, the relationships and corre-
lations implied in the training samples and their labels are
learned by the LSTM networks, which are represented by a
set of weightsW . For a multilayer LSTM network (l denote
its l-th layer), the higher level studies a high-level representa-
tion of the information hidden in the LSTM below, and the
useful information on the characteristics are then represented
by the higher LSTM layer.

Given a T length input sequence X̃ = {x̃t }, we generate
spectrograms as inputs using the above mentioned way. After

that, we apply LSTM networks to learn the high-level but
low-dimensional representation. Specifically, in a language
model, given an input vector xt of the t-th sign, we can obtain
a high-level semantic representation hlt if l is high. Let H l

correspond to the output vector (the union of hlt) of the l-th
layer in multilayer LSTM networks; we then have a semantic
representation (i.e., descriptor) of the entire sign, of which
the size is N × T . N stands for the number of recurrently
connected memory blocks (i.e., neuron sizes) in the LSTM
layer, and T is the number of time steps. The descriptors are
defined as

∑T
j=1 h

l
i , j for the LSTM network with l layer, where

i = 1, · · ·N , j = 1, · · ·T . We accumulate the information over
time for each channel in H l , and there are N channels in total.

Sensing data are processed in two ways, 1) noises from
gyroscope and accelerator features are roughly removed by us-
ing Kalman filter and moving average filters, 2) after that, we
leverage the power of LSTM networks to learn the semantic
representation of given series data. We implement descriptors
(implemented with LSTM networks) to extract common fea-
tures of the same sign gesture performed by different users
under different sign language habits and wearing habits. Some
unique habits performed by different users will be regarded
as errors and ignored in our learning phase. For example, we
generate a three-layer semantic representation for the sensing
data in our model. To evaluate the ability of our descriptors
on capturing information, we mathematically show the dis-
criminations of descriptors of sign “MOM” for different users
(Fig. 2). The descriptors can be shown in Fig. 2b. The results
show the power of LSTM networks in representing signs, in
which the same signs (which should have similar patterns)
performed by different individuals have similar descriptors.

5 ISOLATED SIGNS LEARNING
Our system should support isolated sign language recognition.
For example, fingerspelling, the process of forming words
with alphabet signs, is required to express non-defined signs
since there are over 170,000 words not yet unaccounted for.

As mentioned in Section 4, when facing the rich diver-
sity of signs and the wide spectrum of human behaviors, we
leverage LSTM to represent signals of sign language in a
high level such that the spatiotemporal characteristics are ex-
tracted. However, using one single LSTM layer is insufficient
to achieve a promising ASLR system since the low-level char-
acteristics of sign language are undistinguished. To improve
performance and track fine-grained finger movement, we pro-
pose a hybrid model, in which information is integrated, and
more characteristics of sign language are learned.

The basic building blocks include one input layer I, hidden
layers H and one output layer Y, as shown in Fig. 4. Each
of these layers plays a different role in our model, where the
hidden layer plays the role of high-level but low-dimensional
representation as illustrated in Section 4. The input layer

0 1 2 3 4 5
Time(s)

2.5

0.0

2.5

5.0

7.5

10.0

12.5

m
/s

2

Axis-X
Axis-Y
Axis-Z

(a) Raw data - user 1. (b) Descriptors - user 1.

0 1 2 3 4 5
Time(s)

8

6

4

2

0

2

4

m
/s

2

Axis-X
Axis-Y
Axis-Z

(c) Raw data - user 2. (d) Descriptors - user 2.

Figure 2: From raw data to high-level representation.
Both users perform “MOM”. Two descriptors at the be-
ginning, middle, ending part are marked with red circles.

0 20 40 60 80 100 120
Alphabet A

0

5

10

15

20

D
es

cr
ip

to
r

(a) Descriptor of al-
phabet ‘A’.

0 20 40 60 80 100 120
Alphabet B

0

2

4

6

8

10

D
es

cr
ip

to
r

(b) Descriptor of al-
phabet ‘B’.

0 20 40 60 80 100 120
Alphabet C

0

5

10

15

20

25

30

D
es

cr
ip

to
r

(c) Descriptor of al-
phabet ‘C’.

Figure 3: Each alphabet has a unique pattern.

takes spectrograms as inputs, whose size is F̃d ×T . Informa-
tion from different sensors is concatenated and mapped to a
single corresponding channel in the hidden layers. Therefore,
information of handshapes as well as movements of hands
and fingers, are fed into hidden layers such that we can learn
the semantic characteristics. Each LSTM layer has the form
of a chain of several LSTM memory cells (i.e., neurons), and
each neuron has similar structures which are called gates.
These gates play different roles but unitedly pick relevant
information and learn the context of signal sequence when
given the present. For example, when we perform “FATHER”,
the preceded information of raising hands can be utilized in
detecting the motion of tapping the forehead. Each gate has an
individual weight matrix to determine what information it will
pick. In the training phase, the hidden relation between sign
gestures and sensing data is learned and represented in the
weight matrices for different gates. We design a three-layer
LSTM in our system. Fig. 3 indicates that alphabet signs are
composed of different gestures and motions, and the unique

gestures and motions of one alphabet sign can be detectable
using motion sensors in a smartwatch. Besides, Fig. 2 shows
signs produced by different users have a similar descriptor,
which demonstrates our system can be extended to different
users. There are one fully connected layer and one softmax
layer in the output layer, and multilayer LSTMs are connected
to a fully connected layer. The fully connected layer is pro-
posed to learn a classification function in a meaningful, low
dimensional feature space, in which we sum up all informa-
tion in the time series data. Given a sequential input I , the
result, normalized by a softmax layer, is then interpreted as
the probability of classifying a sequence as a specific word:

P (Ci | I) =
eyi∑K
j=1 e

yj
, i = 1, · · · ,K, (1)

where K denotes as the number of ASL words in our dictio-
nary, and yi is one of the output vectors of the fully connected
layer. If the input is a sequence of alphabet signs, we intro-
duce an extra variable t in Eq.1 and have P (Ci , t | I). In this
case, the input sequence will be classified into specific words
or blank at time t .

6 CONTINUOUS SENTENCE-LEVEL
LEARNING & MODEL SELECTION

Leveraging the proposed hybrid model, motion data of a sign
can be recognized after extracting its high-level representation.
However, this hybrid model is still insufficient for recognizing
continuous sign language. Note that, there are some extra and
inevitable movements between two consecutive signs when
the signer performs sentence-level sign language. E.g., one
extra movement (moving from the forehead to the neutral)
is introduced when performing a follow-up sign, “NAME”,
after “FATHER”. It is intractable to separate individual signs
for further recognition since different motion data of signs
and the extra movement are smoothly concatenated together.
Considering these issues, we improve our system by introduc-
ing a semantic analysis strategy, which helps to automatically
segment sentences and correctly understand continuous sign
language when combined with the hybrid model.

