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Abstract—Continuous blood pressure (BP) monitoring using
wearable devices has received increasing attention due to its
importance in diagnosing diseases. However, existing methods
mainly measure BP intermittently, involve some form of user
effort, and suffer from insufficient accuracy due to sensor
properties. In order to overcome these limitations, we study
the BP measurement technology based on heart sounds, and
find that the time interval between the first and second heart
sounds (TIFS) of bone-conducted heart sounds collected in the
binaural canal is closely related to BP. Motivated by this, we
propose HearBP, a novel BP monitoring system that utilizes in-
ear microphones to collect bone-conducted heart sounds in the
binaural canal. We first design a noise removing method based on
U-net autoencoder-decoder to separate clean heart sounds from
background noises. Then, we design a feature extraction method
based on shannon energy and energy-entropy ratio to further
mine the time domain and frequency domain features of heart
sounds. In addition, combined with the principal component
analysis algorithm, we achieve feature dimension reduction to
extract the main features related to BP. Finally, we propose a
network model based on dendritic neural regression to construct
a mapping between the extracted features and BP. Extensive
experiments with 41 participants show the average estimation
error of 0.97mmHg and 1.61mmHg and the standard deviation
error of 3.13mmHg and 3.56mmHg for diastolic pressure and
systolic pressure, respectively. These errors are within the ac-
ceptable range specified by the FDA’s AAMI protocol.

I. INTRODUCTION
Blood pressure (BP) is a crucial indicator in the assessment

of cardiovascular health and disease management, which can
provide doctors with in-depth insights for diagnosis. Hyper-
tension is a condition in which BP is continuously elevated
and is one of the critical risk factors for cardiovascular
disease [1]. Hypotension, in contrast, may indicate cardiac or
renal disease, syncope, coma, or even shock [2]. In addition,
once BP continues to rise without control, it can lead to
many life-threatening diseases, such as myocardial infarction,
cerebral infarction, or renal failure [3]. Therefore, accurate
and continuous BP measurement is of great significance for
people’s daily lives.

The “gold standard” is placing specific medical devices in
the patient’s arterial blood vessels [4]. However, it is tech-
nically challenging to place medical devices such as arterial
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catheters in the human body, especially in children, and it can
also cause pain and even infection to patients [5]. As a safe and
convenient alternative method, non-invasive BP measurement
has received increasing attention. The commonly used clinical
non-invasive methods mainly utilize BP sensors with inflatable
cuffs to compress arterial blood vessels, and measure BP based
on the special sounds (e.g., korotkoff sound) of blood vessels
under different pressures and various oscillation phenomena
[6], [7]. However, cuff devices typically have a relatively single
function and poor portability.

In recent years, the development of wearable devices has
provided new ideas for BP measurement. A more convenient
way can be achieved by embedding an inflatable device into
a wristband device [8], [9] or an in-ear device [10], [11].
But these wearable BP monitors also need to compress blood
vessels to cause comfort issues and cannot achieve continuous
BP measurement. In order to achieve more comfortable BP
measurements, many works utilize electrocardiography (ECG),
photoplethysmography (PPG), and seismocardiography (SCG)
to calculate pulse transit time (PTT) and pulse arrival time
(PAT) [12]–[15]. However, these methods usually rely on users
to perform special operations (for example, the user needs to
continuously press the wristband device on the chest), which
increases the user’s burden and is not convenient for long-
term continuous measurement. Therefore, wearable devices
that can measure BP without user effort have emerged. For
example, BP measurement is accomplished by integrating
accelerometers into compression shorts to obtain PTT [16].
However, this work is limited by sensors, which is only
suitable for BP measurement when the body is stationary. In
addition, reflected wave transit time (RWTT) and pulse time
difference (PTD) can also be extracted from the PPG signal for
continuous BP measurement [17], [18]. However, PPG sensors
are usually affected by lighting conditions, sensor location, and
skin color, thereby reducing the accuracy of BP measurement.

Motivated by the above limitations, we design and im-
plement a convenient, comfortable, and continuous in-ear
BP monitoring system, HearBP, through an acoustic sensing
scheme based on heart sounds. The key inspiration for the
design comes from the following aspects. Firstly, due to the
complex vascular structure of the ear, it is a perfect location for
sensing vital signs and heart-related biometrics [19]. Secondly,
existing work has explored the possibility of using in-ear



microphones to capture heart sounds (a.k.a., phonocardiogram
or PCG) [20]. Furthermore, we introduce the time interval
between the peak points of first PCGs and second PCGs
(TIFS), and explore the possibility of using PCGs for BP
measurement. In recent years, acoustic sensing technology has
made great progress [21], [22]. In-ear smart devices equipped
with microphones and speakers are gradually becoming new
sensing platforms, and their market size is maintaining rapid
growth. According to a survey [23], the number of wireless
earphones will reach 1.3 billion by 2028, and more than 60%
of adults have been found to wear earphones for more than
one hour per day [24]. Meanwhile, many types of commercial
earphones are equipped with multiple microphones for noise
reduction. In addition, Nokia Bell Labs releases eSense, an
in-ear sensing platform, which further arouses the research
community’s attention on the development and computation of
in-ear sensing [25]. These principles motivate the basic idea of
HearBP: use an in-ear microphone to capture bone-conducted
PCGs, and then extract BP-related features from PCGs for BP
measurement.

