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ABSTRACT
Machine learning (ML) has shown its impressive performance in

the modern world, andmany corporations leverage the technique of

machine learning to improve their service quality, e.g., Facebook’s
DeepFace. Machine learning models with a collection of private

data being processed by a training algorithm are deemed to be

increasingly confidential. Confidential models are typically trained

in a centralized cloud server but publicly accessible. ML-as-a-service

(MLaaS) system is one of running examples, where users are allowed

to access trained models and are charged on a pay-per-query basis.

Unfortunately, recent researchers have shown the tension be-

tween public access and confidential models, where adversarial

access to a model is abused to duplicate the functionality of the

model or even learn sensitive information about individuals (known

to be in the training dataset).We conclude these attacks as prediction
API threats for simplicity.

In this work, we proposeML defense, a framework to defend

against prediction API threats, which works as an add-on to existing

MLaaS systems. To the best of our knowledge, this is the first

work to propose a technical countermeasure to attacks trumped

by excessive query accesses. Our methodology neither modifies

any classifier nor degrades the model functionality (e.g., rounds
results). The framework consists of one or more simulators and one

auditor. The simulator learns the hidden knowledge of adversaries.

The auditor then detects whether there exists a privacy breach. We

discuss the intrinsic difficulties and empirically state the efficiency

and feasibility of our mechanisms in different models and datasets.

CCS CONCEPTS
• Security andprivacy→ Security services; •Computingmethod-
ologies →Machine learning.
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1 INTRODUCTION
Increasingly, machine learning (especially deep learning) has be-

come a foundation of online cloud computing services, which pro-

vides predictions for many tasks, such as medical diagnosis [7], and

facial recognition [27]. The significantly promising performance

promotes many Internet company giants such as Google and Ama-

zon to build machine learning as a service (MLaaS) systems. In such

a system, users are allowed to access a trained model and charged

on a pay-per-query basis.

ML classifiers (namely models) are always deemed to be con-

fidential, especially those used in security-critical areas such as

medical diagnosis. Specifically, individual health data, photos, their

personal activities, etc., on which models were trained, make the

ML classifiers sensitive and private. For example, the training sets

used in face recognition are pictures of individuals’ faces.

In the context of privacy implications, existing solutions, i.e.,
privacy-preserving training [1] and privacy-preserving prediction [4,

12], are far from enough. Recent researches demonstrated that ad-

versaries can infer valuable information (either model relevant

information or training data relevant information) through contin-

uously querying a confidential ML model via a prediction query

interface. In the work of Shokri et al. [25], they demonstrate that

membership inference attacks are possible inmachine learning: given

a data record and black-box access (accessible only via a prediction

API), one can determine whether the record is used in the training

set (i.e., members or non-members). Further still, Tramèr et al. [29]
investigate model extraction attacks via continuously using predic-

tion APIs such that the functionality of a trained model would be

duplicated. For convenience, we refer to these attacks later in the

paper as prediction API threats. Shokri et al. [25] exhibit that natural
countermeasures (e.g., round the prediction results) to membership
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inference attacks are ineffective and only experimentally evalu-

ated in a single setting, and it remains unclear if they pose threats

to other attacks. In the other context of model extraction attacks,

Tramèr et al. [29] highlight the need for new model extraction

countermeasures. Consequently, new countermeasures or solutions

need to be further explored.

The goal of our work is to defend against these ML attacks which

are initiated by excessive query accesses. Facing those unpredictable

ML attacks, we need to overcome the following challenges. First,

finding countermeasures to one existing attack is an open question

and needs to be further explored. It is difficult to find a universal

countermeasure (i.e., not limited to one specific type of attacks) to

fulfill the protection of arbitrary target models and training datasets

without adversaries’ background knowledge. Second, devising a ro-

bust and scalable countermeasure while guaranteeing the efficiency

and quality of service (i.e., sustaining the classifiers’ predictive

power) is a daunting challenge. Detecting attacks by brute force in

running all existing attack algorithms is exceptionally inefficient.

Classifiers reveal information for two main reasons.

• Memorability.Machine learning indeed can extract insights

from data. Specifically, the relation and correlation embed-

ded in the training data are gathered in the model. Thus,

classifiers inherently reveal some information. For example,

records which are classified with high confidence are always

assumed to have a statistically similar population property

(i.e., similar distribution) with the training data.

• Accessibility.More specific knowledge inferred by the out-

puts of queries makes the attacks possible and more effective

than others (the one with fewer queries) even if both are

implemented with the same attack algorithms. Shokri et
al. [25] report that numbers of predicted probabilities output

obtained through an accessible query interface can be used

to identify whether a given record is used in training set.

Demonstrated in [29], adversaries have a better performance

in model extraction attack if increasing the number of query

accesses to the model.