6.1 Sentence-Level Sign Language Learning
Segmentation of Words. HMM-based methods, which re-
quire segmenting manually and labeling sequential inputs,
are complicated and not economically feasible in segment-
ing long sequential data streams. Moreover, they conflict
with the real-time translation requirement and require vari-
ous additional resources such as dictionaries, decision trees,
and multiple training stages (e.g., context-dependent states).
Therefore, we instead use the connectionist temporal classifi-
cation (CTC) [10] in this work. The key technique to separate
words is that we use the technique of CTC. By doing this, we

can utilize semantic information and the context to separate
signs with high accuracy.

Given a T -length input sequence x , K − 1 transcription
labels (each label stands for one specific sign) plus one label
for ‘blank’ (used for labeling non-sign inputs), the normal-
ized output vectors yt is then interpreted as a probability at
time t , i.e., P (Ci , t | I). For a lengthT sign language sequence
with transcription labels, CTC then learns to segment it into
units at successive time-steps, which generates a length T
alignment composed of a sequence of ‘blank’ and the given
transcription labels. Note that, there are different alignments
when concatenating all labels (includes a ‘blank’ token) for
data units. Let � denote the ‘blank’ token. For example, for
an input sequence whose label is (a,b, c), we may have dif-
ferent alignments (a,�,b,�, c), (�,a,�,b, c), and (a,b,�, c).
Besides, same labels appear repeatedly in an alignment e.g.,
(a,�,a,b,�, c, c) also correspond to (a,b, c). In this way, an
automatic segmentation will check whether any two align-
ments are the same after merging repetition of labels and
eliminating ‘blank’.

Let Pr (l | x) =
∏T

i=1 Pr (lt , t | x), where lt is a label belongs
to either the given transcription labels or the label ‘blank’, e.g.,
lt ∈ {a,b, c,�} in our example. The probability of an output
y∗ should be Pr (y∗ | x) =

∑
l ∈L(y∗) Pr (l | x), where L(y∗) repre-

sents all possible alignments for an output transcription y∗.
CTC then minimizes the negative log-probability of the target
transcription label sequence y∗:

CTC(x) = − log Pr(y∗ | x). (2)

The segmentation problem is solved implicitly with the CTC
function since it allows unsegmented data as inputs and runs
over all possible alignments. Thus, a model trained with CTC
can automatically learn the segmentation by running all possi-
ble cases. Moreover, we solve the problem of variable-length
label sequences at the same time.

In the inferring phase, we need to find the most potential
output for a given sign language sequence, This can be done
if we pick the most probable output at each time stamp, i.e.,
argmaxl Pr (l | x), and then merge repetition of labels and
eliminate ‘blank’. The ‘blank’ state is used to separate the
labels when generating alignments in words segment. In other
words, unexpected and undefined gestures or motions such
as transition information can be labeled as blank. Besides,
the ‘blank’ gesture is used to indicate the termination of a
sentence in our system.

Sentence-Level Learning. As aforementioned, the sens-
ing data is not easy to understand. To handle time series data,
we use LSTM to learn meaningful features. The temporal de-
pendencies of sign language provide an opportunity to employ
LSTM to learn the characteristics of each sign gesture. We
improve our hybrid model to recognize sentence-level sign
language by adding an extra building block CTC layer. The

Representation

Figure 4: Architecture of our model.

basic building blocks include an input layer I, hidden layers
H and an output layer Y, followed by a CTC layer. Each of
these layers follows different characteristics as mentioned
in Section 5. The bidirectional LSTM (BLSTM) instead of
LSTM is used in hidden layers to improve performance, in
which both the preceding and the following information is
utilized to infer the semantic meaning of the present. For
example, if we want to predict the next sign (i.e.,) in “He
lives in America, and he speaks · · · ”, learning information
from the back (i.e., the context of America) helps us to nar-
row down the next word with high probability. Using only
one smartwatch to extract hand movement information has
clear limitations since it cannot capture hand motions of the
other hand. However, many two-handed signs have great dif-
ferences in the dominant hand. The context learned by our
BLSTM model also contributes to differentiating two-handed
signs in a sentence.

Fig. 4 illustrates the architecture of our hybrid model in
details. Three layers of BLSTMs constitute our hidden lay-
ers, and each BLSTM has the form of one concatenation
layer fuses two directional LSTM layers (i.e., forward and
backward LSTM layer). Information of movements and hand
shape is then fed into BLSTMs, in which high-level charac-
teristics are represented in both forward vector

−→
h l and

←−
h l ,

l varies with the level number (i.e., 1 to 3 in our model). In
the concatenation layer, we fuse both directions into a new
representation of sign language. For each forward/backward
LSTM layer, we have the same weight matrices as mentioned
in Section 5. Learning sign language is converted to learn
these weight matrices in the training process. The CTC loss
function contributes to automatic segmentation and provides
a way to learn without pre-alignment. For example, given
time-series sensing data of a sentence “NICE MEET YOU”,
we can only provide labels ‘[NICE, MEET, YOU]’ instead of
labeling each time-step.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (s)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

(a) Five alphabets.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.011.012.013.0

Time (s)
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

(b) Four sentences.

Figure 5: Left: the segmentation of consecutively per-
forming five alphabet signs, “MARRY”. Right: the seg-
mentation of repeatedly performing “NICE MEET YOU”
and “YOU LIVE WHERE YOU” twice.

Efficiency Consideration To recognize the sign language
sentence, we propose a hybrid model, which includes a bidi-
rectional LSTM in our architecture. We note that the train-
ing process of the model is time-consuming, and the matrix
multiplication is the most expensive operation. In this way,
parallelization provides the potential to speed up the process.
However, as introduced in Section 4, the computation of each
step in LSTM depends on the previous state, which makes
parallelization infeasible. For example, the computation of
the hidden layer ht in the forward LSTM layer requires to
wait until the computation of ht−1 is completed. To remove
the dependencies of state computation, we adopt the simple
recurrent unit (SRU) architecture [21], in which the majority
of the recurrence computation can be parallelized. The basic
idea of SRU is to drop out the connection across time steps in
the forget gate (one component of LSTM cells). After comput-
ing a linear transformation over the inputs, [20] shows that the
forget gates can be computed with inputs independently. The
hidden and internal states are fast to complete since both of
them can be directly traced back to the inputs. The implemen-
tation of bidirectional SRU for BLSTM is similar. We batch
the computation of both directions such that the connections
across time steps in LSTM are dropped. In Section 7, we also
explore the impact of SRU in our model performance.

6.2 Model Selection & Coarse Segmentation
Fig. 1 shows that we respectively generate modules for rec-
ognizing isolated words and continuous sign language. The
model selection thus becomes a problem in the inferring pro-
cess. To solve this problem, we rapidly segment signals by
detecting a pause and a huge jitter triggered by movements
of the hands/fingers or changes of handshapes. Specifically,
given a T -length signals input, we first setup a slide win-
dow with size w , followed by calculating the variance of
its involved difference vectors of magnitude values. That is,

we calculate Var (Dt , · · · ,Dt+w) where Dt =

√
x2t + y

2
t + z

2
t

-
√
x2t−1 + y

2
t−1 + z

2
t−1 and x,y, z are values of three axes col-

lected from a sensor. We segment the signals if the variance
is less than a threshold r . After that, we can select the cor-
responding module based on the length of the segmented
sequence where word-level has a much smaller value. Fig. 5
reports this method has a good performance in segmentation
that the duration length of sentence-level segmented sequence
does have a larger value, e.g., it approximates 2.2s on average
in Fig. 5b compared to 1s in Fig. 5a.