With the goal of developing an earphone-oriented contin-
uous BP monitoring solution, we first identify and discuss
several technical challenges that need to be addressed. First
of all, the PCG is very weak and can easily be overwhelmed
by strong background noises (e.g., earphone audio, bone-
conducted noises generated by daily activities, and other body
sounds). Therefore, it is necessary to separate the weak PCGs
from strong noises without affecting the general use of ear-
phones. Secondly, although TIFS features extracted from bone-
conducted PCGs show a correlation with BP, extracting more
unique and reliable BP-related features from PCGs is still an
unexplored field. Last but not least, when using these features
to establish a relationship mapping with BP, it is necessary to
choose appropriate machine learning algorithms and modeling
methods. This model needs to undergo rigorous training and
validation to ensure the accuracy of BP measurement and the
stability of the model.

In order to solve the above challenges, we first design a
noise elimination method that utilizes a U-Net autoencoder-
decoder-based deep learning architecture to map the log-mel
spectrograms of the collected PCGs with noises to the log-mel
spectrograms of the clean PCGs. Secondly, we find through
experiments that relying solely on the extracted TIFS features
cannot accurately measure BP. Therefore, we further mine
more time domain and frequency domain features based on
shannon energy and energy-entropy ratio. In addition, we
also use principal component analysis (PCA) to reduce the
dimension of these features to extract the main features related
to BP, thereby reducing feature redundancy and computational
overhead. Finally, we propose a network model based on
dendritic neural regression (DNR) [26] to establish a mapping
relationship between the above features and BP, which can
ensure that the error of BP measurement meets the standards of
the Association for the Advancement of Medical Instruments
(AAMI) [27] and meets the grade A standards of the Britain
Hypertension Society (BHS) [28]. In summary, we make the

following major contributions in HearBP:
• We propose a novel BP monitoring system, HearBP,

which uses earphones to collect bone-conducted PCGs in
the ear canal. To the best of our knowledge, we are the
first to sense PCGs through earphones for BP measure-
ment. HearBP is low-cost, comfortable, convenient, and
supports long-term monitoring, which makes it suitable
for widespread adoption.

• We propose an effective noise elimination method, which
can reduce the influence of earphone background audio,
bone-conducted noises generated by daily activities, and
other body sounds.

• We fully mine the time and frequency domain features
of PCGs based on shannon energy and energy-entropy
ratio, and use PCA to reduce the dimension of features
to obtain the main features related to BP. In addition,
we build a mapping relationship between BP and PCG
features based on DNR.

• We implement HearBP and evaluate it with 41 volun-
teers under various scenarios. The results show that the
estimation errors of HearBP for diastolic blood pressure
(DBP) and systolic blood pressure (SBP) are 0.97±3.13
mmHg and 1.61± 3.56 mmHg, respectively.

II. RELATED WORK

In this section, we review 3 kinds of BP measurement
systems related to HearBP, highlight their properties, and
compare the pros and cons.
Professional equipment is widely used as a safe and non-
invasive BP measurement method. The idea is to use a BP
sensor with an inflatable cuff to compress the arterial blood
vessels, and measure BP according to the special sound and
various oscillation phenomena of the arterial blood vessels
under different pressures, such as mercury or electronic sphyg-
momanometer [29]. But when the cuff is inflated, it can
block blood flow, causing users to feel uncomfortable or even
painful, and continuous measurement can lead to various risks
such as tissue hypoxia and injury [30].
Wristband sensors make portable BP measurements possible
in daily life. HUAWEI WATCH D [8] and eBP [10] can
achieve accurate BP measurement in the wristband and ear-
worn devices, respectively, but they still rely on inflatable
cuffs to compress blood vessels and cause comfort issues.
SeismoWatch [14] places the watch against the sternum and
measures PTT using accelerometers and optical sensors to
estimate BP. However, it generally relies on users performing
specific operations, which is inconvenient for continuous BP
measurement. In addition, Crisp-BP [17] and Stereo-BP [18]
measure PPG signals through wristband PPG devices, and they
further extract RWTT and PTD features to achieve convenient
and continuous BP measurement. But PPG sensors are usually
sensitive to location, lighting, and skin color information,
which affects the accuracy of BP measurement.
Acoustic sensors have gradually emerged in the field of
BP measurement due to the increasing maturity of acoustic
technology. Some researchers attempt to calculate PTT by
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Fig. 1: Correspondence between three signals in time.

recording ECG (or PCG) and PPG using the built-in mi-
crophones of smartphones, respectively [31], [32]. But these
methods usually require users to perform special operations to
disturb them. Peng et al. [33] design and fabricate a flexible
piezoelectric composite ultrasound sensor for continuous BP
measurement by tracking the vessel wall through ultrasonic
motion. However, the use of couplant gel between the flexible
sensor and human skin during measurement is not practical
for daily continuous BP monitoring.

