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Abstract—Device-free localization (DfL) techniques, which
can localize targets without carrying any wireless devices, have
attracting an increasing attentions. Most current DfL approaches,
however, have two main drawbacks hindering their practical
applications. First, one needs to collect large number of mea-
surements to achieve a high localization accuracy, inevitably
causing a high deployment cost, and the areas variety will further
exacerbate this problem. Second, as the pre-obtained Received
Signal Strength (RSS) from each location (i.e., radio-map) in
a specific area cannot be directly applied to new areas for
localization, the calibration process of different areas will lead to
the high human effort cost.

In this paper, we propose, FitLoc, a fine-grained and low cost
DfL approach that can localize multiple targets in various areas.
By taking advantage of the compressive sensing (CS) theory,
FitLoc decreases the deployment cost by collecting only a few
of RSS measurements and performs a fine-grained localization.
Further, FitLoc employs a rigorously designed transfer scheme
to unify the radio-map over various areas, thus greatly reduces
the human effort cost. Theoretical analysis about the effectivity
of the problem formulation is provided. Extensive experimental
results illustrate the effectiveness of FitLoc.

I. I NTRODUCTION

Past decade has witnessed the pervasiveness and advances
of the localization approaches/systems. However most methods
require the targets to carry certain wireless devices [1], [2].
In practice, there are many emerging applications unable to
meet this requirement, for example to localize the rare animals,
the zoologists forbid equipping the giant pandas or golden
monkeys with any devices, and in the intrusion detection, it is
impossible to pre-install the tracking device on the intruders
[3]–[5]. Therefore, the Device-free Localization (DfL) tech-
niques [3]–[14], which don’t need the targets to carry any
devices, have become one of the most attractive techniques
to researchers and industrials.

With the ubiquitous and low-cost Received Signal Strength
(RSS) in WiFi, RFID, etc, DfL technique performs localization
by utilizing the RSS measurements distorted by the targets.
Particularly, current methods [13], [14] establish the model
between RSS and locations, but provide a limited performance
when considering both the accuracy and robustness, since the
models are vulnerable to environmental noise. In contrast,
radio-map methods [3]–[5], [7]–[9] could achieve a fine-
grained localization accuracy by matching the real-time RSS
with the pre-obtained radio-map, and have been extensively
studied and become the preferred approach recent years.

However, two key enablers to make the radio-map based
Device-free Localization method fully practical still remains
unsolved, the high deployment costand high human effort

cost when the localization environment changes from one
area to other areas. In reality, applications which need to
conduct localization over various areas exist widely in outdoor
environment [15].

High deployment cost. To achieve a fine-grained localiza-
tion accuracy, most DfL approaches even including the state-
of-the-art work [5] and [13], need to collect large number
of RSS measurements from a set of dense deployed wireless
transceivers, causing a high deployment cost. In addition, the
transceivers always have a limited power supply in the outdoor
environment [16], [17]. Hence when one conduct localization
over various areas, it will not only bring more expensive
deployment costs, but also result in the low scalability for
localization. Therefore, the high deployment cost is one key
constraint hindering the DfL technique to be fully practical.

High human effort cost. When one uses the radio-map of
one area to conduct localization over other areas, the radio-map
of areas with different sizes are significantly different. In fact,
different areas require to deploy different lengths of wireless
links1, and the RSS distributions under different link lengths
are different, as shown in Fig. 1(a). Thus, real-time RSS
collected in the new area would drastically deviate from the
radio-map of the original area, and the localization accuracy
will decrease dramatically in the new area. To deal with
this problem, an intuitive solution is to repeat the manually
calibration in each area, but it is a time consuming and labor
intensive process2.

Owing to the sparse recovery property of the Compressive
Sensing (CS) theory [18], [19], recent work [9]–[12] could
localize targets by collecting less RSS measurements. Particu-
larly, in light of the sparse property of the localization problem,
i.e., the number of targets is sparse relative to the number
of locations, work [9] can achieve a fine-grained localization
accuracy for multiple targets, which deploys a small number of
transceivers and collects only a few of RSS measurements, thus
reducing the deployment cost greatly. However, this approach
doesn’t work out when one performs localization over various
areas due to the high human effort cost caused by the repeated
calibration for each area.

To overcome these limitations,in this paper, we intro-
duce FitLoc, the first fine-grained and low-cost device-free
localization for multiple targets over various areas. In line
with the common CS based DfL, FitLoc recovers the location
vector by solving aǹ 1 optimization with the sensing matrix
(radio-map) and real-time RSS, and reduces the deployment

1A link length is the distance between the wireless transceivers.
2In fact, the radio map are established through manually recording the RSS

change which are distorted by the target standing in all the possible locations.
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Fig. 1: The radio-map differences over different areas are reflected through the
RSS distributions. By collecting the RSS of two specific wireless transceivers
distorted by the target at a fixed location, (a) shows that the Gaussian
probability estimates of the raw RSS under 4 different link lengths (i.e., 3m,
4m, 6m and 12m) are significantly different from each other. (b) shows the
distribution distances are made minimum after being transferred by FitLoc.

cost benefiting from the CS theory. The challenge however
is to perform localization with the sensing matrix from one
area over various areas. Unlike existing approaches which
don’t take the area change into consideration, FitLoc aims at
minimizing the calibration effort cost when the area changes.
By collecting RSS of only a few locations in the new area,
and integrating it with the sensing matrix of the original area,
FitLoc transfers the sensing matrix and reuses it in the new
area, as a result, the human effort cost is reduced greatly.