7 SYSTEM IMPLEMENTATION
We design and implement a real-time sign language transla-
tion prototype SignSpeaker. Our system includes an applica-
tion running on the smartwatch, and a translation service on a
smartphone as depicted in Fig. 1.

7.1 System Implementation
Hardware Configuration: In the experiment, we use Huawei
Watch (with Android 6.0 Wear OS) to collect data whose
sampling rate is 100Hz. Our translation service is set up on
Huawei Nexus 6P smartphone (based on Android 7.0 OS) and
Huawei P9 (based on Android 8.0 OS), and we implement
the BLSTM/LSTM networks for model training on the PC,
which is equipped with an Intel Core i7-6950X, 32GB ROM
and an Nvidia GeForce GTX TITAN X graphics card.

Software Implementation: Our sensing data collection
application is implemented in JAVA for Android platform
over the smartwatch. We implement all components in Fig. 1
with Python, in which we use TensorFlow [1] (version 1.0.1)
for LSTM/BLSTM. After that, we employ our trained model
on the Android mobile platform for a real-time prediction.

7.2 Data Collection
There is no state-of-art dataset of sign language. Thus, we
collect our dataset to implement and evaluate our system.

The gyroscope sensor provides the information of angular
velocity. The value of captured accelerometer data is the
arithmetic summation of linear acceleration and gravity, and
it is useful in capturing the difference of amplitudes. Since
the linear acceleration data reflects the movement speed and
the gravity provides information about angles, we want to
use the application programming interface (API) provided
by the Android system to separate the acceleration data and
the gravity. The basic idea is to use Kalman filter on the
accelerometer data such that the slowly-changing part can be
filtered as gravity data, while the remaining is the sensing data
of linear accelerometer. We then collect the data of gyroscope,
accelerometer, and linear accelerometer in our system. In our
experiment, each volunteer wore a smartwatch with embedded
sensors on his/her right wrist.

We first build the dataset of alphabet signs for finger-
spelling, and we ask five volunteers to perform 26 alphabet

Figure 6: One way to perform a sign sentence.

signs with 30 repetitions. That is, we have 26×30×5 alphabet
signs in the dataset. We use 75% of them for training the fin-
gerspelling module while the rest used for evaluations. Each
volunteer takes around 60 minutes to learn the alphabet signs.
The volunteers do not need to perform signs in the order of A
to Z. Instead, they consecutively performed the same alphabet
signs 30 times when collecting the training data. When users
perform a sequence of alphabet signs consecutively, they do
not need to come back to a specific initial hand position after
performing each alphabet. Fig. 5a exhibits that our system
can automatically segment sequence of alphabet signs.

Besides, we select 103 common-used words from a wide-
spread American sign language learning website – Lifeprint[40].
These words are representative and cover the diversity of
the ASL actions, including moving up and down, left and
right, rotation, swaying, making a fist, and pointing out, etc.
Among them, there are 50 one-handed signs and 53 two-
handed signs. Based on the selected words, we carefully gen-
erate 73 common-used sentences, which follow the grammar
of ASL and have various transition information (i.e., different
combinations of two words). Notably, we introduce an extra-
label (i.e., ‘blank’) when recognizing a sequence of data, and
we thus have 104 classes in the training phase. As mentioned,
the ‘blank’ token contributes to words segmentation. We also
use the label ‘blank’ when labeling sentences. After collect-
ing data from wearable devices, we label the whole sentence
with ‘blank’ at the end. For example, we label the sequence
of collected data as “(NICE, MEET, YOU, ‘blank’)” for the
sentence “NICE MEET YOU”. The dataset is collected from
16 volunteers (five women and eleven men aging from 20 to
30). The volunteers are students who learned how to perform
the signs for this experiment. Following the instructions by
American sign language learning website – Lifeprint, each
volunteer takes more than one week to learn 103 ASL signs
and 73 sign sentences. When performing sign language, vol-
unteers are asked to start and finish from any specific initial
and terminal position, one of which is shown in Fig. 6. This
is because we do not have any magnetic sensor, then it re-
quires the knowledge of the initial and final orientation of the
smartwatch to determine the beginning and end time of ac-
tions. Each participant is then asked to repeat each of the sign
sentences ten times such that we have 73 × 10 × 16 sentences

in total. The same signal processing procedure is applied to
the whole dataset. We randomly select five volunteers as new
users and use their data for user-independent evaluations. Be-
sides, we ask one of the new users to performance a randomly
selected sentence with different body motions and experi-
ment settings, which aims at evaluating the robustness of our
system. Thereinto, 73 × 10 × 5 sentences are used for user
independent evaluations (denoted as unseen set) while the
rest (73 × 10 × 11) constitute the training set and test set. We
separate the dataset (the one consists of 73×10×11 sentences),
and 80% of which (i.e., 73 × 8 × 11) is used for training the
sentence-level model. Each word has at least 88 samples in
the training dataset. The training set is used in the learning
process while the test set with the unseen set is left to evaluate
the performances of our system.

7.3 Measurement Methods
We use confusion matrices to show the performance of our
ASLR systems (includes the fingerspelling module and the
sentence recognition module) in the following section. More-
over, we introduce two essential principles, which are used to
evaluate the sentence recognition model.

Accuracy of Word-Level Recognition. In the field of lan-
guage recognition, there are generally three types of errors:
deletion (D denotes the number of deletions), which means
we leave out a word; insertion (I), which implies recognizing
a non-existent word; and substitution (S), which indicates a
false classification. Let C be the number of correctly recog-
nized signs. Our evaluation criteria for sign recognition are
defined as follows.

Detection Ratio =
C

D + C + S
. (3)

Reliability =
C

C + I
. (4)

Detection ratio is used to evaluate the ability of our system
in detecting a word correctly in a sequence, while reliability
implies that our system has the ability to detect a word in the
sequential signs completely.

Accuracy of Sentence-Level Recognition. We adopt the
word error rate (WER) to measure the accuracy, a standard
metric for speech recognition systems [11].

WER =
D + I + S
D + C + S

, (5)

The WER of a translation system should be as low as possible.

7.4 Pre-Processing
To suppress the impact of jitter triggered by different activ-
ities such as walking, standing, we apply moving average
filters [33] to the sequence of collected signals, and the num-
ber of points in average is empirically set as 5. Meanwhile,
we can conduct the coarse segmentation as mentioned in
Section 6.2 to segment consecutive words or sentences. We

0.2 0.4 0.6 0.8
Number of Samples

0.00

0.05

0.10

0.15

0.20

0.25

W
or

d
E

rr
or

R
at

e

(a) Different sample numbers.

6.25 12.5 25
Cut-off Frequency

0.0

0.03

0.06

0.09

W
or

d
E

rr
or

R
at

e Window-size=64
Window-size=128

(b) Different feature sizes.