Compared with existing work, HearBP is a novel BP
measurement system that only adopts in-ear microphones in
ear-worn devices to acquire PCGs. It is less affected by the
environment, does not disturb users, and can continuously
measure BP more comfortably and conveniently.

III. FEASIBILITY ANALYSIS

Thanks to the amplification enhancement caused by the
occlusion effect [34], the in-ear microphone can capture the
bone-conducted PCGs with improved SNR (signal-to-noise
ratio). To verify the feasibility of using bone-conducted PCGs
for BP measurement, we conduct a pilot study with 6 users.

A. Relationship between PCG, ECG and PPG in Time

PTT is linearly correlated with BP within a certain time
range, and it can be calculated using the time interval between
the R wave peak points of ECG and the corresponding peak
points of the PPG. As the first PCGs (S1) and second PCGs
(S2) are the two main components of PCG, we study the
corresponding relationship among the peak points of these
two components, the peak points of the R wave, and the peak
points of PPG in time. We synchronously collect the PCG,
ECG, and PPG of 6 users. Fig. 1 shows a user’s PCG, ECG,
and PPG. It can be seen that the peak points of S1 and S2

correspond significantly with the peak points of R-wave and
PPG in time, respectively.

Going a step further, we verify this correspondence through
experiments. We fit the time data corresponding to the peak
points of S1 and R waves of 6 users, as well as the peak
points of S2 and PPG, as shown in Fig. 2. We choose the
goodness of fit R2 as the evaluation indicator for the degree
of fit. R2 is between [0, 1], and the closer it is to 1, the better
the regression line fits the observed values, the stronger the
linear relationship, and vice versa. By calculation, the R2 of
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Fig. 2: Correspondence between peak points in time.
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Fig. 3: Correspondence between BP and TIFS.

the time data corresponding to the peak point of S1 and R wave
is equal to 0.992, and the R2 of the time data corresponding to
the peak point of S2 and PPG is equal to 0.965. Such results
also confirm that the peak point of S1 and R wave, and the
peak point of S2 and PPG have a strong correlation in time.
PTT can be calculated using the time interval between the
peak point of the R wave and the corresponding peak point
of the PPG. Naturally, we can conclude that the time interval
between the peak points of S1 and S2 (TIFS) may replace
PTT. Next, we verify this conclusion through the PCG and
BP readings of 6 users.

B. Relationship between TIFS and BP

We verify the correlation between TIFS and SBP as well as
DBP in two states. In one case, 6 users are in a static state,
and in the other case, they are asked to perform the same
movement (30 jumping jacks). As shown in Fig. 3, the R2

between TIFS and SBP as well as DBP is greater than 0.8
no matter what the case. These results also further confirm
that TIFS is related to BP, which provides a research basis for
using PCGs to monitor BP. Of course, it should be pointed
out that through subsequent experiments, we demonstrate that
BP measurement solely based on TIFS cannot meet current
international standards for BP measurement (e.g., AAMI and
BHS). Therefore, we explore the extraction of more BP-related
features from PCGs to further improve the accuracy of BP
measurement in Section IV-D.

IV. SYSTEM DESIGN

In this section, we first present the system overview of
HearBP and then detail the behind techniques.

A. Overview of System Architecture

Fig. 4 shows the architecture of HearBP, which can be
divided into two phases, i.e., offline phase and online phase.
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In the offline phase, HearBP aims to collect data from users
and train BP monitoring regression models. The system uses
earphones with in-ear microphones to continuously collect
bone-conducted PCGs from the user’s left and right ears. The
recorded sounds first undergo Signal Preprocessing, including
normalization, signal synchronization, and frequency selec-
tion, to maintain stable sound volume, ensure better synchro-
nization between left and right ear audio, and eliminate high-
frequency noise interference. Then, HearBP performs Noise
Removing to recover clean binaural bone-conducted PCGs.
Specifically, we extract the log-mel spectrogram of sounds
and ground truth PCGs, establish the mapping relationship
between them by designing a U-net autoencoder-decoder net-
work to remove noise interference, and reconstruct clean bone-
conducted PCGs using spectrum inversion algorithm. After
that, BP Information Mining module begins to explore the time
domain and frequency domain features of PCGs based on the
shannon energy peak point detection algorithm and the energy-
entropy ratio endpoint detection algorithm, respectively. In
addition, we also use PCA algorithm to reduce the dimension
of these features to obtain the main features related to BP,
which reduces the computational complexity while reducing
feature redundancy. Finally, the extracted features are used to
train the DNR neural network in BP Monitoring.

In the online stage, HearBP first records bone-conducted
sounds through a pair of in-ear microphones. Then, through
Signal Preprocessing, Noise Removing, and BP Information
Mining, the features are sent to BP Monitoring module to
achieve the purpose of measuring BP.

B. Signal Preprocessing

1) Normalization: When users wear earphones each time,
the tightness and angle may vary slightly, resulting in unstable
sound volume recorded by the in-ear microphone. Therefore,
before performing other operations, the sound should be
normalized first. We employ a loudness-based standardization
by adjusting the average volume of the sound to the standard
loudness (−24dB) recommended by ATSC [35].