So how to design a transfer scheme that different areas
can share an unified sensing matrix? To do so, one needs to
project the RSS of different areas into a subspace where the
distribution distances are minimized. Note that the target will
distort some links when he/she locates in the area, and the RSS
distribution differences are caused by not only the location
differences but also the link differences. That is to say for one
area, RSS distributions of the same one link but with different
target locations are different, and distributions of different links
even with the same target location are different. Further, two
areas with different link lengths can be treated as one area
scaled in size, and distributions of same target locations for a
specific link in two areas are different. Consequently, the RSS
distribution distances between (i) different locations for the
same one link should be maximized; (ii) different links with
the same length and target location should be maximized; (iii)
same locations for a specific link with different link lengths
should be minimized (as shown in Fig. 1(b)).

To design such a transfer scheme, our key observation is
that different locations and links can be regarded as different
class labels. Then inspired by the transfer method proposed in
image processing which transfers the information of different
domains [20], we design a transfer scheme by utilizing Fisher
Linearly Discriminant Analysis (FLDA) [21] as the subspace
learning method to project the RSS into a low-dimensional
subspace, and use the Bregman Divergence [22] as a regular-
ization term to measure the RSS distribution distances. Toward
this end, different areas can share a unified sensing matrix. The
details of the transfer scheme are presented in Section IV, and
its efficiency is demonstrated in Section VI.

Based on the proposed transfer scheme, whether the CS
based DfL after transfer still satisfies the CS theory to perform
localization? To deal with this challenge, we provide a com-
prehensive analysis to show that the sensing matrix after being
transferred obeys the Restricted Isometry Property (RIP) with
a high probability, which justifies the viability of the transfer
CS based DfL approach.

Fig. 2: Deployment of DfL System. There are two targets respectively stand
in two different locations, and when the target 1 within the effective area of
wireless linki which are formed by the transceiversTXi andRXi, the link
will be distorted and the RSS measurement will change [9].

Contributions: in summary, we make the following contribu-
tions:

• We present the first fine-grained and low-cost DfL ap-
proach for multiple targets over various areas, named
FitLoc, paving the practical application road of DfL in
the outdoor environment.

• To our best knowledge, we are the first to design a transfer
scheme that combines FLDA and Bregman Divergence to
make the RSS of one area be shared by other different
areas, and the basic idea can be extended to other systems.

• We formally prove that the sensing matrix after being
transferred still obeys RIP with a high probability, which
is the sufficient condition to enable CS based DfL.

• We perform extensive experiments to illustrate the ef-
fectiveness and robustness of FitLoc, and the results
show that FitLoc achieves an average localization error
of 0.89m over different areas in the outdoor environment
and 1.4m in similar furnitured indoor environment.

II. BACKGROUND OF CS BASED DFL

This section introduces the Compressive Sensing (CS)
based DfL approach [9], which can accurately localize multiple
targets with a small number of measurements, thus reducing
the deployment cost. Suppose that there areK targets ran-
domly located in an area with sizel× a. The area is equally
divided into N grids with edge lengthωl. By deployingM
nodes at the midpoint of a grid edge on two sides of the
area, there areM links formed by pairs of{TXi, RXi}-nodes
(i ∈ [1,M ]), as Fig. 2 shows. Then the locations ofK targets
over N grids can be denoted as a location vector

Θ = [θ1, ∙ ∙ ∙ , θj , ∙ ∙ ∙ , θN ]T , (1)

where θj ∈ {0, 1}, and θj = 1 when one target is at gridj;
otherwiseθj = 0. Since onlyK elements ofΘ are nonzero,
Θ is a K-sparse (K � N ) signal [9]. According to the CS
theory, theN dimensional location vectorΘ can be recovered
from M dimensional RSS vectorYM×1,

YM×1 = XM×N ∙ ΘN×1 + N , (2)

here YM×1 is the RSS vector measured in the localization
phase,XM×N is the sensing matrix constructed in the pre-
deployment phase,N is the measurement noise. In this paper,
XM×N =(xij), xij is the RSS change3 of i-th link distorted
by one target at gridj, YM×1 = (yi1), (yi1) is the real-time

3RSS change is the difference between RSS measurement before and after
the target distort the link.



RSS change ofi-th link distorted by targets with unknown
locations. It has been proved that ifX satisfies the Restricted
Isometry Property (RIP) and the dimension of theY obeys
M =O(K log(N/K)) [9], Θ can be exactly recovered through
the `1 optimization:

min ‖Θ̂‖1 s.t. ‖X†(Y − XΘ̂)‖∞ < cδ
√

2 log M, (3)

where()† is the pseudo-inverse operator,c > 0 is a constant,
δ is a constant, andM is the number of measurements.

It is crucial to design the sensing matrix. In order to
better understand the RSS, we collectQ continuous RSS as
a stream for each link,i.e., xij = {xij(1), ∙ ∙ ∙ , xij(Q)}T ,
yi = {yi(1), ∙ ∙ ∙ , yi(Q)}T . Thus we have 3-dimensional
sensing matrix and 2-dimensional RSS vector,

XM×N×Q =






x11 ∙ ∙ ∙ x1N

... xij

...
xM1 ∙ ∙ ∙ xMN




 , (4)

YM×1×Q = [y1, ∙ ∙ ∙ ,yi, ∙ ∙ ∙ ,yM ]T . (5)

After that, to acquire the true RSS distorted by target, we
set the most frequent value amongQ values as the true
value of one link, i.e., xij = arg max p(xij(o)), yi =
arg max p(yi(o)), where1 ≤ o ≤ Q andp(∙) is the probability
of the Gaussian estimation. By doing so, the sensing matrix
XM×N×Q and RSS vectorYM×1×Q are simplified asXM×N

andYM×1.