Figure 7: WER with different data and input sizes.

1 2 3
Number of Units

0.00

0.02

0.04

0.06

0.08

0.10

W
or

d
E

rr
or

R
at

e

(a) Different neuron sizes.

1 2 3
Number of RNN Layers

0.00

0.05

0.10

0.15

0.20

W
or

d
E

rr
or

R
at

e

(b) Different layer numbers.

Figure 8: WER with different parameter configurations.
manually tune with experience and set the threshold r for
sentence-level segmentation to 0.006, while the threshold set
to 0.02 in the case of alphabet signs recognition. After that,
we take signals of an isolated word or sentence as input. Later,
we divide the input into overlapped frames and multiply each
frame by a Hamming window, where the window size is sw .
We estimate the spectrum of each frame using the FFT. The
sampling rate fs of our devices is 100Hz. We cut off the high
frequency to reduce the out-band interference and save the
computation cost since sensing signals of hand movements
in the temporal domain are within the low-frequency band
(gestures are performed at the speed of 0.5 to 2 per second).
Let the cut-off frequency be fc . In this way, the number of
selected features in frequency domain is sw × fc/fs + 1 after
FFT. We repeat the procedure on three axes for all three chan-
nels (i.e., gyroscope, accelerometer, and linear accelerometer).
Each of them have data of x,y, z axis, in our system, we thus
extract 9 × (sw × fc/100 + 1) features as inputs.

7.5 Model Training
For our hybrid model, we pack data into data matrixes whose
size is Fd ×T and Fd = 9 × (sw × fc/100 + 1). When training
our model, we use Adam [17] optimizer with a standard set-
ting (i.e., a learning rate of 0.001, a first-moment momentum
coefficient of 0.9, a second-moment momentum coefficient
of 0.999 and the numerical stability parameter ϵ of 10−8).

Recognition Accuracy. Training Size and Feature Size. It
is well known that the size of training data will influence the
learning result [36]. To explore the relationship between the
number of samples and model accuracy. We take 20%, 40%,

60% and 80% of training set, respectively, in which we set
fc = 25Hz and sw = 128. Fig. 7a shows the increasing number
of samples can improve the accuracy of our system. We thus
use the full size of the training set to train our hybrid model.

Moreover, it is argued that the number of extracted features
can affect the recognition accuracy. We examine whether it
is redundant to use features from raw acceleration, linear
acceleration, and gravity. We estimate the WER under the
setting of using features from two (i.e., gyroscope and ac-
celerometer), three (i.e., gyroscope, accelerometer, and linear
accelerometer), and four (i.e., gyroscope, accelerometer, lin-
ear accelerometer, and gravity) channels in the training phase.
We set the epoch size to 300, and the WER of using four chan-
nels is 1.15% while the WER of using two and three channels
are 1.7% and 1.19%, respectively. These indicate using fea-
tures from more channels is not redundant. Our system uses
features from three channels since using more features lead to
a higher memory cost and a time-consuming training process.

Since the number of extracted features in the input spec-
trogram (i.e., 9 × (sw × fc/100 + 1)) is relevant to the size of
a sliding window sw , and the cut-off frequency fc , we then
use the test set and evaluate the average WER of our system
under different sw (which is set as 64 or 128) and fc (includes
6.25Hz, 12.5Hz, and 25Hz). Fig. 7b shows that a higher fre-
quency is useless in our model. Indeed, the higher cut-off
frequency increases the cost of memory consuming since we
require a higher dimension input vector to represent sensing
data. The higher fc also raises the risk of overfitting, because
the Android System configures several filters to calibrate the
error caused by sensor hardwares and smooths the higher part
of the frequency [9]. Our model reaches the best performance
when sw = 128 and fc = 25Hz. We then extract 33 features af-
ter FFT for each channel. Note that, the frequency resolution
(defined as fs/sw) is smaller than 1Hz (which approximates
the movement frequency of human being) such that we can
capture enough information to distinguish a sign.

Parameters Configuration. We use the technique of grid-
search [15] to explore over 60 different combinations of
model parameters, which, in this case, are the number of
memory cells (i.e., neuron sizes) at each level, bidirectional
LSTM layer number, batch size, etc. We notice that the neuron
sizes and the number of layers have significant influences on
the quality of the extracted features, which ultimately affect
the accuracy of recognition. Our hybrid model is trained on
the whole training set and we set sw = 128 and fc = 25Hz.
Fig. 8a reports that increasing neuron sizes and layer number
can improve accuracy. We respectively have 7.7% , 2.2% and
1.04% WER for one-level model, two-level model and three-
level model in Fig. 8b. These results emphasize that more
meaningful information can be learned and represented by
more neurons or a higher BLSTM layer. However, the larger

numbers of neuron sizes and layers lead to a time-consuming
training process and a high memory cost, because we need to
store and process larger vectors. To balance the high-precision
and the cost, we train our hybrid model with 128 neuron size
(i.e., memory units) and three BLSTM layers, and we have
1.04% WER on the test set.

Other Configurations. The dependency of different states is
removed (Section 6.1) to accelerate computation if using SRU,
however, we need to evaluate whether there is any negative
impact on the accuracy. We thus generate two individual
models based on our training set. The result shows that we
have 0.019% WER (for the one with SRU) in comparison to
0.061% WER when the iteration in the training phase is 1, 999
(not converge yet).

Efficiency with SRU. SRU architecture is adopted for
speeding up the training procedure, we then evaluate the
specific training time with and without using the SRU ar-
chitecture. We stop the training process when the accuracy
converges to 2%. The average time is around 3, 655s when
implementing with SRU. The corresponding average step for
one epoch is 4, 310, and the average epoch is 164. In compari-
son, without using SRU, the average time is equal to 5, 841s,
the average step is 4, 010, and the average epoch is 153.

Overfitting and Convergence. Overfitting is a severe prob-
lem in the training process if the size of the training set is far
from enough, hence, two conventional methods are employed
to combat overfitting: regularization and dropout. L2 regular-
ization, one of the most common types of regularization, is
implemented by adding 1

2λw
2 to the error function in the neu-

ral network. In this work, we apply L2 regularization only to
the fully connected layer. Dropout is another efficient method
for preventing overfitting in neural networks [34], which is
implemented by introducing a fixed probability, i.e., dropout
rate, and we experimentally set it to 0.8. In the training pro-
cess, a neuron is temporarily removed from the network if
we drop it out. In this way, we can guarantee the network is
accurate even in the absence of some information. We apply
dropout to each layer, including the BLSTM layers and the
fully connected layer, which, however, increases the number
of iterations of our model to converge.

We perform a 10-fold cross-validation analysis to evaluate
the situation of overfitting. Fig. 9a shows the results of the
cross-validation analysis, and we have 4.96% WER on aver-
age, where the standard deviation is 1.87%. The results do
not show the sign of overfitting in our system, and the high
accuracy on the test set is likely irrelevant to the overfitting.
Besides, we further evaluate how much data do we need to
avoid overfitting. We evaluate the average WER of perform-
ing 10-fold cross-validation on different sizes of training data.
Fig. 9b represents that the difference is no less than 1% when

1 2 3 4 5 6 7 8 9 10
Fold Number

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

W
or

d
Er

ro
r R

at
e

(a) 10-fold cross-validation of
training data.