2) Signal Synchronization: We use a pair of in-ear micro-
phones to collect bone-conducted sounds, but because they
conduct to the two ear canals through different paths, there is a
time difference in the sounds. To ensure better synchronization
between the sounds recorded by the two microphones, we
calculate the cross-correlation between the pair of sounds.
Then, we adjust the sounds based on the relative time delay
indicated by the maximum cross-correlation value.

3) Frequency Selection: We use a low-pass filter to select
the frequency band. Since the frequency range of bone-
conducted PCG is generally below 160Hz [36], we use a
low-pass filter with a cut-off frequency of 160Hz for bone-
conducted sounds to eliminate high-frequency interference.

C. Noise Removing

Although we have eliminated the interference of high-
frequency noises through Frequency Selection, there are still
three significant sources of interference, including earphone
background audio, bone-conducted sounds caused by daily
activities (e.g., walking sounds), and other body sounds (e.g.,
lung sounds). Intuitively, we can extract clean PCGs through
empirical mode decomposition and wavelet-based methods.
However, these methods usually rely on the assumption of
low aliasing of PCG and interference, which is not applicable
in our case. Therefore, we design an innovative interference
removal method based on U-net autoencoder-decoder network.
Its core idea is to map the log-mel spectrogram of the prepro-
cessed bone-conducted sounds to the log-mel spectrogram of
the real PCGs (also after Signal Preprocessing).

1) Log-mel Spectrogram: First, we divide the bone-
conducted sounds and ground truth PCGs after Signal Pre-
processing into frames, with a frame length of 256 samples
and a frame shift of 32 samples. Then, hamming window
function is applied to each frame to highlight the short-
term features of the audio. Furthermore, we employ FFT to
compute log-mel spectrograms of bone-conducted sounds and
real PCGs of each window. Here we use 1, 024 FFT bins
with zero padding and 64 Mel bins. The resulting log-mel
spectrogram is a 64 × 64 matrix of audio of each window.
The reason why the log-mel spectrogram is chosen instead of
the mel spectrogram is that the former can compress the high-
frequency part and provide more detailed information in the
low-frequency region where the PCGs frequency is located.
Another benefit of doing so is that it eliminates redundant
information and reduces data dimensions, thereby improving
the efficiency of data processing. It is worth noting that since
bone-conducted sounds are captured through both ears, we
compute log-mel spectrograms for each channel and stack
them together to form a 64×64×2 input. And the output is the
log-mel spectrogram of single-channel PCGs. In addition, we
use the maximum normalization method to standardize the log-
mel spectrogram between [0, 1] to facilitate network training.

2) U-Net Network: Fig. 5 shows the U-Net autoencoder-
decoder structure for noise removal. In the autoencoder, the
model consists of repeated blocks, each of which contains a
3×3 convolutional layer, a batch normalization layer, a ReLU



Fig. 5: Structure of the U-net autoencoder-decoder.

activation function layer, and a maximum pooling layer with
a stride of 2 to downsample the data. In addition, we also
add a dropout layer in each block to avoid overfitting. During
each downsampling, the number of feature maps is doubled
to enable the network to learn complex structures in the
data. Whereas in the decoder, the data undergoes successive
upsampling, and the number of feature maps is halved at
each step. After each upsampling, the feature map is merged
with the corresponding feature map from the autoencoder,
and then undergoes convolution and batch normalization with
operations similar to those in the autoencoder. In the last layer,
a 1× 1 convolution is used to map the final feature map into
a single 64× 64 output image.

When training the network, the input is the spectrograms of
bone-conducted sounds and their corresponding PCGs spectro-
grams. We use leave-one-out cross-validation for testing, that
is, one user’s data is used for testing and the other users’ data
is used for training the model. We empirically train the model
for 150 epochs using the Adam optimizer with a learning
rate of 0.001 and a batch size of 128. We choose the mean
squared error

∑
(sij − s̃ij)

2
/
TF as the loss function, where

i and j denote the time and frequency indices, respectively.
T and F denote the total number of bins in the time and
frequency dimensions, respectively. This loss minimizes the
distance between the spectrograms s̃ij of ground truth PCGs
and the spectrograms sij of bone-conducted sounds.

3) Signal Reconstruction: Our purpose is to convert the
reconstructed clean log-mel spectrogram into a time domain
waveform in order to mine more BP-related features contained
in PCGs. To this end, we employ the Griffin-Lim algorithm
[37] for spectrum inversion, with each converted waveform
having a duration of 3s and an overlap of 2s. Then, the
transformed waveforms are merged into a continuous time-
series signal by averaging the overlapping regions.

Fig. 6 shows examples of PCGs extraction under two
different conditions (e.g., music playback and walking), re-
spectively. It can be seen that the impact of these noises
is significantly reduced after applying our proposed method.
We also conduct experiments in Section V-D1 to further
demonstrate the effectiveness of the noise removal method.