III. F ITLOC OVERVIEW

In view of CS based DfL, FitLoc transfers the sensing
matrix of one area and performs localization over other areas
with little cost. By assuming that there are two areas with
different sizes, FitLoc goes through the following steps

1) We construct the sensing matrix of original area, and collect
RSS of only a few randomly chosen locations in the new
area. Then FitLoc solves the transfer matrix on the basis
of the transfer scheme.

2) We collect the real-time RSS of unknown locations in the
new area. After that, we transfer the sensing matrix and
real-time RSS vector. At last, FitLoc performs localization
in the new area based on the CS theory.

Now we briefly present the framework of the transfer
scheme, and leave the detailed descriptions in Section IV.
Consider two areas depicted in Fig.3, which are with link
length l (area 1 with sizel × a , grid edge lengthωl) and
u (area 2 with sizeu× b , grid edge lengthωu), respectively,
and suppose thatl < u . For each area, the number of location
grids isN . For the same gridj, the RSS stream distributions
of the first link significantly differs from each other, thus the
sensing matrix are completely different. While it requires a lot
of time and labor to reconstruct the sensing matrix in area 2,
we aim to find a transfer matrixW ∈ RQ×q to make the RSS
distribution distances minimized in the subspaceRq, so that
we can use the sensing matrix of area 1 after being transferred
to locate the targets in area 2. The framework of the transfer
scheme includes two phases.

In the pre-deployment phase, we transfer the sensing matrix
of area 1. By collecting RSS ofn (n ≤ N ) randomly choosing
locations in area 2 and integrate with the sensing matrix of
area 1, we can find a transfer matrixW , with which the RSS

distribution distances ofxl
ij andxu

ij (the i-th link and location
j with different lengthl andu) are minimized, as Fig.3 shows.
Then the sensing matrix of area 1 after being transferred is

ZM×N×q =
(
WT xl

ij

)
, i ∈ [1,M ], j ∈ [1, N ]. (6)

In the localization phase, we transfer the real-time RSS
streamyu

i of area 2, and the RSS vector after being transferred
is

Y ′
M×1×q =

(
WT yu

i

)
, i ∈ [1,M ]. (7)

By choosing the most frequent RSS of each stream after being
transferred,ZM×N×q andY ′

M×1×q can be reduced toZM×N

and Y ′
M×1. And the location vectorΘ in areau × b can be

recovered via the following̀1 optimization [9],

min ‖Θ̂‖1, s.t. ‖(Z)†(Y ′ − ZΘ̂)‖∞ < cδ
√

2 log M. (8)

Note that as the grids number is fixed toN and the grid size
of area 2 is bigger than area 1, the localization accuracy will
decrease in area 2. To tackle this problem, we divide the grids
of area 2 into subgrids, then we propose a distance based grid
interpolation method to generate the RSS of subgrids.

IV. T RANSFERSCHEME ACROSSVARIOUS AREAS

This section presents the detailed process of the transfer
scheme. Specifically, we need to project the RSS distributions
and minimize the distribution distances. However, as different
RSS streams come from different distributions, the simple
methods such as Principle Component Analysis (PCA) and
Fisher Linear Discriminant Analysis (FLDA) [21], cannot be
directly used to transfer the RSS streams to minimize the
distribution distances. To do so, we add a regularization term to
the basic subspace learning method to measure the distribution
distances. Further, the well-known PCA cannot separate RSS
distributions of different locations as it is an unsupervised
method. In contrast, FLDA uses the class label information to
maximize the distances between different classes and minimize
the distance within the same class. On the other hand, we
use the Bregman Divergence [22] to measure the distribution
distances. Therefore, the transfer scheme can be formulated as
a FLDA subspace learning method combined with a Bregman
Divergence based regularization term.

A. Formulate the transfer scheme

We first collect a few RSS measurements ofn randomly
chosen locations in area 2, then integrate it with the sensing
matrix of area 1. Letxl be the RSS stream vector ofN
locations in area 1 (i.e., the vector description form of the
sensing matrix), andxu be the RSS stream vector ofn chosen
locations in area 2,n � N ,

xl=(xl
11,∙ ∙ ∙,x

l
M1,∙ ∙ ∙,x

l
1j , ∙ ∙ ∙,x

l
Mj ,∙ ∙ ∙,x

l
1N ,∙ ∙ ∙,xl

MN ), (9)

xu=(xu
11,∙ ∙ ∙,x

u
M1,∙ ∙ ∙,x

u
1j ,∙ ∙ ∙,x

u
Mj , ∙ ∙ ∙,x

u
1n, ∙ ∙ ∙,xu

Mn). (10)

wherexl
ij andxu

ij are the RSS streams of linki under location
j with link length l and u, and the distributions ofxl

ij and
xu

ij are different. Our goal is to find a transfer matrixW , with
which one can projectxl

ij andxu
ij into a subspace, where with

the same link length, i) the RSS distribution distances between
different links but under the same location are maximized,
p(xij) 6= p(xi′j), i 6= i′ ∈ [1,M ]; ii) distribution distances
between same link but under different locations are maximized,



