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Abstract—Device-free localization (DfL) techniques, which  cost when the localization environment changes from one
can localize targets without carrying any wireless devices, have area to other areas. In reality, applications which need to

attracting an increasing attentions. Most current DfL approaches,  conduct localization over various areas exist widely in outdoor
however, have two main drawbacks hindering their practical  anvironment [15].

applications. First, one needs to collect large number of mea- . . . . .
surements to achieve a high localization accuracy, inevitably High deployment cost To achieve a fine-grained localiza-

causing a high deployment cost, and the areas variety will further ~ tion accuracy, most DfL approaches even including the state-
exacerbate this problem. Second, as the pre-obtained Received Of-the-art work [5] and [13], need to collect large number
Signal Strength (RSS) from each location i(e., radio-map) in of RSS measurements from a set of dense deployed wireles:
a specific area cannot be directly applied to new areas for transceivers, causing a high deployment cost. In addition, the
Iocali_zation, the calibration process of different areas will lead to transceivers a|WayS have a limited power Supp|y in the outdoor
the high human effort cost. environment [16], [17]. Hence when one conduct localization
In this paper, we propose, FitLoc, a fine-grained and low cost over various areas, it will not only bring more expensive
DfL approach that can localize multiple targets in various areas.  deployment costs, but also result in the low scalability for
By taking advantage of the compressive sensing (CS) theory, |gcalization. Therefore, the high deployment cost is one key

FitLoc decreases the deployment cost by collecting only a few  cqntraint hindering the DL technique to be fully practical.
of RSS measurements and performs a fine-grained localization.

Further, FitLoc employs a rigorously designed transfer scheme High human effort cost. When one uses the radio-map of
to unify the radio-map over various areas, thus greatly reduces One area to conduct localization over other areas, the radio-maj
the human effort cost. Theoretical analysis about the effectivity —of areas with different sizes are significantly different. In fact,
of the problem formulation is provided. Extensive experimental  different areas require to deploy different lengths of wireless

results illustrate the effectiveness of FitLoc. links!, and the RSS distributions under different link lengths
are different, as shown in Fig. 1(a). Thus, real-time RSS
I. INTRODUCTION collected in the new area would drastically deviate from the

radio-map of the original area, and the localization accuracy
fiP decrease dramatically in the new area. To deal with
Ris problem, an intuitive solution is to repeat the manually

Past decade has witnessed the pervasiveness and adva
of the localization approaches/systems. However most metho
require the targets to carry certain wireless devices [1], [2]. _ypiari o s o : :
Inqpractice th(gre are man)gl emerging applications ur[1a]bI(£ ]tcallbra}tlon in eagch area, but it is a time consuming and labor
meet this requirement, for example to localize the rare animals, tenswe process )
the zoologists forbid equipping the giant pandas or golden Owing to the sparse recovery property of the Compressive
monkeys with any devices, and in the intrusion detection, it is>ensing (CS) theory [18], [19], recent work [9]-[12] could
impossible to pre-install the tracking device on the intruderdocalize targets by collecting less RSS measurements. Particu
[3]-[5]. Therefore, the Device-free Localization (DfL) tech- larly, in light of the sparse property of the localization problem,
niques [3]-[14], which don't need the targets to carry anyl-€. the number of targets is sparse relative to the number

devices, have become one of the most attractive techniqué¥ locations, work [9] can achieve a fine-grained localization
to researchers and industrials. accuracy for multiple targets, which deploys a small number of

ransceivers and collects only a few of RSS measurements, thu

A ; . .Y reducing the deployment cost greatly. However, this approach
(RSS) in WiFi, RFID, etc, DiL technique performs localization doesn’t work out when one performs localization over various

by utilizing the RSS measurements distorted by the target :
X . reas due to the high human effort cost caused by the repeate
Particularly, current methods [13], [14] establish the mOde?éalibration for each area.

between RSS and locations, but provide a limited performancé o ) .
when considering both the accuracy and robustness, since the 10 overcome these limitationsp this paper, we intro-
models are vulnerable to environmental noise. In contras@duce FitLoc, the first fine-grained and low-cost device-free
radio-map methods [3]-[5], [7]-[9] could achieve a fine- Iopahzauon for multiple targets over various areah line _
grained localization accuracy by matching the real-time RS&Vith the common CS based DfL, FitLoc recovers the location
with the pre-obtained radio-map, and have been extensivelyector by solving art, optimization with the sensing matrix
studied and become the preferred approach recent years. (radio-map) and real-time RSS, and reduces the gemot