D. BP Information Mining

After obtaining clean bone-conducted PCGs, the next step is
to dig out more features related to BP to make up for the fact
that the accuracy of BP measurement cannot meet the actual
needs when only relying on TIFS. Although we currently
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Fig. 6: Examples of noise removing.

cannot fully understand the relationship between BP and
PCGs, some existing works [38], [39] are able to demonstrate
its association with symptoms such as cardiac abnormalities
and pulmonary hypertension by analyzing the time domain
and frequency domain features of PCGs. Therefore, similarly,
we also start with the time domain and frequency domain
features of PCGs to find the relationship between them and
BP. The extraction of these features mainly relies on the two
main components S1 and S2 of PCGs, so the first step is to
recognize the fragments of S1 and S2.

1) S1 and S2 Fragment Identification: S1 and S2 fragment
identification mainly includes two parts, one is to identify the
peak points of S1 and S2, and the other is to identify their start
and end times. We design a peak point detection algorithm
based on shannon energy envelope and an endpoint detection
algorithm based on energy-entropy ratio.
Shannon Energy Calculation: We first normalize clean bone-
conducted PCGs to the range [−1, 1] by dividing by their
absolute maximum. Then the shannon energy is calculated
by E = −x2 log

(
x2

)
, where x is the normalized bone-

conducted PCGs. Next, the bone-conducted PCGs are divided
into frames, with a frame length of 25ms and a frame shift
of 10ms. We average the shannon energy over a sliding time
window of 25ms as Eave =

∑n
1 E/n. n is the length of the

window. In addition, Eave is normalized by subtracting its
average value m (Eave) and dividing by its standard deviation
s (Eave) as EN = [Eave −m (Eave)]/s (Eave).
Peak Detection: We apply two thresholds to EN to identify
potential peaks of S1 and S2. We set the high threshold T1

as a preset coefficient for the maximum amplitude average
values to detect high amplitude peaks. The low threshold T2

is set to half of the average shannon energy envelope to obtain
low amplitude peaks that may be considered noise by the
high threshold. According to the fact that the systolic period
is shorter than the diastolic period, these peaks are assigned
to S1 or S2, respectively. Fig. 7 shows the process of peak
point detection. The upper figure shows the shannon energy
envelope of bone-conducted PCGs, and the lower figure shows
the results obtained through the peak point detection algorithm.
It can be seen that our proposed algorithm can effectively
locate the peak positions of S1 or S2.
Energy-entropy Ratio Calculation: The energy-entropy ratio
is calculated from the energy and spectral entropy, so we
introduce the definitions of these two quantities, respectively.
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Let xk (m) be the k-th frame of bone-conducted PCGs ob-
tained after windowing and framing processing, and the frame
length is n, then the energy of this frame can be defined as
LEk = lg

(
1 +

∑n
m=1 x

2
k (m)

/
a
)
, where a represents a con-

stant used to alleviate energy fluctuations. Then we perform
FFT on xk (m), and the normalized spectral probability den-
sity function of the frequency component fl of the l-th spectral
lines can be defined as pk (l) = Yk (l)

/∑N/2
r=0 Yk (r), where

Yk (l) is the energy spectrum of fl after xk (m) undergoes
FFT. N is the length of the FFT and is set to 1,024. The
spectral entropy of each xk (m) can be defined as Hk =

−
∑N/2

l=0 pk (l) log pk (l). Therefore, the energy entropy ratio
of xk (m) can be expressed as EEFk =

√
1 + |LEk/Hk|.

Fig. 8(a) shows the energy-entropy ratios corresponding to S1

and S2. The results indicate that the energy-entropy ratio can
effectively capture S1 and S2.
Start/End Detection: Then, we employ the dual-threshold
method to detect the start and end points of S1 and S2.
Specifically, we first set a high energy-entropy ratio threshold
T3 and the segment which is larger than T3 can be considered
to contain S1 and S2. Then, a low threshold T4 is set to find
the start and end points of S1 and S2. We search from the
beginning of the segment to the left and find the first point that
intersects with T4 as the start point of S1 and S2. Similarly,
we search from the ending of the segment to the right to find
the end points of S1 and S2. Fig. 8(b) shows the results of
using the energy-entropy ratio to detect the start and end points
of S1 and S2. It can be seen that the dual-threshold method
accurately identifies the start and end points.

2) Feature Extraction: After obtaining the peak point posi-
tions, and start and end points of S1 and S2, we extract their
time domain and frequency domain features.
Time Domain Feature: In addition to TIFS, we first extract
the absolute maximum amplitudes of S1 and S2 based on their
peak position information. Then, the duration of S1 (from the
start point of S1 to the end point of S1), the duration of S2

(from the start point of S2 to the end point of S2), the systolic
time interval (from the start of the previous S1 to the start of
the next S2), the diastolic time interval (from the start of the
previous S2 to the start of the next S1), the kurtosis of S1 and
S2, the energy of S1 and S2 are extracted based on the start
and end points information. In particular, the kurtosis is used
to describe the degree of smoothness of a signal, which can
be calculated as K =

∫ +∞
−∞ [x (t)− x̃]

4
ρ (x) dx

/
σ4. Where
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Fig. 8: The process of endpoint detection.