It is worth noting that we are not intended to change any trained

model but rather interested in preventing useful information from

being revealed when allowing access to the trained model. That

is, we do not redesign any machine learning algorithm or mitigate

the training set. Consider the following example: there is a facial

recognition model (e.g., FaceID) which has better performance in

recognizing faces than others, even if all are trained on the same

training set. The model is carefully designed and well deployed;

thus, it does not make sense to reconstruct a model that possibly

damages the predictive power. In our work, we focus on how to

build an add-on to discover information leakage and protect valu-

able classifiers when allowing query access to the model. We can

extrapolate and uncover specific hidden information implied in

prediction output vectors. By doing this, the secret sauce (i.e., both
dataset and training algorithm), which makes the facial recognition

model keep ahead of others, remains confidential. Therefore, the

type of problem we focus on is related to the second reason (acces-

sibility). To deal with it, we designML defense, which consist of

one or more simulators and one auditor. A simulator reconstructs

the adversaries’ information which is obtained via an accessible

query interface but possibly contributes to ML attacks. To do this,

we use a hidden representation learner to uncover useful properties

of obtained data. Later, we use an auditor to audit how different the

adversaries’ data is from the target ones (i.e., the training dataset).
An auditor learns a function au : {MD ,MA} → {0,1}, where MD is

a representation of training data andMA is a representation learned

by adversaries. This function works as a privacy measurement, and

it is considered to be a privacy breach if the value is greater than a

threshold (i.e., adversaries almost learn the data distribution hidden

in the training data). In that case, the auditor will begin to reject

any query access.

In this paper, we investigate countermeasures to attacks devel-

oped by continuous accesses via a prediction query interface, i.e.,
ML prediction API threats. Note that the proposed ML defense is
independent of the existing classifiers. We first assume the attacker

has no prior knowledge of the classifier (i.e., its parameters) and the

training datasets. In the case of black-box access, we first provide

the insights on which our methodology is based and later we build

our prototype by setting up a framework using a simulator and an

auditor. We also evaluate our method on different ML classifiers

such as logistic regression and deep neural networks.

Our work evinces that existing privacy issues faced by machine

learning applications can be somewhat mitigated. The main contri-

butions of our work are as follows. First, we study and analyze the

fundamental reasons for successful prediction API threats. The in-

sights shown in the following section describe the feasibility of our

work. Second, we put forward a prototype framework against exist-

ingML prediction API threats that, to the best of our knowledge, has

not been theoretically studied before. Our methodology is shown

as an add-on to existing MLaaS systems. Last, we further show the

effectiveness and efficiency of our methodology: we successfully

defend against ML attacks via prediction APIs. For instance, we

prevent membership attacks which are implemented via neural

networks and make the attack accuracy degrade to 52%. We believe

our methodology can be applied to most existing commercial ML

classifiers, defending against general attack strategies.

The rest of our paper is organized as follows: Section 2 introduces

the necessary background and references. We define the system

model and attack/defense problems in Section 3. Section 4 provides

the insights from existing works and addresses the design space. In

Section 5, we state our problem mathematically. Section 6 presents

the protocol for ML prediction API threats. Section 7 shows the per-

formance evaluations, followed by discussion in Section 8. Finally,

Section 9 concludes with potential future works.

2 BACKGROUND AND RELATEDWORKS
Machine learning plays an increasingly significant role in numer-

ous areas such as medical management [8], financial industry [18].

Many corporations and organizations are building MLaaS systems.

However, privacy and security concerns are one of the most impor-

tant issues in these security-critical areas.

2.1 Existing Attacks
Recently, researchers demonstrate that both the classifiers and train-

ing data can be inferred. More specifically, Tramèr et al. [29] showed
that it is possible to steal machine learning models when only given
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Figure 1: System Model Overview. ML defense works as an
add-on for currentMLaaS systems. To defend against predic-
tion API threats, ML defense extends the outputs of a target
classifier i.e., frommt (x ) toMdt (x ).

prediction results. The work of Ateniese et al. [2] declares that
sensitive information or pattern of training data can be inferred

by hacking into classifiers. In their work, they showed that it can

infer whether an accent of speakers was originally employed in the

voice recognition system. Later on, Fredrikson et al. [9] extended
the work and devise the model inversion attack, which is able to

reconstruct an image from a particular label in a facial recognition

system. Shokri et al. [25] continued to show that it is possible to

infer whether a certain record is in the training data by membership

inference attacks. These attacks highlight the need for protecting

classifiers and private data from leakage when using machine learn-

ing services. In this paper, we focus on the type of attacks whose

success benefits from excessive query accesses such as member

attacks and model extraction attacks.

2.2 Existing Defenses
In the query auditing problem [14, 21, 22], an auditor requires to

decide whether to answer or deny the query when given a newly re-

ceived query. There are some related works with privacy-preserving

data access [15, 16]. Our work can be considered as an extension

of the query auditing problem, where we support richer queries of

different types, i.e., machine learning, and deep learning. However,

previous techniques cannot be applied since the query function is

not any polynomial function and none of the state-of-the-art tools

can be used to solve the solution space of the function without given

an explicitly mathematical definition. A set of works are developed

for privacy-preserving training and privacy-preserving classifica-

tion. Homomorphic encryption is employed to protect training data

and predictions in many works [4, 31]. For example, Bost et al. [4]
show that a third party can compute encrypted predictions on en-

crypted medical data using fully homomorphic encryption. Zhang

et al. [31] employ somewhat homomorphic encryption to protect

private training data from leakages when an ML model is trained

by a third party. Moreover, the work of Shokri and Shmatikov [24]

introduces distributed collaborative learning to protect the privacy

of the training data. In that system, multiple parties individually

train their local models and collaboratively train a global model by

sharing gradients of the local models through a parameter server.