Fig. 3: Illustration of Transfer Scheme. For two different monitoring areas with sizesl × a andu × b, the link lengths arel andu, respectively. We divide
each area intoN location grids, and when the target locates in gridj, he will distort some ofM links, and for the same linki, the distributions ofQ continuous
RSS with link lengthl andu are different. By transfer the RSS streamsxl

ij andxu
ij into a projected subspaceRq aszl

ij andzu
ij , the distributions are made as

close as possible,i.e., the RSS stream distribution distances for the same locations are minimized. Afterwards, the 3 dimensional sensing matrix of areal × a
after being transferred asZM×N×q can be applied to perform localization in areau × b.

p(xij) 6=p(xij′), j 6=j′∈[1, N ]; and with different link lengths,
the RSS distribution distances between the same links and
locations are minimized,p(xl

ij)=p(xu
i′j), i= i′, j=j′.

Let xl andxu after being transferred arezl = WT xl and
zu = WT xu, the distributions ofzl and zu are pl(z) and
pu(z), respectively, wherez = (zl, zu), x = (xl,xu). Then
the general framework can be denoted as

z = WT x, (11)
W = arg

W∈RQ×q

min{F (W ) + λDW (pl||pu)}, (12)

with respect toWT W = I. F (W ) + λDW (pl||pu) is the
merit function,F (W ) is the FLDA subspace learning method
which projects the RSS streams ofxl or xu into the subspace
Rq, q ≤ Q, where the data classification loss are minimized,
DW (pl||pu) is the Bregman Divergence regularization that
measures the distances betweenpl(z) and pu(z), λ is the
regularization parameter that controls the trade-off between
F (W ) and DW (pl||pu). In fact, FLDA gives a good initial
solution to the regularization term.

B. Obtain the transfer matrix

We introduce the solving process of the transfer scheme
to obtain the transfer matrixW . There are many optimization
algorithms to solve the transfer matrix, and we choose the
simplest Gradient Descent algorithm [21] to obtain the optimal
solution iteratively. By taking steps proportional to the negative
of the gradient of the function at the current point, we have

Wk+1 = Wk − η(k)
(∂F (W )

∂W
+ λ ∙

∂DW (pl||pu)
∂W

)
, (13)

where ηk is the learning rate for thek-th iteration which
controls the gradient step size, and we setηk = η0/k to
achieve an effective iteration. ThenW can be obtained when
the derivative of∂F (W ) andDW (pl||pu) are known to us.

First , we compute∂F (W ) in (13). FLDA aims to find
a subspace where RSS streams in the high-dimensional space
RQ with different classes are separated as far as possible, while

the streams in the same class are compressed as compact as
possible. Here the class labels are decided by the locations.
That is to say, the RSS streams for the same location but with
different link length belong to the same class, and RSS streams
of different locations even with the same link length belong
to different classes. LetSB be the between-class covariance
matrix which denotes the separation between different streams,
andSW be the within-class covariance matrix which denotes
the separation between RSS streams around their respective
stream center,

SW =
∑MN

i=1

∑ni

j=1
(xj − mi) (xj − mi)

T (14)

SB =
∑MN

i=1
ni (mi − m̄) (mi − m̄)T (15)

mi =
1
ni

∑ni

j=1
xj , m̄ =

1
MNni

∑MNni

j=1
xj , (16)

hereMN is the class number andni is the number of RSS
streams in thei-th class, in additionmi andm̄ are the mean
of ni RSS streams and mean of all RSS streams, respectively.
FLDA maximizes the trace ratio betweenSB and SW , and
F (W ) becomes

F (W ) = tr(WT SBW )−1tr(WT SW W ), (17)

and its derivative with respect toW is

∂F (W )
∂W

= 2tr(WT SBW )−1tr(SW W )

− 2tr[(WT SBW )−1]2tr(WT SW W )tr(SBW ). (18)

Second, to give a computational tractable realization of
DW (pl||pu), we choose the simplest convex functionΦ(z)=
z2, and the Bregman Divergence which measures the distance
between distributionspl (z) andpu (z) is

DW (pl||pu) =
∫

p2
l (z)−2pl (z) pu (z) +p2

u (z) dz. (19)

To take the noisiness of individual samples into account and
mitigates the sample variations caused by the environment, we



use the Kernel Density Estimation (KDE) [21] which estimates
the probability function as a sum of kernels between the
variable and each of the other samples, and the probability
functionspl(z) andpu(z) are

pl (z) =
1

MN ∙ σl

∑MN

i=1
G∑

l

(z − zl
i

σl

)
, (20)

pu (z) =
1

Mn ∙ σu

∑Mn

i=1
G∑

u

(z − zu
i

σu

)
, (21)

wherezl
i andzu

i are samples of variablezl andzu, MN and
Mn are the variable lengths,σl andσu are the kernel widths,
G∑

l
and G∑

u
are the Gaussian kernel functions with the

covariance matrix
∑

l and
∑

u. Here we use the Gaussian
kernel function since most of the RSS streams fit the log-
normal distributions [9]. Then (19) becomes

DW (pl||pu)=
1

M2N2σ2
l

∑MN

i=1

∑MN

i′=1
G2σ2

l

∑
l

(
zl

i′−zl
i

)

+
1

M2n2σ2
u

∑Mn

i=1

∑Mn

i′=1
G2σ2

u

∑
u

(
zu

i′−zu
i

)

−
2

M2Nnσuσl

∑MN

i=1

∑Mn

i′=1
Gσ2

l

∑
l+σ2

u

∑
u

(
zu

i′−zl
i

)
.