x (t) is the instantaneous amplitude, x̃ is the mean amplitude,
ρ (x) is the probability density, and σ is the standard deviation.
When K is less than 4, it indicates a smoother signal, and
when K is greater than 4, it indicates a steeper signal.
Frequency Domain Feature: Fragments of S1 and S2 can
be obtained through the start and end points of S1 and S2,
respectively. We perform FFT on these fragments to obtain the
spectrum, and then use 40 spectral values with 4Hz intervals
as spectral features in the 0 to 160Hz frequency band and
express them as FS1

=
[
fS1
4 , fS1

8 , · · · , fS1
160

]
1×40

, FS2
=[

fS2
4 , fS2

8 , · · · , fS2
160

]
1×40

. Where fsi
u is the spectral value of

S1 or S2 at the frequency uHz.
In addition, considering that BP is also related to demo-

graphic factors [17], we also add the user’s gender, age, height,
weight, and body mass index information to the features. In the
end, we extract a total of 96 dimensional features. However,
whether these features are closely related to BP needs further
analysis, and the high dimension of features is also a burden
for network training. For these reasons, we next use PCA to
reduce the dimension of the features.
Feature Dimension Reduction: Based on the variance distri-
bution of features, PCA can retain the most important principal
components and discard the unimportant principal components
to achieve feature dimension reduction. We calculate the
variance ratios of the extracted 96 dimensional features and
sort them according to the magnitude of the variance ratios,
as shown in Fig. 9. We also calculate the cumulative variance
ratio of all features. It can be seen from Fig. 9 that TIFS
does have the highest variance ratio, but the value is only
63.79%, which is also an important reason why it is impos-
sible to rely solely on TIFS for accurate BP measurement.
Through the cumulative variance ratio curve, we can find
that the cumulative variance ratio of the first 15 principal
components can reach 97.13%, and the other 14 time domain
and frequency domain features except TIFS contribute 31.51%
of the variance ratio, which also provides favorable conditions
for the accurate measurement of BP. In addition, the growth
rate of the cumulative variance ratio gradually slows down
and becomes stable from the 16-th principal component, and
a total of 81 principal components from the 16-th to the 96-th
provide only a variance ratio of 2.87%. The main reason is that
the eigenvalues of these features are almost zero, which means
they do not provide additional information. Therefore, we can
conclude that the majority of useful information is contained
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in the first 15 principal components, and discarding the latter
81 principal components does not result in a significant loss of
information. If the first 15 principal components are retained,
the feature dimension can be reduced from 96 to 15 to achieve
approximately 6 : 1 compression, which can reduce the
computational complexity while reducing feature redundancy.
We also prove this conclusion in Section V-D2 to illustrate the
effectiveness of using PCA for feature dimension reduction.

E. BP Monitoring

We design a network model to establish a mapping between
extracted features and BP based on DNR. It consists of four
layers: synaptic layer, dendritic layer, membrane layer, and
soma layer, as shown in Fig. 10.

As the entrance to the model, synapses transmit electrical
or chemical signals from other neurons. To simulate the
process of signal conversion, the synaptic layer of the DNR
dynamically forms the output of the i-th synapse located
in the j-th dendritic branch using the equation Zj (xi) =
1
/[
1 + e−k(ωijxi+θij)

]
, where xi represents the i-th input

feature, and k is a positive constant. ωij and θij are two types
of parameters that optimization algorithms need to train, which
determine the neural architecture and model performance of
DNR. The dendritic layer processes the output of multiple
synapses in the synaptic layer through a multiplication func-
tion. The output function of the j-th dendritic branch is rep-
resented as Vj =

∏Q
i=1 Zj (xi), where Q denotes the number

of dendritic branches. All signals from the dendritic layer in
DNR are linearly summed in the membrane layer. The output
definition of the membrane layer is as D =

∑M
j=1 (εj ∗ Vj),

where εj is the strength of the j-th dendritic branch, and M
is the number of dendritic branches. Finally, the soma layer
fulfills the function of the soma, and neurons fire if the output
of the membrane layer exceeds its threshold. This process is
expressed using a sigmoid function O = 1

/[
1 + e−k(D−γ)

]
to calculate the final output of the entire model, where γ
represents the threshold that changes from 0 to 1.

In addition, we utilize the AMSGrad to optimize the model
structure of DNR. As a gradient-based optimization algorithm,
AMSGrad is based on the minimum square error between the
actual output O and the desired target T (SBP or DBP).

V. IMPLEMENTATION AND EVALUATION
In this section, we introduce the implementation details and

provide the evaluation results.

A. Experiment Setup

1) Implementation: Although in-ear microphones are in-
tegrated into existing commercial earbuds, we cannot obtain
sound data due to hardware limitations. Therefore, we develop
a prototype system as shown in Fig. 11, including a speaker
and a microphone located about 0.5cm in front of it, and
the specific layout of the prototype is given in the white line
box. In addition, we use an audio splitter cable to connect the
earphones to the smartphone to receive the sound collected by
the in-ear microphone. The device also has silicone earbud tips
with user-specific sizes to ensure good ambient noise isolation.