Collaborative learning is also extended in [6, 20, 30]. As shown

in [9], differential privacy also plays an important role in privacy-

preserving training. However, these protections are useless when

we consider continuous query accesses. Specifically, no work has

been done to deal with prediction API threats to the best of our

knowledge. Those attacks are shown to be robust against some mit-

igation strategies (e.g., using regularization, coarsening precision
of the prediction vector) in [25, 29]. In this paper, we design and

implement a practical defense mechanism against prediction API

threats.

3 PRELIMINARIES
3.1 System Model
The system model is depicted in Fig.1. A machine learning as a

service system is built on the cloud server. Specifically, there is a

trained classifiermt being stored in a MLaaS system. The trained

classifier (i.e., target model inML attacks)mt is kept confidential. As

shown in Fig.1, ourML defense is an add-on to the MLaaS system.

We do not alter any functionality ofmt but only extend the outputs.

Any authorized users can input a query X , where X is a vector of

prediction input. A defensor, who establishes an ML defense, will

determine whether it is safe to answer the newly received query

and then returnMdt (X ).

3.2 Threat Model
The Defensor, who constitutes ML defense and works as a part of

cloud-based machine learning service, is considered honest. They

will audit and prevent any adversary from probing the trade se-

cret hidden in the trained models. Users are always considered as

semi-honest adversaries, who follow the protocol specifications but

aim to infer sensitive information while being allowed to access a

profitable model. Regarding the knowledge of adversaries, we only

consider one scenario, black-box access, where adversaries have

no prior knowledge of target models’ parameters or training data.

They can query a model only via prediction APIs. We assume there

is no collusion among multiple users in our work. Otherwise, we

will consider all users as one giant user, which means the Defensor

will take the knowledge of all users as the adversaries’ dataset and

will not repeatedly answer any query.

3.3 Attack & Defense
We first define the following sets and functions.

(1) Dt : the set of all training samples on which the target model

is trained with respect to an ML task t .
(2) S: the set of all samples in the sample space (e.g., all digit

images).

(3) Ct : the union set of classes for the task t where |Ct | is defined
as the number of the mutually exclusive classes.

(4) Qt = {X |X ∈ S and X ∈ Rd is an input with respect to

the ML task t }. Qt is the set of all queries proposed by ad-

versaries and sampled from S. Each ML classification task



assumes a data-generation distribution from which sample ∈

Dt is generated. Researchers believe that records which are

classified with high confidence have a similar distribution

as Dt [25]. Since we do not know the exact query space of

adversaries, we approximate Qt by the union of samples

classified with high confidence.

(5) Yt : the set of probabilities output of a c-class classifier with
regard to the task t . Specifically, each element of Yt is a

confidence value vector y ∈ Rc where c = |Ct |.
(6) At : the set defined as the adversaries’ dataset. If adversaries

are only allowed to black-box access, the query set Qt and

its corresponding Yt jointly establish At .

Definition 1. A model or a classifier for a classification task t is
a functionmt that maps S to Yt .

Definition 2. Given an input x ∈ S, the prediction API threats
for a classification task t are defined as follows.

• Model-related attacks are modeled as a function дmt : x ×

At → ˆYt .

• Training data-related attacks are defined as a function дdt :
x × At → [0,1].

Note that, Yt is defined as the set of all prediction outputs of the

target model mt while ˆYt represents the outputs of adversaries’

extracted model дmt . The ground-truth classifier of the correspond-

ing training data set Dt ismt , we then can use the total variation

distance (denoted as fd ) to evaluate the performance ofдmt andдdt ,
respectively. The output of fd represents the probability of whether

there exists a successful attack. In a general source data-related

attacks, adversaries can determine whether it is one of the samples

within the dataset or a mitigated one (which belongs to the same

individual adult) with a given record.

Definition 3. Given a training dataset Dt and a modelmt , an
ML defense against prediction API threats is a function Mdt : S →
Yt ∪ ∅, where ∅ represents the judgment that the current query is
likely insecure. Specifically, let P = max{ fd (дmt (x ),mt (x )),дdt (x ))},
if given an input x , depending on whether a prediction API threat
proceeds,ML defense makes the following decisions:

• x is insecure, i.e., P ≥ 1−δ , it returnsMdt (x ) = ∅. Here, P is a
measurement for detecting any privacy leakage in the query

access. δ is a privacy-related parameter, which is always of a

large value in practice since a larger value represents better

privacy.

• Otherwise, we have Mdt (x ) =mt (x ) and x is denoted as a

secure query in this case.

Our goal is to design such anML defense, which is a countermeasure

to the state-of-the-art ML attacks. Our ML defense prevents the
adversaries from learning the hidden data-generating distribution

of the training data. We will explain and address the design space

in Section 4.

4 INSIGHT & DESIGN SPACE
4.1 Insights
Machine Learning Model is Based on the Training Data.Ma-

chine learning is about learning aspects of the unknown data-

generating distribution from which the training data is sampled.

(a) Digits dataset (b) Swiss Roll dataset.

Figure 2: Manifolds of two different datasets. We respec-
tively apply principal components projection (PCA[13])
to represent the digits and swiss roll dataset in two-
dimensional space.