(22)

Note thatDW (pl||pu) is related to the transferred RSS streams
zl

i andzu
i . For (22), we have

∂

∂zl
i

G∑
l+
∑

u
(zl

i−zu
i )=(zu

i −zl
i)(
∑

l+
∑

u)−1G∑
l+
∑

u
(zl

i−zu
i ),

And the derivative ofDW

(
pl||pu

)
can be obtained as follows

∂DW

(
pl||pu

)

∂W
=

∂DW

(
pl||pu

)

∂z
∙

∂z
∂W

=
∑MN

i=1

∂DW

(
pl||pu

)

∂zl
i

∙
∂zl

i

∂W
+
∑Mn

i=1

∂DW

(
pl||pu

)

∂zu
i

∙
∂zu

i

∂W

=
∑MN

i=1

∂DW

(
pl||pu

)

∂zl
i

xl
i +
∑Mn

i=1

∂DW

(
pl||pu

)

∂zu
i

xu
i , (23)

with which

∂DW

(
pl||pu

)

∂zl
i

=
(
∑

l)
−1

M2N2σ4
l

∑MN

i′=1

(
zl

i′−zl
i

)
G2σ2

l

∑
l

(
zl

i−zl
i′
)

−
2(σ2

l

∑
l +σ2

u

∑
u)

−1

M2Nnσuσl

∑Mn

i′=1

(
zu

i′−zl
i

)
Gσ2

l

∑
l+σ2

u

∑
u

(
zl

i−zu
i′
)
,

∂DW

(
pl||pu

)

∂zu
i

=
(
∑

u)−1

M2n2σ4
u

∑Mn

i′=1

(
zu

i′−zu
i

)
G2σ2

u

∑
u

(
zu

i −zu
i′
)

−
2(σ2

l

∑
l +σ2

u

∑
u)

−1

M2Nnσuσl

∑MN

i′=1

(
zu

i −zl
i′
)
Gσ2

l

∑
l+σ2

u

∑
u

(
zl

i′−zu
i

)
.

The kernel widthσl andσu are unknown and critical to solving
(22), and we test the best values in our experiments (Section
VI-B).

C. Grid interpolation to improve the localization accuracy

After we get the transfer matrix, the sensing matrix of
area 1 and real-time RSS with unknown targets’ locations
of area 2 can be projected into a subspace, then the targets’
locations in area 2 can be estimated by solving (8). Owe to
the fact that grid size of area 2 is bigger than area 1, the
localization accuracy in area 2 will decrease.

Fig. 4: Distance based grid interpolation. It shows the interpolation case
when the subgrid is in the middle region of the monitoring area. The distorted
RSS with target locates in this subgrid is interpolated by RSS with target
locates in its 9 neighbor grids.

To deal with this problem, we divide the grid into subgrids
and use the interpolation method to generate the RSS of
subgrids. However, traditional methods, such as Newton or
Hermite interpolation, don’t consider the inherent relations
between RSS of different locations, having a limited accuracy.
As a matter of fact, RSS fingerprints are similar when the target
is at neighbor locations. Therefore, by using RSS of neighbor
locations, we propose a distance based gird interpolation
method to generate the RSS of subgrids.

According to Section IV-A, the number of grids is fixed
to be N when the link length changes froml to u, and the
gird edge length isωl and ωu, respectively. The size of the
j-th grid in two areas4 satisfiesw2

l /w2
u = l2/u2. In order to

increase the number of grids in area 2, we divide each grid into
du/le2 subgrids with edge lengthωu

du/le , and the total number
of subgrids in area 2 isNdu/le2.

For grid i in area 2, we choose its 8 neighboring grids.
Fig.4 shows that each grid is divided into four subgrids. When
the grid i locates at the middle of the area, we choose the
grids which locate at the square region around gridi as the
neighbors. Then RSS of subgridi′ can be generated by

zi′ =
∑9

j=1

zj

djD
, (24)

D =
∑9

j=1

1
dj

, (25)

wherei′∈
[
1, du/le2

]
, zi′ andzj are the RSS of subgridi′ and

grid j, dj is the Euclidean distance betweeni′ and j. After
that, the localization accuracy of area 2 can be improved.

V. THEOCRATICAL ANALYSIS OF FITLOC

In this section, we prove that the transferred sensing matrix
satisfies the RIP , which is the sufficient condition to enable
CS based DfL. Particularly, we present a theorem that the
transferred sensing matrixZ satisfies RIP with high probability
tending to 1, and this ensures high recovery accuracy.

Theorem 1:If the RSS of each row in the transferred
sensing matrixZ is subject to Gaussian distribution and
M = O(K log(N/K)), then the probability thatZ satisfies

(1−δ) ≤ ‖ZΘ‖2
2

‖Θ‖2
2

≤ (1+δ) for all N -dimensionalK-sparse
vectorΘ tends to 1, whereδ ∈ (0, 1).

Proof: It is easy to verify that each row of the transferred
sensing matrixZ follows the Gaussian distribution [9].After

4We supposel/u = a/b to simplify the size scale of the location grid.



that, we normalizeZ as
√

1
σM [Z1, Z2, ∙ ∙ ∙ , ZM ]T to simplify

the proof, and assumeE(Zij)=μ, Var(Zij)=E((Zij)2)=σ.