1/4 2/4 3/4 4/4
Training Data Size (%)

0.00

0.02

0.04

0.06

0.08

0.10

W
or

d
Er

ro
r R

at
e

(b) Avg 10-fold cross-
validation of different sizes.

Figure 9: Overfitting estimation.

0 20 40 60 80 100
Sign Id

0.0

0.1

0.2

0.3

0.4

0.5

F
re

qu
en

cy

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
et

ec
ti

on
R

at
io

re
lia

bi
lit

ieDetection Ratio Reliabilities

Figure 10: Detection ratio/reliability of isolated words.

only 80% of the training data is used, which indicates the
training data size seems enough for the deep learning.

8 PERFORMANCE EVALUATION
We evaluate the performance of our system in this section.
Remark that all error bars used in this work represent the
standard deviation (SD).

8.1 Accuracy of Isolated Word Recognition
Detection Ratio and Reliability. Fig. 10 shows the detection
ratio and the reliability of 103 signs in our sentence recogni-
tion model, and it provides the frequency of each sign in our
dataset as well. The average detection ratio and reliability are
99.2%, 99.5%, respectively. We note that signs with a higher
frequency are more natural to be correctly recognized. As
shown, the top 20 (with higher detection ratio and reliability)
on average have higher frequencies than the rest. Indeed, this
phenomenon conforms to the observation mentioned above
that the data size contributes to improving the model accuracy.
The higher value of average reliability indicates our system
has a good “memory”, that is, it has high confidence if it
recognizes one sign.

Substitution Analysis. We also measure the substitution
error of our system, which shows whether a word is falsely
recognized and the result is presented in a confusion matrix
as shown in Fig. 11a . Obviously, signs are classified correctly
on average in our sentence recognition model. There are only
up to ten substitutions for each sign in our experiments. The
darkest point implies that sign “HOME” (No.2) is recognized
as sign “MEET” with the highest falsely predicted rate (6.1%).
Both signs are made by raising and moving hand which may

1 112131415161718191103
Falsely Predicted Classes

1
11
21
31
41
51
61
71
81
91

103

Tr
ue

 C
la

ss
es

0.00

0.01

0.02

0.03

0.04

0.05

0.06

(a) 103 Signs.

ABCDEFGHI JKLMNOPQRSTUVWXYZ

Predicted Classes

A
B
C
D
E
F
G
H
I
J
K
L

M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z

T
ru

e
C

la
ss

0.96
1.00 0.02

1.00 0.01
1.00 0.01

1.00
1.00 0.02

0.94
1.00

0.02 1.00
0.03 0.97

0.061.00
0.95

1.00
1.00 0.10

0.95 0.05
1.00

0.82
0.061.00

1.00
0.94

0.94
0.90
0.131.000.07

0.95
1.00

0.06 1.00
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) FingerSpelling.

Figure 11: Confusion matrix of isolated signs.

Detection Ratio Reliability
0.5

0.6

0.7

0.8

0.9

1.0

1.1 One Hand

Two Hands

(a) One vs. Two handed signs

Detection Ratio Reliability
0.5

0.6

0.7

0.8

0.9

1.0

1.1 One Hand

Two Hands

(b) New users.

Figure 12: One-handed/two-handed signs recognition.
be one possible reason for false prediction. However, it might
not be the main reason since other signs with more similarity
can still be identified with lower falsely predicted rates in
our system. For example, sign “SUPPOSE” (No.42) has a
more similar movement with sign “DEAF” (No.19), but our
system can still distinguish them. This behavior indicates we
can recognize words according to the context. We observe the
top three signs with high falsely predicted rate and find that
the sample size of these words is small. The sample number
of sign “HOME” is 163 while sign “MEET” has 254 samples.
We believe that the falsely recognized rate is mainly because
the sample number of each word is different, which makes
the training dataset unbalanced.

Our system also has promising performance in finger-
spelling recognition. Fig. 11b shows the confusion matrix
of alphabet signs in the fingerspelling model. Signs “B” and
“C”, which have a similar handshape (the former sign has four
fingers straight while the latter one has four fingers closed and
with slight stretches), are successfully identified. The result
shows the ability of our representation (i.e., descriptor), and
which indicates we can extract a high-level characteristic of
each alphabet sign from the collected sensing data.

Two-handed Sign Recognition. As mentioned, our sys-
tem collects data from one smartwatch worn on the domi-
nant hand, which leads to information loss for two-handed
signs. There are 53 out of 103 two-handed signs in our dataset.
We figure out that our system provides good performance
in recognizing two-handed signs. Even we only wear one
smartwatch on the dominant hand, Fig. 12a shows that the

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Sentence’s Index
0.00

0.05

0.10

0.15

0.20

W
or

d
E

rr
or

R
at

e

Figure 13: WER with different sentences.

detection ratio and reliability between one-handed signs and
two-handed signs only have subtle difference. This observa-
tion supports the intuition that the dominant hand in American
Sign Language is the hand that moves a lot and provides the
majority information, while the non-dominant hand contains
less information and is motionless mostly. Besides, the two-
handed signs in our dataset likely have distinct movements or
handshapes on the dominant hand. Therefore, before we con-
duct more experiments, e.g., to test the recognition accuracy
of some two-handed signs which have a similar movement
or handshape, we can safely claim that our system supports
high-precision recognition rate for two-handed signs. That is,
we can handle two-handed signs mainly because these signs
have significant differences in the dominant hand and can be
recognized with the context.

8.2 Sentence Recognition Accuracy
The result shows that our sentence recognition model per-
forms well in sentence-level recognition, in which WER is
only 1.04%. Fig. 13 presents our model can successfully cap-
ture the context information, and there is no big difference
among the performance of different sentences, in which the
length of involved sentences varies from 2 to 11. The unbal-
ance of our sentence sets may lead to a large WER (up to
9.6% on average), e.g., “YOUR NAME”, the sentence labeled
as index 1, is with 7.4% WER and appears only once.

Segmentation Performance. Fig. 14 explores the way to
segment and recognize a long sequence with eight signs in
our sentence-level recognition system, which explains the
procedure from raw data to texts. The second sub-graph is
the vertical concatenation of three axes’ spectrogram, where
the first axis’s spectrogram is at the bottom. In the first and
the third sub-graphs, the red rectangle corresponds to the sign
“POPCORN” while the blue rectangle corresponds to the sign
“EAT”, where “POPCORN” is a distinctive sign that has two
obvious up-and-downs while “EAT” is not easy to capture. As
shown, merely based on the raw data or the spectrogram, we
cannot distinctly separate them since there is an extra move-
ment from chest to the mouth when performing “LIKE” and
“EAT” in succession. The results indicate our system succeeds

Figure 14: Words Segmentation.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73

Sentence’s Index
0.0

0.1

0.2

0.3

0.4

0.5

W
or

d
E

rr
or

R
at

e

Figure 15: WER with different sentences for new users.

in recognizing these situations. We find that the system tends
to output “spikes”. This performance means that our model
only outputs results when appearing a considerable stimu-
lus. Besides, the system tends to predict sign combinations
together, which is different from HMM-based methods.