ML provides a predictive function that maps a feature vector,X, to a
set of response (i.e., categories or real-value output vectors), Y. The
distribution of training data can be characterized by a probability

density function, denoted P(X,Y), which is determined by unknown

parameters. Then, ML aims to best approximate the true parame-

ters of the distribution. Indeed, superior training sets make a more

effective classifier since more specific knowledge inferred by the

training data is formed. Thus, it is fair to say that the machine learn-

ing model is exclusively dependent on training sets. In other words,

we can keep the confidentiality of the model if adversaries cannot

successfully learn the distribution of the dataset (i.e., P(X,Y)).
Manifold Hypothesis in Machine Learning. Manifold is a

topological space [5], which can be described by a collection of

charts (i.e., map), e.g., x2 + y2 = 1 is a one-dimensional manifold

(circle). Researchers speculate that the data-generating distribution

(such as those involving images, video, text) is assumed to be highly

concentrated in the region of embedded low-dimensional manifolds

for many AI tasks [5, 23]. For example, a set of images associated

with the same object class can form a low-dimensional manifold.

From the perspective of manifolds, machine learning is used to

capture aspects of manifolds and then disentangle the manifolds of

different object classes. That is, data distribution can be represented

by manifold. For example, Fig.2 depicts that data distribution is

concentrated and represented in two-dimensional space. Besides, as

shown in Fig.2, the differences embedded in training sets are finally

presented in the manifolds, where we have different manifolds

when given different data distribution.

Original Training Set v.s. Adversaries’. Given enough input

records along with real-value prediction outputs, the work of [29]

shows that using the similar optimization method used in the train-

ing phase (i.e., to make an appropriate loss function converge to

a global minimum) can achieve model extraction attack in a mul-

ticlass logistic regression setting. Moreover, a number of input

records which are with high classification probability contribute to

inferring whether a given record is a component of the training set

(i.e., members) [25]. In that work, it is assumed that records classi-

fied with high confidence have a similar distribution to the training

records. That is, the data-generating distributions, from which the

real training records and adversarial data are sampled, are similar.

These insights raise a question: whether the similar distributions

have an impact on successful attacks. As demonstrated in [25], they

have a successful membership attack (up to 97%) on a standard



Figure 3: Comparison of manifolds. We exhibit the data dis-
tribution of the target training data and the data used for
training a membership attack model in CIFAR-100. The top
shows the 2D projection using a random 10 × 10 unitary ma-
trix. The bottom is the two-dimensional manifold represen-
tation using PCA.

convolutional neural network which is trained on the CIFAR-100

dataset. We then use manifolds to visualize the data distribution.

Fig.3 compares the distribution of the training data and the syn-

thetic one on which the successful membership inference attack

is trained. Indicated in Fig.3, similar data distributions likely have

an impact on successful model extraction attacks. These results

also empirically state that records classified with high confidence

have a similar distribution with the real training set. Thus, it is

reasonable to define adversaries’ dataset to be the union of samples

classified with high confidence, and compare its distribution with

the distribution of the training dataset.

4.2 Design Space & Principles
Machine learning model is highly dependent on data-generating

distribution from which the training records are sampled. As de-

picted in Fig.3, we extrapolate that similar data distributions likely

have an impact on successful ML prediction API threats. We then

leverage these opportunities and propose an ML defense proto-

col which audits each received query by taking training data and

adversarial data (learned from ML query access) as inputs. The

fundamental idea behind our defense is to prevent adversaries from

recovering the similar data-generating distribution when facing a

batch of responses to ML queries. The most challenging part is to

compare those unknown data-generating distributions while ensur-

ing efficiency and prediction accuracy. A careful protocol design

is required to fulfill this purpose. Indeed, a successful ML defense

system should respect some necessary principles:

• Feasibility: Our protocol should manage to defense against

existing ML attacks which are triggered by excessive ac-

cesses. Also, our strategy should not damage the predictive

power of any existing classifier.

• Efficiency and Scalability: Response time is important when

providing ML services. Moreover, we need to make our pro-

tocol scalable such that it can be adaptive to different MLaaS

systems.

• Universality: Facing a variety of profitable classifiers, our

protocol should provide a universal and general countermea-

sure against ML models used on MLaaS systems. We need

to design a strategy which is independent of existing ML

models.

5 PROBLEM STATEMENT
As mentioned before, there can be privacy loss if the data distri-

bution of training dataset is disclosed. Besides, the knowledge of

data distribution contributes to any attack which leverages the

technique of generative adversarial network (GAN) since the goal

of GANs is to generate similar-looking samples to those in the train-

ing set (i.e., ideally with the same distribution). Thus, we compare

data distributions of adversaries’ dataset (represented asMAt ) and

the training set (represented asMDt ) in our work. Our problem is

defined as follows.

Given a training dataset Dt , a modelmt and an ML query xl ,
to against prediction API threats, ML defense makes a decision

based on P
(
Ml

At
=MDt

)
, whereMl

At
is the representation of

adversaries’ dataset, i.e., Al
t = A

l−1
t ∪ xl ,yl . yl is the correspond-

ing prediction vectors of xl . If the result of the measurement for

detecting any privacy leakage in the query access is greater than

a budget, which is controlled by a privacy-related parameter (i.e.,
P ≥ 1 − δ ), we deny the query i.e., Mdt (x ) = ∅. Otherwise, we
return the prediction results, denoted asMdt (x ) =mt (x ). That is,
we define privacy as P, and it is considered a breach of privacy

when two data distributions are similar.