And the mean and variance of the product〈
√

1
σM Zi, Θ〉 are

E
(
〈

1
√

σM
Zi, Θ〉

)
=

1
√

σM

∑N

j=1
E(Zij)θj =

Kμ
√

σM
,

(26)

Var
(
〈

1
√

σM
Zi, Θ〉

)
=

1
σM

∑N

j=1
Var(Zij)θ

2
j =

‖Θ‖2
2

M
.

(27)

Then we can obtain the mean of‖ZΘ‖2
2 as

E
(
|ZΘ‖2

2

)
=
∑M

i=1
Var
(
〈

√
1

σM
Zi, Θ〉

)
= ‖Θ‖2

2. (28)

Based on [23],p
(∣
∣‖ZΘ‖2

2

‖Θ‖2
2
− 1
∣
∣ ≥ δ

)
≤ 2 exp

(
−Mδ2

c

)
, where

c is a constant number. Then forCK
N ≤

(
eN
K

)K
possible

K-dimensional subspace ofZ, the probability ofK-sparseΘ
which satisfies

∣
∣‖ZΘ‖2

2

‖Θ‖2
2
− 1
∣
∣ ≥ δ is

(eN
K

)K
∙ 2 exp(

−Mδ2

c
) = 2 exp

(−Mδ2

c
+ K log

(N
K

)
+ 1
)
.

(29)
With this andM = O(K log(N/K)), the probability thatZ

satisfies(1−δ) ≤ ‖ZΘ‖2
2

‖Θ‖2
2

≤ (1+δ) for all N -dimensionalK-
sparse vectorΘ tends to1.

Based on the analysis in Theorem 1, the targets’ locations
can be recovered by the CS theory as the transferred sensing
matrix satisfies the RIP with high probability.

VI. I MPLEMENTATION AND EXPERIMENTAL RESULTS

A. Experimental setup

We attempt to perform localization when the areas are
6m×6m and 12m×12m under the condition that knowing the
sensing matrix of area 3m×3m and 4m×4m, then the transfer
work includes three cases: doubling the link length froml=3m
to u=6m, tripling the link length froml=4m to u=12m, and
quadrupling the link length froml=3m tou=12m. We add our
transfer scheme into two state-of-the-art algorithms RASS [5]
and RTI [13], referred as RASS w/ Trans. and RTI w/ Trans.
for a fair comparison. And we also compare with the traditional
CS based localization method with the sensing matrix of link
length u as ground truth, referred as CS w/o Trans. The
performance of FitLoc are investigated by considering the
following parameters: (i)K: the number of targets, (ii)M :
the number of chosen links, (iii)n: the number of chosen
locations in the new area, (iv)λ: the regularization parameter,
(v) σ: the kernel width, and (vi)η(0): the initial learning rate,
and the default values are shown in Table I.

We perform extensive experiments in an open-space de-
picted in Fig. 13. Based on the work in [9], we set the grid
edge length asω=0.5m when the link length is 4m5, thus the
grid number is 64. We use the MICAZ [24] nodes that work
on 2.4G as the transceivers, and put them on the height of
0.95m to obtain the best propagation property [9], each link
records 100measurements.

5In fact, when the gird size is other values, the performance of FitLoc
are consistent through our extensive experiments. To save the space, we only
report the experiments withω=0.5m.

Fig. 13: Experiment scene with area size of 4m×4m.

TABLE I: DEFAULT VALUES OF PARAMETERS.

Parameters Default Values
The number of targetsK 2

The number of chosen linksM 4
The number of chosen locationsn 4

The kernel widthσ 3.5dBm
The regularization parameterλ 0.5
The initial learning rateη(0) 10

The transfercase from 4m to12m

B. Impact of parameters

We discuss the parametersK, M , n, σ, λ andη(0) under
the default transfer case, and the values are the same to the
other two transfer cases.

Target Number K: we discuss how many targets can be
accurately localized by FitLoc, and the other parameters are set
as the default values. When the targets number increases from
1 to 6, Fig. 5 shows that FitLoc can localize 3 targets with the
average localization error of 0.89m, and the localization error
of RTI w/ Trans. and RASS w/ Trans. are much bigger than
FitLoc. According to the CS theory, FitLoc satisfiesM >
K(log(N/K)) = 3.98, thus FitLoc can accurately localize
multiple targets and performs better than RTI w/ Trans. and
RASS w/ Trans. algorithms. It also illustrates that RTI w/o
Trans. and RASS w/o Trans. performs worse when comparing
with RTI w/ Trans. and RASS w/ Trans., which demonstrates
the effectiveness of our transfer scheme.

Link Number M : we inspect the number of links used in
localization and increase the link numberM from 1 to 6. Fig. 6
shows the average localization error under differentM . It can
be seen that the localization errors of RTI and RASS without
transfer (RTI w/o Trans. and RASS w/o Trans.) are large and
random. On the contrary, the localization errors of FitLoc, RTI
and RASS with transfer (RTI w/ Trans. and RASS w/ Trans.)
decrease significantly when the link number increases. FitLoc
performs almost as well as the method which directly uses
the CS algorithm with the ground truth sensing matrix (CS
w/o Trans.), illustrating the feasibility and effectiveness of the
transfer scheme. In addition, asM = 4 is a sparse deployment,
CS w/o Trans. and FitLoc satisfyM = 4 > K(log(N/K)) ≈
3, so they outperform RTI w/Trans. and RASS w/Trans. which
need a dense deployment to collect enough data.