8.3 User-Independence
We evaluate one of the essential functionalities of our system:
user-independent. In this experiment, we ask five volunteers
(three men, two women) to perform sign language, all of
them are new users. The total detection ratio and reliability
for 103 signs are 89.8% and 95.5%, respectively. The apparent
difference between detection ratio and reliability indicates
that the bottleneck of our system is isolated sign recognition,
but not completeness of detection. Fig. 12b continues to show
that our system can support two-handed signs, where the
WER is lower compared with users whose data is in the
training set. Fig. 15 lists the WER of sentences involved in
our dataset. We evaluate the average performance of new
users, where the average WER is 10.7%. Compared with
Fig. 13, we have a worse WER among sentences, however,
which is still acceptable. The results show that the training
set is not enough to build a user-independent system, and it is

Table 1: Results of factors that affect user experience.

Row Number Tightness Speed Distance WER
1 Tight Normal Normal 0.0625
2 Normal Normal Normal 0.0269
3 Loose Normal Normal 0.1071
4 Normal Fast Normal 0.1071
5 Normal Slow Normal 0.1945
6 Normal Normal Far 0.2500
7 Normal Normal Near 0.1667

still unable to be well adapted to individual diversity and the
wide spectrum of human behaviors when performing signs.

8.4 User Experience & System Robustness
Impact of different settings. We evaluate the robustness of
our sentence recognition model. We ask one of the new users
to perform a selected sentence ten times for different settings
(listed in Table 1). (1) A smartwatch introduces noises from
random joggle when wearing the smartwatch loosely/tightly.
We evaluate the tightness of the smartwatch in three settings:
normal (16.8cm); loose (17.6cm); and tight (16cm), where the
wrist perimeter of the selected user is 15.6cm. (2) We will
have different sensing data if the sign language is performed
at different speeds. The normal speed of the user when per-
forming signs is averagely 1.6s, while 0.95s is fast and 2.22s
is slow. (3) We can only capture a few information when wear-
ing a smartwatch at a far distance from the wrist. Thus we also
consider the distance from the wrist to the smartwatch. The
distance (i.e., d) is considered far d = 8cm, while d = 4cm is
normal. It is near when the user wears the smartwatch at a dis-
tance of 1cm. Table 1 illustrates our performance in different
settings and shows that our system can successfully extract
high-level features from selected signals even produced in dif-
ferent tightness, speeds, and distances. The results show that

Table 2: Adaptiveness - Results of different devices.

Window Size WER of Moto360 WER of Huawei
1 0.355 0.360
5 0.355 0.031

10 0.316 0.078
15 0.237 0.141
20 0.053 0.203
25 0.000 0.219
30 0.013 0.219

we have the best WER only in the normal situation and leave
one interesting problem: why we have a worse WER when
the distance is closer. The results also confirm that our system
is robust to some extent (less than 10% WER on average and
at most 25% under any setting.

Impact of different devices. To evaluate the robustness
and adaptiveness of our system, we evaluate our system with
another type of smartwatch, Moto360. We ask a new user to
repeat performing one sentence ten times with two different
smartwatches. The comparison is represented in Table 2. In
comparison to Huawei, we found that the larger size has
better performance in recognizing sign sentences collected
with Moto360. This is mainly because the sampling rate in
Moto360 is only up to 50Hz, in which we need a sliding
window with larger sizes to interpolate and remove noise.

Impact of unexpected body movements. Fig. 16 shows
that unexpected body motions, i.e., sitting, standing, walking,
and turning body around, have impacts on our system perfor-
mance. In this experiment, a new user (one of five new users)
is asked to perform one selected sentence ten times with the
four types of unexpected body motions, and we have 1.56%,
5.71%, 12.5%, and 11.5% of WER, respectively. The result
shows that the moving average filter is still insufficient, we
need to design a better mechanism to avoid the noises induced
by unexpected body motions.

8.5 Delay and Energy Consumption
We use Huawei P9 in the inferring phase. Fig. 17 shows that
the average processing delay for a sentence with eleven words
is 1.1s, and the average translation speed for different sign
sentences is approximately 0.71s. This indicates the real-time
ability of our system. The processing delay of our system is
consistent with the sentence length, and users can have a better
experience if they perform short sentences consecutively. Our
system segments sequences into separate sentences and uses
signals of each sentence as inputs.

We use the Batterystats tool [8] to estimate our energy con-
sumption. The tool collects battery data and is included in
the Android framework. We run our system on a ONEPLUS
A3000 SmartPhone and a Huawei Watch SmartWatch to mea-
sure energy consumption, in which we consider two states:

i) Idle display; ii) Running and consecutively performing
signs. We estimate the power use of the smartphone and the
smartwatch for one hour in both states. When the system is
idle, the screen-on discharge rate of the smartphone is 2.97%,
while the screen-off discharge rate of the smartwatch is 5.05%.
When running our application, the screen-on discharge rate
of the smartphone is 9.90%, and its estimated power usage is
0.4%. Its battery capacity drops to 2, 730mAh, and the initial
battery capacity is between 2, 970mAh and 3, 000mAh. More-
over, with our system running, the screen-off discharge rate
of the smartwatch is 10.91%, and its estimated power usage
is 2.49%. The power capacity of the smartwatch is between
285mAh and 288mAh, while the initial is between 297mAh
and 300mAh before running our system.

8.6 Comparison to DTW-based Method
The DTW-based method usually has a long processing de-
lay due to the complexity of the algorithm. We examine the
accuracy as well as the processing delay of the DTW-based
methods. We ask three users perform 73 sentences with ten
repetitions. We use one set of data samples (one sample for
each of 73 sentence) from the same user (referred to as user 1)
as the referencing template. We then compare the error rate of
DTW-based methods on both user 1 and the other two users.
That is, we estimate the average error rate of the rest nine
samples for each sentence for user 1 and the average error rate
of twenty samples for the other two users. We implement the
DTW-based method with Python. Fig. 18 shows a significant
difference between different subjects. User 1 has a low error
rate of 10.63%, however, the other users have an average error
rate increased to 26.88%. The DTW-based method is limited
when extending to different users compared to our method.
For long sentences, the DTW-based has high accuracy. This is
mainly because the long sentence has more information than
the short one which reduces the DTW similarities. We also
examine the processing time of DTW-based methods. Fig. 19
presents that it takes more than 500s when estimating DTW
similarities. The results show that the running time conflicts
with the real-time ability for DTW methods.

9 RELATED WORKS
The existing sign language recognition (SLR) works can be
mainly categorized into two classes: computer-vision based
and motion-sensor/signal based.