6 ML DEFENSE PROTOCOL
6.1 Protocol Overview
To defend against prediction API threats, we propose a framework

ML defense as depicted in Fig.4. In Section 4, we empirically pro-

vide evidence to show an ML classifier is mainly based on the data

distribution. Motivated by these observations, our ML defense (i.e.,
the Defensor) consists of two components: (1) a simulator that sim-

ulates and precisely represents unknown data distributions; (2) a

auditor who strives to audit whether a received query is safe to

answer by comparing two given data distributions which are rep-

resented by the simulators. Fig. 4 illustrates the workflow of our

framework. Notably, the framework only works as an add-on when

deploying a target model, and the output of the auditor is fed to

the prediction outputs of the target model.

6.2 Simulator
The simulator is a function s: X → M that characterizes a given

dataset. One naïve approach is that we first define a data distribution

P, and then learn the probability density of the data. This is often

done by optimizing the parameters andmaximize the log-likelihood,

i.e.,maxθ
1

m
∑n
i=1 loдPθ (X ,Y ), where X is input vector while Y is a

set of response. The latent data distribution of adversaries’ dataset

At is then be captured by approximating a probability distribution
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Figure 4: The workflow of ML defense. Our ML defense in-
cludes one or more simulators and one auditor. A simulator
generates a good representation to simulate unknown data
distribution hidden in a given dataset, followed by an audi-
tor who audits privacy leakage by comparing two data dis-
tributions characterized by the simulators.

on At . Many well-established methods such as kernel density esti-

mation or Parzen window estimation are often used to estimate the

density function of data distribution [3]. However, these methods

derogate one of the essential design principles – efficiency due

to the training time consumption. Therefore, it unlikely trains a

machine learning model based on the dataset of adversaries. On

the other hand, if the simulator is implemented with the idea of

log-likelihood, it requires a very large number of examples to be

close to a true log-likelihood [28].

When comparing two data distributions, we use the simulator

to represent data distribution in low-dimensional space instead of

comparing adversaries’ dataset and the training dataset in high-

dimension directly. This is because we suffer from the curse of
dimensionality [10] in high-dimension where the distribution of

the training dataset becomes more and more sparse. The ideal

comparison should be applied in a low-dimensional feature space.

The well-known manifold hypothesis [23] puts forth that in

many cases, such as those involving natural data, it forms a low

dimensional manifoldM in an embedding space. Particularly, em-

pirical evidence is shown in Section 4 emphasizes that manifolds

can capture the distributions of data samples. From this perspec-

tive, it is very likely there exist a manifold formed by adversaries’

dataset which represents its data distribution in low-dimension. As

an example of this approach, there are two distinct manifolds em-

bedded in Euclidean space: one formed by adversaries’ dataset At ,

another formed by the training datasetDt . We apply the techniques

of UMAP [19] in producing a low dimensional representation to

approximate the manifold. This is because the technique arguably

preserves more local structures with superior running time in com-

parison to previous techniques. The hidden data distribution can

be kept with the technique of UMAP. We will show our simula-

tor has excellent performance in preserving local structures when

compared with PCA.

6.2.1 Approximating the manifold. The approach is to use some

simpler spaces in such a way it can resemble the topological prop-

erties of the dataset. These simplicial complexes are built from

points, lines, triangles and other higher dimensional simplices as

depicted in Fig.5. If data is uniformly distributed along the manifold,

a neighborhood-graph can be simply built and laid out in lower

dimension because the manifold can be well covered by balls with

a suitable radius. Otherwise, we can find a metric if we assume the

manifold has a Riemannian metric. Formally, let the input data be

X ∈ Rn , for each point X ∈ M, we approximate geodesic distance

from X to its neighbors which are located in a ball centered at

X such that data is approximately uniformly distributed if creat-

ing these custom distance. For each point X , it stretches to a ball

centered at X with a fixed radius (the distance from X to its k-th
nearest neighbor). We then have a discrete metric space for each

point where each edge in the metric space can be weighted by a

defined distance function. To merge a family of discrete metric

spaces, the natural way is to convert the metric spaces into fuzzy

simplicial sets, which provides a combinatorial approach for these

discrete metrics. The fuzzy set is defined as follows:

Definition 4. For an universe of discourseU and x ∈ U , a fuzzy
set F is defined as: F = {(x ,µF ),x ∈ U }, where µF is a membership
function associated with F that maps x ∈ U to the interval [0,1].
Thus, each element of F is with a fuzzy membership strength.

The fuzzy simplicial set is a simplicial set (which is made up

of simplices) in which every simplex is with a fuzzy membership

strength [19]. For a metric space local to X , the distance is consid-

ered as the weight (i.e., fuzzy membership strength) of 1-simplices,

and we set the distance to the nearest point as 0 while each 0-

simplex which is the face of some 1-simplex is defined as 1. When

merging two edges which are associated to incompatible metric

spaces and with respective weights α and β , the combination of

weights together on a single edge is defined asw (α ,β ) = α +β −α ˙β
under a probabilistic fuzzy union. Notably, this weight can be re-

ferred to as the probability of the existence of the new edge.