2) Data Collection: We recruit 41 participants (24 males
and 17 females, aged from 19 to 54) with no known health
conditions relevant to the evaluation. We conduct experiments
with four different conditions (e.g., music playback, walking
and speaking, walking, and stationary state) in four environ-
ments (e.g., laboratory, dormitory, home, and playground). At
the same time, trained experts use a digital stethoscope to
record the ground truth of PCGs in the heart valve area. The
ground truth is provided by an FDA-approved cuff BP mea-
surement device Omron U30. BP measurements are alternated
between the cuff device and HearBP with a measurement
interval of 2 minutes. In addition, in order to expand the
scope of HearBP for BP measurement, we require each user
to have at least one exercise (30 jumping jacks) each time
when collecting data. We conduct at least 5 data collections
for each participant over a period of three months. Finally, we
collect more than 1,012 minutes of binaural bone-conducted
PCGs, of which 60% of the data are used for training and 40%
for testing. All procedures are approved by the Institutional
Review Board (IRB) at our institute.

3) Evaluation Methodology: We use three measurement
methods shown in Fig. 12 to evaluate the accuracy, including
mean error (ME), standard deviation of mean error (STD), and
goodness of fit (R2). Where ri is the BP reference value from
ground truth recordings. pi is the predicted value of HearBP. r̃
is the mean value of reference BP. n is the number of samples.

B. Overall Performance

Fig. 13 shows the Bland-Altman diagram for the estimated
SBP and DBP. The red line represents the mean error, and
the pink line represents the limit of agreement (LOA, defined
as ME±1.96×STD). The mean errors of SBP and DBP are
1.61mmHg and 0.97mmHg, respectively, and the standard
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Fig. 13: Bland–Altman diagram of SBP and DBP.
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Fig. 14: Correlation diagram of SBP and DBP.

TABLE I: Comparison of HearBP with BHS standard.
Cumulative Error Percentage

Criteria ≤ 5mmHg ≤ 10mmHg ≤ 15mmHg

BHS Grade A 60% 85% 95%

HearBP SBP 69.29% 90.65% 98.37%
DBP 73.56% 94.63% 99.29%

deviations of mean errors of DBP and SBP are 3.56mmHg
and 3.13mmHg, respectively. The results confirm that HearBP
is accurate for users’ BP monitoring and meets the AAMI
standards (ME≤5mmHg and STD ≤8mmHg). In addition,
more than 95% of the points are within the LOA of SBP
and DBP, which proves highly acceptable measurement results.
Meanwhile, Fig. 14 shows the correlation diagram between the
estimated results and the reference values, and we can observe
that points are clustered around the regression line. R2 for BP
and DBP are 0.817 and 0.832, respectively, which indicates
a close correlation. TABLE I provides the BHS standards for
BP measurement, and it can be found that both SBP and DBP
meet the grade A standards. The above results all indicate that
HearBP has high measurement accuracy for SBP and DBP.

C. Performance of Continuous Measurement

We ask 8 participants to record their binaural bone-
conduction PCGs for 24 hours. The ground truth is measured
every hour using a cuff BP measuring device. Fig. 15 shows
the mean estimation errors for DBP and SBP for all 8
participants. The estimation error of DBP and SBP fluctuates
below 1.65mmHg during awake time, which confirms the
validity of HearBP. However, the estimation errors of DBP and
SBP fluctuate significantly during sleeping time. The reasons
are mainly reflected in two aspects. One reason is that most
people tend to turn over while sleeping, which leads to loose
wearing of the earphones or even slipping out of the ear canal,
resulting in poor quality of collected PCGs. On the other hand,
frequent interruptions during sleeping and insufficient sleep
can affect participants’ mood and heart rate, which adversely
affect BP measurements.

D. Key Algorithm Performance

1) Effectiveness of Noise Removing: In order to investigate
the effectiveness of the proposed noise removing method, we
collect data for testing under the four conditions (e.g., music
playback, walking and speaking, walking, and stationary state).

TABLE II: Results using different features.
Feature Type TIFS TIFS+TD TIFS+FD All PCA

SBP ME/STD
(mmHg) 8.23/13.66 4.96/7.02 5.59/8.86 1.47/3.03 1.61/3.56

DBP ME/STD
(mmHg) 7.75/12.17 5.41/8.54 5.27/6.51 0.73/2.79 0.97/3.13

* TD and FD stand for time domain and frequency domain, respectively.

TABLE III: Comparison of DNR with other ML techniques.
Algorithm GBR DTR RFR SVR DNR

SBP ME/STD
(mmHg) 7.24/11.37 5.63/7.21 4.52/6.58 6.49/6.63 1.61/3.56

DBP ME/STD
(mmHg) 8.71/13.38 4.91/8.89 5.13/6.64 3.26/7.59 0.97/3.13

Fig. 16 shows the estimation errors of BP under these four
conditions without and with noise removing. If HeartBP is
implemented without noise removing, the estimation errors of
DBP and SBP can reach over 9.83mmHg, which confirms
that noise greatly reduces the accuracy of HearBP and makes it
unable to meet the requirements of BP measurement in AAMI
(≤ 5mmHg). After applying noise removing, the estimation
errors drop below 2.57mmHg. The good results not only
verify the effectiveness of the noise removing method, but
also show that HeartBP is a practical method that is expected
to be applied to real daily usage.