Computer-vision based SLR. These methods need to use
a combination of cameras or other non-invasive sensors to
capture images of signers. Starner et al. used a front view
camera and a head-mounted camera to realize SLR under
the HMM models [35]. Feris et al. recognized vision-based

Sit Stand Walk Turn
0.00

0.02

0.04

0.06

0.08

0.10

0.12

W
or

d
Er

ro
r R

at
e

Figure 16: Activities.

2 3 4 5 6 7 8 11

The size of sentences
0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
(s

)

Figure 17: Proc. delay.

fingerspelling by exploiting depth discontinuities with a multi-
flash camera [7]. Recent researches have also employed com-
mercial devices such as Kinect [25] and Leap Motion Con-
troller [28]. For example, Zafrulla et al. [50] and Dong et al.
[5] used Kinect, and Potter et al. [31] drew supports from
Leap Motion Controller to perform accurate sign language
recognition. Zhang et al. [51] recognized Chinese sign lan-
guage using an adaptive HMM with self-building Kinect-
based datasets. However, the vision-based systems are bur-
densome and incur privacy leakage issues.

Motion-sensor/Signal based SLR. In the works of motion-
sensor based SLR systems, researchers employed dedicated
devices. Kadous et al. [16] instrumented gloves with a variety
of sensors to capture the motions of user’s hands. Kuroda
et al. [18] built their device, StrinGlove, which used 24 in-
ductors and 9 contact sensors. Wang et al. [43] designed an
HMM-based SLR model using Cyberglove, a sensory glove,
and a Flock of Birds motion tracker. Wu et al. [47] achieved
95.94% recognition rate for 40 words by using a wrist-worn
motion sensor and surface EMG sensors at the feature level.
These SLR systems are inconvenient, burdensome, and have
prohibitive costs because they used dedicated datagloves or
wrist-worn sensors. Some recent works [42, 46, 52] can dif-
ferentiate finger-level gestures using inertial sensors on wear-
ables, however, they can not be applied to sentence-level sign
language recognition since none of them solves the problem
of words segmentation when recognizing a sequence of ges-
tures and hand motions. The most relevant work is [6], which
proposed a smartwatch-based sign recognition. However, it
used a DTW-based method which has poor performance in
user-independent evaluation and conflicts with the real-time
ability. The work of Ma et al. [24] addressed the WiFi-based
sign recognition, which had a high recognition accuracy up to
98%, however, it did not support sentence-level sign language
recognition. The main reason is that they manually segmented
for each sign and it will introduce new challenges for sentence-
level sign language recognition when data is not manually
segmented. Except for the SLR systems mentioned above, our
work is associated with hand gestures recognition. Compared
to existing hand gesture recognition systems [2, 29, 32, 44],
our system does not need any extra dedicated hardware but
achieves a relatively higher accuracy.

3 4 5 6 7 8 9 12

Sentence Length
0.0

0.1

0.2

0.3

0.4

Er
ro

r R
at

e

User 1
Other Users

Figure 18: Error rate.

3 4 5 6 7 8 9 12

Sentence Length
0

500

1000

1500

2000

2500

3000

Ti
m

e
(s

)

Figure 19: DTW method.

10 CONCLUSION
In this paper, we propose the first smartwatch-based end-to-
end sentence-level ASLR system, which is more comfort-
able, portable, user-friendly and offers accessibility anytime,
anywhere. We found that each sign has its specific motion
pattern which can be transformed into unique gyroscope and
accelerometer signals, and then we can use BLSTM-RNN
trained with CTC for end-to-end sentence-level pattern recog-
nition. We implement our system on a pair of commercial-
off-the-shelf smartwatch and smartphone. Experiments are
conducted to demonstrate that our system reaches a promising
recognition for ASL sentences and achieves real-time ability.

Our ASLR system still has certain limitations and spaces to
improve. (1) Our system currently can recognize 26 alphabet
signs, 103 common signs, and 73 sentences; however, it is still
far from everyday use (which needs more than 500 signs). To
support recognition of more signs, it will be better to extend
our system and make it possible to recognize new signs (not
in the training set) instead of collecting more data and re-
train the model. (2) As mentioned, there are practical issues
(such as how the smartwatch is worn on one’s wrist) that
impact the performance of our system. Our results show that
the accuracy of our trained model is over 80% on average
when comes to a new user, however, we need to improve our
system further when taking practicability into account. (3)
It is time-consuming and not user-friendly to collect a large
number of training data from the individual if we want to train
a user-specific model. To fine-tune a generic model for each
individual user (via user adaptation) will be a more practical
solution to the final product.

ACKNOWLEDGMENTS
X.-Y. Li and P. Yang are contact authors. The work is par-
tially supported by the National Key R&D Program of China
2018YFB0803400, China National Funds for Distinguished
Young Scientists with No. 61625205, NSFC with No. 61751211,
No. 61572347, No. 61520106007, Key Research Program of
Frontier Sciences, CAS, No. QYZDY-SSW-JSC002, and NSF
CNS-1526638, CNS-1343355. We appreciate the assists of
Mr. Qian Dai from the USTC, and thank all the reviewers
and our shepherd for their valuable comments and helpful
suggestions.

REFERENCES
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S.

Corrado, A. Davis, Jeffrey Dean, Matthieu Devin, et al. 2016. Ten-
sorflow: Large-scale machine learning on heterogeneous distributed
systems. arXiv preprint arXiv:1603.04467 (2016).

[2] K. Chen, S. Patel, and S. Keller. 2016. Finexus: Tracking Precise
Motions of Multiple Fingertips Using Magnetic Sensing. In ACM CHI.
ACM.

[3] Y. Chen and C. Shen. 2017. Performance analysis of smartphone-sensor
behavior for human activity recognition. IEEE Access 5 (2017).

[4] H. Cooper, B. Holt, and R. Bowden. 2011. Sign language recognition.
In Visual Analysis of Humans. Springer.

[5] C. Dong, M. Leu, and Z. Yin. 2015. American sign language alphabet
recognition using microsoft kinect. In CVPRW.

[6] D. Ekiz, G. Kaya, S. Buğur, S. Güler, B. Buz, B. Kosucu, and B. Arnrich.
2017. Sign sentence recognition with smart watches. In IEEE SIU.

[7] Rogerio Feris, Matthew Turk, R. Raskar, K. Tan, and G. Ohashi. 2004.
Exploiting depth discontinuities for vision-based fingerspelling recog-
nition. In IEEE CVPRW.

[8] Google. [n. d.]. Profile battery usage with Batterystats and Battery His-
torian. https://developer.android.com/studio/profile/battery-historian

[9] Google. [n. d.]. Sensors Overview. https://developer.android.com/
guide/topics/sensors/sensors_overview

[10] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber. 2006. Con-
nectionist temporal classification: labelling unsegmented sequence data
with recurrent neural networks. In ACM ICML.

[11] A. Graves and N. Jaitly. 2014. Towards End-To-End Speech Recogni-
tion with Recurrent Neural Networks.. In ICML, Vol. 14.

[12] F. Grosjean and H. Lane. 1977. Pauses and syntax in American sign
language. Cognition 5, 2 (1977).

[13] HLAA. 2017. Basic Facts About Hearing Loss.
http://www.hearingloss.org/content/basic-facts-about-hearing-loss.