6.2.2 Optimizing based on fuzzy set cross entropy. Let Z ∈ Rl be a
low dimensional representation ofX ∈ Rn (l << n). To optimize the

low dimensional layout of data, we minimize the distance between

two fuzzy graphs using cross-entropy: one is formed by the low

dimensional set (denoted as {Z }) and the other is generated by the

input set (regarded as {X }). Assume E is a reference set of all possible

1-simplices, µl is the weight of 1-simplex e in low dimensional

representation while µh is the weight in high dimensional case,

then the cross-entropy is defined as:∑
e ∈E

µh (e ) log

(
µh (e )

µl (e )

)
+ (1 − µh (e )) log

(
1 − µh (e )

1 − µl (e )

)
. (1)

Here, the first term µh (e ) log
(
µh (e )
µl (e )

)
forces a clump on the points

spanned by edges with large weights associated to the high di-

mensional representation, i.e., µh (e ) is high. This is because the
first term will be minimized only if µl (e ) is large, which indicates

the probability of the existence of the simplex is high. Conversely,

the last term (1 − µh (e )) log
(
1−µh (e )
1−µl (e )

)
provides appropriate gaps

between the points whose edges associated to high dimensional



0-simplex 1-simplex 2-simplex 3-simplex

Figure 5: Simplices. 0-simplex is a point, 1-simplex is a line
segment, 2-simplex is a triangle (with three 1-simplices as
faces), and 3-simplex is a tetrahedron (with four 2-simplices
as faces).

case are with small µh (e ). This term will be minimized when µl (e )
is as small as possible.

When we construct a low-dimensional representation of high

dimensional data, it is important to choose a suitable value for the

number of neighborhoods of each point. As the number is increased,

we manage to capture more global structure of data but some fine

details of local structure are lost. Empirically, it is shown that 15-20

is sufficient to cover the overall view of the data. Besides, to save

some trouble, we explicitly want the distance to be a Euclidean

distance such that the manifold is embedded in low dimensional

Euclidean space.

6.3 Auditor
The auditor is defined as a function au : MD × MA → [0,1]

that determines whether a privacy leakage exists.MD is a low-

dimensional representation of the training dataset whileMA rep-

resents for the adversaries’ dataset. An ideal auditor should hold

two properties:

• Completeness: if privacy is not preserved due to excessive

answers,Mdt (x ) = ∅. In other words, if along with historical

Qt andYt , there exists a privacy leakage if answer the newly

received query, the auditor will reject the query.

• Soundness: secure queries are never rejected.

An intuitive auditor can be implemented by comparing two

individual fuzzy simplicial representations of Dt andAt , followed

by making use of fuzzy set cross entropy. However, in practical,

they are incommensurable regarding cross entropy because these

two obtained fuzzy sets are not established on the same reference

set F . We thus propose numerical measurements in the following.

6.3.1 Geometry-based Auditor. We first introduce a coarsely nu-

merical measurement by using geometrical approximations. Let

MD = {Z1,Z2 · · · ,Zl } be the set of l-dimensional vector repre-

sentation for the training set Dt = {X1,X2, · · · ,Xn }. For compu-

tational conveniences, we reconstructM and define a spherical

manifold, where each sphere is described with a centroid c ∈ Rl

and a radius r . Remark that,MD will be approximated by a circle

if in the case of l = 2. We define the centroid and radius as follows:

c =
∑
i Zi
n
, (2)

r =
| |c − Zi | |2

n
. (3)

We then have a spherical manifold BD (with a centroid cd and

a radius rd ) defined for MD ∈ R
l
. MA ∈ R

l
is described as a

sphere manifold BA with a radius ra and located in the centroid ca .
Afterward, we can measure the probability of leakage P by checking
if two spherical manifolds match.

Definition 5. Given sphere manifold representations BA and
BD , for any point X ∈ BA, the probability P is defined as:

P = P (Xi ∈ BD |Xi ∈ BA ). (4)

The privacy is preserved if BA scarcely intersects with BD . Oth-

erwise, if BD entirely includes BA i.e., P ≥ 1 − δ , it is argued that

there is a privacy breach. When δ is larger, it encourages our au-

ditor to become much stricter and more relaxed to reject received

queries. We will further evaluate this in Section 7. In practice, we

generate individual sphere manifolds for examples that belong to

the same class inM such that there will be |Ct | manifolds in total.

Thus, P turns to be

∑Ct
ci P (Xi ∈ B

(ci )
D |Xi ∈ B

(ci )
A ) |Ct |.

In the case of l = 3, the probability turns to be the volume ratio

of the intersection to BA, i.e.,
Vol (BA∩BD )

Vol (BA )
, the value of which

equals to
π (rd+ra−d )2 (d2+2dra−3ra 2+2drd+6rard−3rd 2 )

12d , where de =
| |cD − cA | |2. For l = 2, P is determined by the area ratio.

A shortcoming of this sphere-based auditor is that it fails to

capture the details of topology structures. Since we take all points

in the reconstructed space to be a single connected blob and neglect

the difference between some disconnected and scattered data, the

estimated P may be higher than the ground-truth. An ideal auditor

should barely tolerate this.

6.3.2 Topology-based Auditor. To remedy the above issues we pro-

pose to use topological approximations inspired by the work of [17].

The difference is that we reconstruct a simplicial complex for the

manifold representation M and then compute the homology of

corresponding simplicial complexes where homology is a topology

property known to be efficiently computable.