2) Effectiveness of Feature Extraction and Dimension Re-
duction: We investigate the effectiveness of different types
of features and PCA feature dimension reduction. In the case
of five different features, we calculate the BP measurement
results, as shown in TABLE II. It can be seen that relying
solely on TIFS cannot provide BP measurement accuracy
that meets the AAMI standard. Time domain features or
frequency domain features can play a great role in improving
the accuracy of BP measurement, but only one of them
can only assist TIFS to achieve BP measurement accuracy
close to the AAMI standard. Applying all features to BP
measurement can obviously achieve satisfactory accuracy, and
both SBP and DBP can well meet the accuracy requirements of
AAMI. In addition, after PCA feature dimension reduction, the
accuracy of BP measurement is almost no different from that
of using all features. These results confirm the effectiveness
of feature extraction and PCA feature dimension reduction,
enabling HearBP to effectively meet the practical needs of BP
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Fig. 17: Impact of earphone wearing status.

TABLE IV: Comparisons of Hear-BP with typical works on BP measurement via wearable devices and acoustic sensing.
Comparison

Works
SeismoWatch

[14]
eBP
[10]

Crisp-BP
[17]

Diehl et al.
[11]

Ganti et al.
[15]

Stereo-BP
[18]

Peng et al.
[33]

WIB
[32] HearBP

Feature Type PTT CFA RWTT None PTT PTD None PTT TIFS+TFD

Participant 13 35 35 27 21 20 1 30 41

SBP ME/STD
(mmHg) N/A 1.80/7.20 1.67/7.31 1.03/7.19 4.75/2.29 3.97/3.09 0.76 N/A 1.61/3.56

DBP ME/STD
(mmHg) 1.30/6.90 3.10/7.90 0.86/6.55 4.41/7.76 2.72/0.75 3.83/2.95 0.85 5.8 0.97/3.13

* CFA, and TFD stand for change of pulse amplitude, time-frequency domain, respectively.

measurement and remove redundant features.
3) Effectiveness of DNR: We compare DNR with 4 tra-

ditional machine learning (ML) methods, including gradient
boosting regression (GBR), decision tree regression (DTR),
random forest regression (RFR), and support vector regression
(SVR). The results are shown in TABLE III. It can be seen
that these regression methods cannot make DBP and SBP meet
the standards required by AAMI, so these methods are not
suitable for constructing the mapping relationship between the
extracted features and BP. On the contrary, the use of DNR
can ensure that the measurement accuracy of BP fully meets
the standards required by AAMI, which reflects that DNR
can effectively establish the mapping relationship between the
extracted features and BP. These results are also important
reasons why we chose DNR for BP measurement.

E. System Robustness: Impact of Earphone Wearing Status

Due to different wearing habits, the earphone insertion depth
and rotation angle of the same participant may vary, resulting
in the sound recorded by the in-ear microphone may vary.
We require participants to collect data for experiments under
different insertion depths (e.g., 2mm, 4mm, 6mm, 8mm, and
10mm) and rotation angles (e.g., 0◦, 30◦, 60◦, and 90◦). Fig.
17 shows the estimation errors of SBP and DBP quantified by
the above two factors. Overall, HearBP obtains stable results
in different wearing status. In addition, we notice that deeper
insertion depths lead to lower estimation errors, which may be
due to the deeper insertion of the earphones providing better
ear canal sealing and stronger position fixation.

F. Comparison with Typical Related Works

TABLE IV shows the comparison results of HearBP with
other typical works on BP measurement via wearable devices

and acoustic sensing, including the type of features used, the
number of participants, and the estimation accuracy of BP (i.e.,
mean error/standard deviation for SBP and DBP). But these
methods are all subject to certain conditions. SeismoWatch
[14], [15], and WIB [32] require the use of additional sensors
and user cooperation. The PPG sensors adopted by Crisp-
BP [17] and Stereo-BP [18] are usually affected by lighting
conditions, skin color, and location information. eBP [10] and
[11] require a balloon to compress the artery, which reduces
user comfort. [33] uses special materials between the sensor
and the human skin when measuring BP. Compared with
these works, HearBP can continuously measure BP in a more
comfortable and convenient way without user effort, without
being limited by various conditions mentioned above.

VI. CONCLUSION

In this paper, we design and implement HearBP, which
utilizes in-ear microphones to collect bone-conducted heart
sounds in the binaural canal for BP monitoring. We propose
effective methods to filter out interference from earphone
audio, daily activities, and other body sounds. We explore
BP-related time domain and frequency domain features and
reduce redundant information using shannon energy, energy-
entropy ratio, and principal component analysis. Based on
these features, a network model based on dendritic neural
regression is proposed to realize BP monitoring. Extensive ex-
periments involving 41 participants demonstrate that HearBP
can provide accurate BP monitoring, with estimation errors
of 0.97 ± 3.13mmHg and 1.61 ± 3.56mmHg for DBP and
SBP, respectively. These errors are within the acceptable range
specified by the AAMI protocol.
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