[14] S. Hochreiter and J. Schmidhuber. 1997. Long short-term memory.
Neural computation 9, 8 (1997).

[15] C. Hsu, C. Chang, C. Lin, et al. 2003. A practical guide to support
vector classification. (2003).

[16] M. Kadous et al. 1996. Machine recognition of Auslan signs using
PowerGloves: Towards large-lexicon recognition of sign language. In
Proceedings of the Workshop on the Integration of Gesture in Language
and Speech. Citeseer.

[17] D. Kingma and J. Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[18] T. Kuroda, Y. Tabata, A. Goto, H. Ikuta, M. Murakami, et al. 2004.
Consumer price data-glove for sign language recognition. In Proc. of
5th Intl Conf. Disability, Virtual Reality Assoc. Tech., Oxford, UK.

[19] J. Kwapisz, G. Weiss, and S. Moore. 2011. Activity recognition using
cell phone accelerometers. ACM SigKDD 12, 2 (2011).

[20] K. Lee, O. Levy, and L. Zettlemoyer. 2017. Recurrent Additive Net-
works. arXiv preprint arXiv:1705.07393 (2017).

[21] T. Lei and Y. Zhang. 2017. Training RNNs as Fast as CNNs. arXiv
preprint arXiv:1709.02755 (2017).

[22] K. Li, Z. Zhou, and C. Lee. 2016. Sign transition modeling and a
scalable solution to continuous sign language recognition for real-world
applications. ACM TACCESS 8, 2 (2016).

[23] S. Liddell. 2003. Grammar, gesture, and meaning in American Sign
Language. Cambridge University Press.

[24] Y. Ma, G. Zhou, S. Wang, H. Zhao, and W. Jung. 2018. SignFi: Sign
Language Recognition Using WiFi. ACM IMWUT 2, 1 (2018).

[25] Microsoft. 2017. Kinect for Xbox. http://www.xbox.com/en-US/xbox-
one/accessories/kinect.

[26] M. Mohandes, M. Deriche, and J. Liu. 2014. Image-based and sensor-
based approaches to Arabic sign language recognition. IEEE THMS
44, 4 (2014).

[27] M. Mohandes. 2013. Recognition of two-handed Arabic signs using
the CyberGlove. AJSE 38, 3 (2013),

[28] Leap Motion. 2017. Leap Motion. http://leapmotion.com.
[29] R. Nandakumar, V. Iyer, D. Tan, and S. Gollakota. 2016. FingerIO:

Using Active Sonar for Fine-Grained Finger Tracking. In ACM CHI.
[30] World Federation of the Deaf. 2016. FAQ - WFD | World Federation of

the Deaf. https://wfdeaf.org/faq.
[31] L. Potter, J. Araullo, and L. Carter. 2013. The leap motion controller: a

view on sign language. In ACM OzCHI.
[32] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. 2013. Whole-home gesture

recognition using wireless signals. In ACM MobiCom.
[33] Hisatake Sato. 2001. Moving average filter. US Patent 6,304,133.
[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-

dinov. 2014. Dropout: a simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research 15, 1 (2014).

[35] T. Starner, J. Weaver, and A. Pentland. 1998. Real-time american sign
language recognition using desk and wearable computer based video.
IEEE TPAMI 20, 12 (1998), 1371–1375.

[36] D. Stockwell and A. Peterson. 2002. Effects of sample size on accuracy
of species distribution models. Ecological modelling 148, 1 (2002),
1–13.

[37] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li. 2010. Activity recognition
on an accelerometer embedded mobile phone with varying positions
and orientations. In Springer ICUIC.

[38] R. Tennant and M. Brown. 1998. The American sign language hand-
shape dictionary. Gallaudet University Press.

[39] C. Valli and C. Lucas. 2000. Linguistics of American sign language:
An introduction. Gallaudet University Press.

[40] William Vicars. 2017. Basic ASL: First 100 Signs.
http://www.lifeprint.com/asl101/pages-layout/concepts.htm.

[41] C. Vogler and D. Metaxas. 1998. ASL recognition based on a coupling
between HMMs and 3D motion analysis. In IEEE ICCV.

[42] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu. 2016. Friend or foe?:
Your wearable devices reveal your personal pin. In ACM AsiaCCS.

[43] H. Wang, M. Leu, and C. Oz. 2006. American Sign Language Recog-
nition Using Multi-dimensional Hidden Markov Models. JISE 22, 5
(2006), 1109–1123.

[44] J. Wang, D. Vasisht, and D. Katabi. 2014. RF-IDraw: virtual touch
screen in the air using RF signals. In ACM SIGCOMM.

[45] G. Welch and G. Bishop. 1995. An introduction to the Kalman filter.
(1995).

[46] H. Wen, J. Ramos Rojas, and A. Dey. 2016. Serendipity: Finger gesture
recognition using an off-the-shelf smartwatch. In Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM,
3847–3851.

[47] J. Wu, Z. Tian, L. Sun, L. Estevez, and R. Jafari. 2015. Real-time Amer-
ican sign language recognition using wrist-worn motion and surface
EMG sensors. In IEEE BSN.

[48] W. Wu, S. Dasgupta, E. Ramirez, C. Peterson, and G. Norman. 2012.
Classification accuracies of physical activities using smartphone motion
sensors. JMIR 14, 5 (2012).

[49] Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, and P. Presti. 2011.
American sign language recognition with the kinect. In ACM ICMI.

[50] Z. Zafrulla, H. Brashear, T. Starner, H. Hamilton, and P. Presti. 2011.
American Sign Language Recognition with the Kinect. In ACM ICMI

[51] J. Zhang, W. Zhou, C. Xie, J. Pu, and H. Li. 2016. Chinese sign
language recognition with adaptive HMM. In IEEE ICME.

[52] T. Zhao, J. Liu, Y. Wang, H. Liu, and Y. Chen. 2018. PPG-based finger-
level gesture recognition leveraging wearables. In IEEE INFOCOM.

https://developer.android.com/studio/profile/battery-historian
https://developer.android.com/guide/topics/sensors/sensors_overview
https://developer.android.com/guide/topics/sensors/sensors_overview

	Abstract
	1 Introduction
	2 Sign Language
	3 System Overview
	4 Sign Language Representation
	4.1 Sign Language and Activity Recognition
	4.2 Semantic Representation of ASL

	5 Isolated Signs Learning
	6 Continuous Sentence-Level Learning & Model Selection
	6.1 Sentence-Level Sign Language Learning
	6.2 Model Selection & Coarse Segmentation

	7 System Implementation
	7.1 System Implementation
	7.2 Data Collection
	7.3 Measurement Methods
	7.4 Pre-Processing
	7.5 Model Training

	8 Performance Evaluation
	8.1 Accuracy of Isolated Word Recognition
	8.2 Sentence Recognition Accuracy
	8.3 User-Independence
	8.4 User Experience & System Robustness
	8.5 Delay and Energy Consumption
	8.6 Comparison to DTW-based Method

	9 Related Works
	10 Conclusion
	Acknowledgments
	References