The precise definition of homology is defined in [11, 26]. Ho-

mology group is generally used to classify topological spaces in

algebraic topology. In the case of Fig.6, we have one hole appear

in (b) and then disappear in (c) by gradually increasing the value

of ϵ . ϵ1 − ϵ0 is then defined as the living time of that hole. It is not

sufficient to count the number and the type of holes appearing at

each ϵ . The short-lived topological features are always considered

as the signal with noise. A barcode is a graphical representation of

persistent homology group of chain complexes. It is able to filter

out the topological noise and capture significant features of data

qualitatively if we use the barcode representation. Building on [11],

it is argued that the change of homology with respect to ϵ can

be encoded in persistence barcodes. Therefore, we compare the

topological properties ofMD andMA based on the barcodes by

taking the approach in [17].

The main idea is to measure the mean of relative living time
(MRLT) of each hole where the relative living time is defined as the

ratio of living time to the total time (when all points are connected

to a single blob). The topological similarity of two low-dimensional

vectorsMD andMA are then measured in the following way:

S (MD ,MA ) =
∑
i
(MRLT (i,MD ) −MRLT (i,MA ))

2, (5)



(a) (b) (c)

Figure 6: Homology. We have balls with radius ϵ center at
each point of M. Then we show different simplicial com-
plexes and homology with increasing values of ϵ . For any
subset of size i + 1 in which all the pairwise balls are mutu-
ally intersected, we then add a i-dimensional simplex to the
simplicial complex. If the highest dimension of simplices is
updated to k + 1, the so-called k-th rank homology Hk is in-
troduced. For example, H0, H1 and H2 are respectively intro-
duced in (a), (b) and (c). There is one one-dimensional hole
in (b) while zero two-dimensional hole in (c).

where i represents for the rank of Hi . We first fix the dimension i
and then study the corresponding homology.

In our work, we apply fuzzy set cross entropy to optimize low-

dimensional representation in two types of auditors: geometry-
based auditor and topology-based auditor. In essence, it is allowed to

only apply topology-based auditors by comparing the adversaries’

dataset and the training dataset directly in our framework, but

the cost resulted from an intolerant delay for high-dimensional

homology comparison is an issue. Our evaluation will show the

efficiency of our auditor (Section 7).

7 EXPERIMENTS
In this section, we evaluate the accuracy, feasibility, efficiency, and

properties described in Section 6. We first describe the experiment

setup, followed by the results of our simulators and auditors in

several settings. We then study how our defense works against

different datasets and different models in detail. Note that all error

bars we use in this work represent the standard deviation (SD).

7.1 Experiment Setup
Data. We mainly use MNIST and CIFAR-100 for evaluation due to

the distinct accuracy of attacks behaved in [25]: 51% for the first

term while the other is up to 97%. On MNIST, there are 60,000

images for the training set and 10,000 examples in the test set.

CIFAR-100 have in total 50,000 32 × 32 colorful training images

(there are precisely 5,000 images for each class) and 10,000 test

images. We then respectively select different fractions of MNIST

and CIFAR-100 to evaluate our defense.

Model. For bothMNIST and CIFAR-100, we train a convolutional

neural network (CNN) with two convolution and max-pooling

Figure 7: Our simulator vs. PCA. We show manifolds of the
MNIST datasets which belongs to the same class (e.g., images
of digit one in our case) as an example. The first row shows
manifold representations of a dataset which has the simi-
larity 80% with MNIST while the third row has a 50% sim-
ilarity. For comparative purpose, we put the manifolds of
the MNIST dataset in the middle. The manifolds on the left
side (generated with PCA) are indistinguishable, which fail
to capture sophisticated structures.

layers, followed by a fully connected layer where the hidden neuron

size sets to 256. Let Tanh be the activation function, and we set the

learning rate to 0.001 and the maximum numbers of the epoch to

100. On MNIST datasets, we additionally train a logistic regression

with an L2 penalty and set the batch size to 32, and learning rate to

0.001.

For all our experiments, we use a machine running with Intel(R)

Core(TM) i7-6500U CPU, 16GB RAM, and the python libraries such

as Theano.

7.2 Simulators
We first evaluate the performance of our simulator and compare it

with one of the best known manifold learning schemes – PCA. Fig.7

shows the low-dimensional manifolds of different fractions of the

MNIST datasets. When we check the three figures on the right side,

the manifolds in the first row have better similarity to the middle

one compared to the manifolds presented in the third row. Here,

similarity means the overlap of two given datasets. The result states

that similar distributions likely share the same topology structures.

The PCA has a higher efficiency which costs 4s on average while

our simulator takes up to 172s . However, the results of Fig.7 exhibit
our simulator can capture more sophisticated structures such that

it provides an opportunity to further comparisons in the auditor.

7.3 Auditors
Since an auditor is used to compare low-dimensional manifolds

drawn from simulators, we thus evaluate our auditors in different
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Figure 8: Value of P and topology scores in the dataset gen-
erated from varying fractions of CIFAR-100 (considered to
be different similarities).

settings of the dimension (denoted as l ). We perform our auditors

on comparing the CIFAR-100 dataset and the different numbers of

the dataset. Fig.8(a) reports the performance of our geometry-based

auditor, and the results highlight the accuracy of the auditor that P
approaches to one as the similarity increases (i.e., from 10% to 100%).

A striking revelation in Fig.8(a) is that P is high even for a low

similarity when l = 2. The reason for the high value on this case is

that data of CIFAR-100 concentrates on a low-dimensional manifold

such that only a very limited number of data can cover the manifold

of the CIFAR-100 dataset. Fig.8(b) reports the topology similarity

while varying the size of datasets and l . The results emphasize the

accuracy of our topology-based auditor: the topology score drops

as the similarity increases. However, those values are so minimal

that how to define an appropriate threshold in a topology-based

auditor remains to be solved. The results show the robustness of

our auditors – they have similar outputs whenever l = 2 or l = 3 if

they share the same similarity. From stability account, we set l = 3

in the following experiments.