Location Number n: we attempt to test the best location
numbern to solve the transfer matrix, and the average lo-
calization errors under different number of randomly chosen
locations are shown in Fig. 7. Whenn increases from 0
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to 1, the localization error for all three methods decreases
dramatically, which suggest that the localization accuracy can
be greatly improved by randomly choosing a location within
the effective area of a link. And as the location number
increases continuously, it is easily to understand that the big
location number is, the more precise of the transfer matrix is,
and the lower the localization error will be. We setn=4 as
the most appropriate location number since it will increase the
collection effort if we use too many locations.

Kernel Width σ and Regularization Parameter λ: we
investigate the most appropriate kernel width which used for
estimating the RSS distributions under link length 3m, 4m, 6m
and 12m. The average localization errors under different kernel
width are illustrated in Fig. 8. It shows that the appropriate
kernel widths for link length 3m, 4m and 6m and 12m
are between 3dBm and 4dBm. And we find that the most
appropriate kernel widths are almost consistent with the RSS
noise, and we setσ=3.5. We also inspect the localization
performance under different regularization parameterλ. Fig.
9 shows that the most appropriate value ofλ is 0.5. It is not
difficult to understand that whenλ = 0.5, the regularization
part is the same important to the FLDA algorithm and makes
the transfer scheme most effective.

Initial Learning Rate η(0): we study the critical parameter
η(0) that used in the gradient descent to achieve an optimal
solution for the transfer matrix, which with initial solutions
generated by the FLDA algorithm, referred as w/ FLDA with
different η(0) in Fig. 10. It can be seen that the values of the
merit functionF (W )+DW (pl||pu) converge to the minimum
under three differentη(0) after about 20 iterations, and the
convergence rate have little difference from each other. We
set η(0) = 10 as the default value since the convergence
curve is more smooth. What’s more, in order to study the
efficacy of the FLDA algorithm, we directly use the gradient
descent to solve the transfer matrix, referred asη(0) = 10 w/o
FLDA. The convergence curve falls more slowly and more
iterations are needed when compared withη(0) = 10 w/
FLDA., which illustrates that the FLDA algorithm provides
a good initialization toDW (pl||pu).

C. Effectiveness of FitLoc

We attempt to discuss the effectiveness of FitLoc from the
following three aspects: localization performance, human effort
cost, and energy consumption.

Localization Performance. Fig. 11 illustrates the CDF
of localization error under the transfer from 4m to 12m in
outdoor environment. It shows that the performance of FitLoc
is approximate to the CS w/o Trans., and the localization errors
for three transfer based methods do not change obviously.
FitLoc performs best with50th and 80th percentile error of
0.89m and 1.23m, respectively. When compared with RTI
w/o Trans. and RASS w/o Trans., RTI w/ Trans. and RASS
w/ Trans. improve58% and 66% for 80th percentile error,
respectively, which shows that the transfer scheme significantly
improves the performance of RTI and RASS algorithms. In
addition, under the transfer from 3m to 6m and 3m to 12m,
the localization error for RTI and RASS respectively improves
54%, 59% and 76%, 85% with the transfer scheme. This
indicates that after transfer, the pre-obtained sensing matrix
can be adaptively reused in the new area.

On the other hand, when the deployment areas are in-door
environment with the similar presence of multipath (i.e., the
areas are similar furnitured rooms), the localization perfor-
mance of FitLoc degrades and is showed in Fig.12. It can
be seen that the50th localization error of FitLoc is 1.4m
and 52% higher than the CS w/o Trans. algorithm, which
illustrates that the transfer scheme performs bad in the in-
door environment, due to the fact that different indoor areas
suffer from severe multipath and noisy environment. In spite of
this, FitLoc performs better than RTI w/ Trans. and RASS w/
Trans., which shows that CS based localization is more robust
to the environment noise.

Human Effort Cost. In general, the RSS of a new area are
obtained manually. We use the time-cost of the pre-deployment
to examine the human effort. The area is divided into grids
with edge length 0.5m, and 100 continuous RSS changes are
collected at each grid with 1.5 seconds each measurement.
Thus the construction time-cost of the sensing matrix for area
4m×4m and 12m×12m are at least100×1.5×(4/0.5)2

3600 ≈ 2.67
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and 100×1.5×(12/0.5)2

3600 = 24 man-hours, respectively. And when
we use the transfer scheme, in addition to the time-cost for
the 4m×4m area, only 4 grids’ human effort are needed for
the 12m×12m area, thus the time-cost is100×1.5×(4/0.5+4)

3600 ≈
2.83. Fig. 14 shows the time-cost of three transfer cases
with and without our transfer scheme, and the human effort
decreases are41% from 3m to 6m,88% from 4m to 12m,93%
from 3m to 12m.

Energy Consumption. We compare the energy consump-
tion of FitLoc, RASS w/ Trans. and RTI w/ Trans. by increas-
ing the number of links until the localization accuracy reaches
the given value, and then calculate the energy consumption.
According to the first order radio model [25], the energy
consumption for each packet of the link is calculated by
Eradio = elBb2 + 2BEelc, whereB is the size of a packet in
bits, b is the link length,el=100pJ/(bit/m2) andEelc=50nJ/bit.
We setB=320bits,b=12m and send 100 packets each time.
Thus, the energy consumption for one algorithm withM links
is M×3.66mJ. Note that for each algorithm, the number of
links required for achieving the same localization error is dif-
ferent. Fig. 15 shows the energy consumptions under different
localization errors. When the given localization error is 1m,
the energy consumption for FitLoc, RTI w/ Trans. and RASS
w/ Trans. are 18.3mJ, 47.59mJ, and 54.91mJ, respectively. It
illustrates that RTI and RASS require more measurements for
an accurate localization, while FitLoc can accurately localize
targets even with a small number of measurements, highly
reducing the energy consumption.