7.4 Feasibility
Surprised by the distinct performances of membership attacks in the

MNIST and the CIFAR-100 mentioned before, we recover the exper-

iments by respectively training a CNNmodel on 80% of the training

datasets. We then have 31% test accuracy for CIFAR-100 and 98% for

the MNIST. The training dataset of attack model (i.e., adversaries’
dataset) is built on the leftover training data such that there is no

overlap. We show the topology similarity of adversaries’ dataset

and the real training dataset in MNIST and CIFAR-100 dataset. A

reasonable explanation of the distinct attack performances is pre-

sented in Fig.9. The successful attack (which is based on CIFAR-100)

is shown to have a topology approximate the real one.

Fig.10(a) and Fig.10(b) report our performances on MNIST. We

apply ML defense to a logistic regression model where the test ac-

curacy is 96%. The results indicate that the setting of δ (the privacy-

related parameter) should be flexible and need carefully deploying

while applied to different datasets on which a model is trained. As

depicted in Fig.10(a), if we set δ to 0.2 (i.e., P should be less than

80%), it allows answering near 30,000 queries in our defense and

of which queries are considered the ones with high classification

confidence. However, it needs near 110,000 queries on average to

get a successful model extraction attack (up to 98%) while the mem-

bership attacks with 53% attack accuracy rely on 30,000 synthetic
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(a) Topology similarity for MNIST.
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Figure 9: Topology similarity for images in MNIST/CIFAR-
100.We show images belonging to class 1 as a running exam-
ple. The blue one represents the topology of the data distri-
bution fromwhich the target training data is sampled while
the orange one is associated with the training data of the
attack models.
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Figure 10: ML defense varying numbers of queries in a logis-
tic regression model being trained on MNIST.

records which are generated by 30,000 × 100 queries on average.

When concerning applicability, a Defensor can calibrate the param-

eters carefully beforehand and consider the worst case, e.g., start to
deny queries when answering 110,000 queries regardless of attack

types. These results report that there is a considerable gap between

privacy in ML defense and the state-of-art attacks. In addition, our

protocol reduces the number of queries being answered (denoted

as the utility of an ML model). The improvement of utility is left as

an open question by our work.

7.5 Efficiency
We apply ML defense to CNN models which are trained on MNIST

and CIFAR-100, respectively. Fig.11 and Fig.12 jointly illustrate that

the efficiency (one of the most significant properties) of our defense

is acceptable and independent of different models. The results em-

phasize that our geometry-based auditor is efficient. The response

time of a query whose serial number is 50,000 (known to be the

accumulated number of the query accesses) is nearly 150s while
the cost of the topology-based auditor is slightly higher. A delay of

2 minutes per query may be not great in practice when the serial

number grows to 50,000, which requires further improvement.

8 DISCUSSION
The effectiveness of ML defense mainly depends on two assump-

tions: (1) most of the successful prediction API threats fundamen-

tally rely on a similar data distribution derived from excessive query

accesses; (2) the low-dimensional manifold representations are com-

parable based on geometric or topological properties. The empirical

evidence exhibit that our assumptions are reasonable. We admit

our auditor is so cautious that some queries will be rejected even
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Figure 11: Efficiency. The ef-
ficiency of ML defense for a
CNN model being trained on
the MNIST dataset.
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Figure 12: Efficiency. The ef-
ficiency of ML defense for a
CNN model being trained on
the CIFAR-100 dataset.

when they do not lead to privacy breach in the future ML attacks.

If the adversaries have multiple accounts to attack the MLaaS, the

system can consider all users as a giant adversary and reform the

adversaries’ dataset based on all query histories. This miscalcula-

tion is because defense schemes always have limitations and may

lead to query rejections by mistake. We hope that our work can

motivate more works to propose a more powerful ML defense such

that it can support more queries while taking privacy implications

into account.

For the sake of effectiveness, we compare low-dimensional mani-

fold instead of high-dimensional space. The service of quality might

be degraded in our protocol since auditor may reject queries even

the adversaries’ datasets are different from the training set in high-

dimension space. We will find more powerful countermeasures to

fulfill this gap in the future.

9 CONCLUSION
We have designed and implemented ML defense, which is the

first framework to defend against prediction API threats. Instead

of devising a defense against one specific type of ML attacks, we

consequently investigate the common intrinsic properties among

the state-of-art ML attacks and propose a general ML defense. Our

defense is an independent, quantitative approach such that it does

not require to reconstruct either a classifier or a training dataset

from the existing MLaaS systems. ML defense handles an input

query in two steps: finding a low-dimensional representation for ad-

versaries’ dataset and then comparing them using either geometric

metrics or topology structures. These two procedures jointly pro-

vide feasibility and sufficient efficiency of our defense. Experiments

demonstrate the effectiveness and efficiency of ML defense.

ML defense is a first step towards finding a general countermea-

sure to prediction API threats. However, from the utility perspective,

we realize that there is an inherent issue of our approach: the ac-

cepting ratio will be lower. Thus, finding more powerful auditors

is left as an open question. We leave an in-depth study of refining

our countermeasures for future work.
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