D. Robustness and Scalability of FitLoc

Robustness.In order to investigate the robustness of Fit-
Loc, we evaluate the localization performance when the link
length of a new area is not used for modeling the transfer func-
tion. A new link length means a new Bregman Divergence over
the existing link lengths, and how do the Bregman Divergence
differences among links affect the localization performance?
By randomly choosing some locations and recording the RSS
with different new link length, the average localization error
and the Bregman Divergence are depicted in Fig. 16. It shows
that the localization error is bound to 2.3m when the link length
smaller than 6m or bigger than 10m, but become large for
the other link lengths. Another observation is that when the
absolute value of the Bregman Divergence larger than 4dBm,
the localization error increases distinctly. In other words, the
robustness of FitLoc is good when the noise lower than 4dBm.

Scalability. We also study the scalability of FitLoc when
there are more than two kinds of link length in a new area,
which means that the RSS to solving the transfer matrix
corresponding to diverse link length in the new area. We
evaluate the localization performance in the new area under
6 different transfer cases, includingl = 3m to u={4m,6m},

u={6m,12m}, u={4m,6m,12m} and l=4m to u={3m,6m},
u={6m,12m}, u={3m,6m,12m}, and the results are illustrated
in Fig. 17. It can be seen that the average localization error
of FitLoc, RTI w/ Trans. and RASS w/ Trans. keep stable,
since the transfer scheme is used for the coverage area of a
specific link, the transfer scheme performs well when there are
multiple link lengths in the new area.

E. Discussions

• To achieve the best localization performance, it needs
to set a proper grid size in the pre-deployment phase.
On one hand, a small grid size provides a fine-grained
resolution of localization accuracy, and vice versa. On
the other hand, a big grid size results in an unreliable
RSS interpolation. In view of these, the proper grid size
should be determined by the specific application accuracy
requirement. And we choose a grid size of 0.5m×0.5m
through the extensive experiments.

• For areas with similar indoor environments (i.e., the
deployment of furniture, wireless interference, etc.), the
performance of FitLoc degrades to an average localization
error of 1.4m from 0.89m in the outdoor environment,
according to Section VI. This indicates that FitLoc is
more capable of areas with relatively similar environment.
Even so, we suggest that FitLoc satisfies the daily indoor
localization requirement with a room-level accuracy with-
out the need of re-calibration.

• Since the communication range of wireless transceivers is
limited, we divide the large area into small subareas [5],
[9]. Then when the area scales up, the cost can be greatly
reduced by applying the transfer scheme to a number
of subareas. Note that for the irregular deployment of
transceivers with different link length in an area (it is not
common in most settings actually), the transfer can be
done for the effective area of each link.

VII. R ELATED WORK

DfL has received much more attention with the needless
of target-attached devices [3]–[5], [7]–[14]. Compared with
video-based [26] and ultrasonic-based DfL [27], one main
advantage of RF based DfL is that the RSS measuring are
ubiquitous in existing wireless infrastructures and without
requiring additional devices. It can be generally divided into
two categories. The first one is Radio Topology Imagine model
based approaches [10]–[14] which have a limited performance
as the model is vulnerable to environment noise. The other one
is the radio-map based methods [3]–[5], [7]–[9] which could
achieve a fine-grained localization accuracy by comparing the
real-time RSS with the radio-map.

Most radio-map based DfL approaches require a high
deployment and human effort cost to perform localization



over various areas. In this paper, we propose FitLoc, which
employs the CS based DfL proposed in [9] to reduce the
deployment cost and combines with the rigorously designed
transfer scheme to reduce the calibration cost. Work [10]–
[12] are related to FitLoc which take advantage of the CS
theory, but they are model based and need dense deployment.
Work [20] uses the similar transfer method to FitLoc, while
it transfers the information of different domains in image pro-
cessing, and doesn’t consider the noise influence. To transfers
RSS of one target to another, work [28] designs a linear
transfer model by utilizing the Maximum Mean Discrepancy
to measure the distribution distance, but it can not be used
as an regularization term in FitLoc. Another related work [15]
transfers the learned model from one spatial area to another for
indoor WiFi localization, but it follows the simple premise that
the two areas must share some common devices and the target
needs to carry a wireless device. In summary, FitLoc equips the
target without any wireless devices, and enables fine-grained
multiple targets localization over various areas with little cost,
thus more practical for deployment setups.

VIII. C ONCLUSION

This paper presents the first fine-grained multiple targets
DfL approach over various areas with little cost. By a novel
transfer scheme, which projects the RSS into a subspace where
the distribution distances over different areas are minimized,
the radio-map of one area can be reused by various areas. Thus,
the calibration effort is greatly reduced. On the other hand,
based on the CS theory, FitLoc reduces the deployment cost by
deploying a small number of transceivers and collecting only a
few of RSS. We have also evaluated the effectiveness of FitLoc
through both theoretical analyses and extensive experiments
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