However* two _key_ enablers to make the_ radlofmap b‘tised 1A link length is the distance between the wireless transceivers.
Device-free Loqallzatlon method fully practlcal still remains 2, fact, the radio map are established through manually recording the RSS
unsolved,the high deployment cosind high human effort change which are distorted by the target standing in all the possible locations.

With the ubiquitous and low-cost Received Signal Strengtf{
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Fig. 1: The radio-map differences over different areas are reflected through theig. 2: Deployment of DfL System. There are two targets respectively stand
RSS distributions. By collecting the RSS of two specific wireless transceiversy two different locations, and when the target 1 within the effective area of
distorted by the target at a fixed location, (a) shows that the Gaussiafjreless linki which are formed by the transceivefsX; and RX;, the link
probability estimates of the raw RSS under 4 different link lengtles @m, will be distorted and the RSS measurement will change [9].

4m, 6m and 12m) are significantly different from each other. (b) shows the

distribution distances are made minimum after being transferred by FitLoc. Contributions: in summary, we make the foIIowing contribu-

cost benefiting from the CS theory. The challenge howevepons:

is to perform localization with the sensing matrix from one e We present the first fine-grained and low-cost DfL ap-
area over various areas. Unlike existing approaches which  proach for multiple targets over various areas, named
don't take the area change into consideration, FitLoc aims at  FitLoc, paving the practical application road of DfL in
minimizing the calibration effort cost when the area changes. the outdoor environment.

By collecting RSS of only a few locations in the new area, e To our best knowledge, we are the first to design a transfer
and integrating it with the sensing matrix of the original area, scheme that combines FLDA and Bregman Divergence to
FitLoc transfers the sensing matrix and reuses it in the new make the RSS of one area be shared by other different

area, as a result, the human effort cost is reduced greatly. areas, and the basic idea can be extended to other system:
So how to design a transfer scheme that different areas ® We formally prove that the sensing matrix after being
can share an unified sensing ma@ifo do so, one needs to transferred still obeys RIP with a high probability, which

project the RSS of different areas into a subspace where the 1S the sufficient condition to enable CS based DfL.
distribution distances are minimized. Note that the target will ® We perform extensive experiments to illustrate the ef-
distort some links when he/she locates in the area, and the RSS  fectiveness and robustness of FitLoc, and the results
distribution differences are caused by not only the location ~ Show that FitLoc achieves an average localization error
differences but also the link differences. That is to say for one  0f 0.89m over different areas in the outdoor environment
area, RSS distributions of the same one link but with different ~ @nd 1.4m in similar furnitured indoor environment.

target locations are different, and distributions of different links

even with the same target location are different. Further, two Il.  BACKGROUND OF CSBASED DFL

areas with different link lengths can be treated as one area This section introduces the Compressive Sensing (CS)
scaled in size, and distributions of same target locations for hased DfL approach [9], which can accurately localize multiple
specific link in two areas are different. Consequently, the RS$argets with a small number of measurements, thus reducing
distribution distances between (i) different locations for thethe deployment cost. Suppose that there Ardargets ran-
same one link should be maximized; (ii) different links with domly located in an area with siZzex a. The area is equally
the same length and target location should be maximized; (iiiflivided into N grids with edge lengthy;. By deploying M
same locations for a specific link with different link lengths nodes at the midpoint of a grid edge on two sides of the
should be minimized (as shown in Fig. 1(b)). area, there ar@/ links formed by pairs of TX;, RX, }-nodes

To design such a transfer scheme, our key observation & € [1,M]). as Fig. 2 shows. Then the locationsgftargets
that different locations and links can be regarded as differerVer V grids can be denoted as a location vector
class labels. Then inspired by the transfer method proposed in O =01, 0, ,0n]" 1)
image processing which transfers the information of different - Vb A VUNT
domains [20], we design a transfer scheme by utilizing Fishefyhere 9, € {0,1}, and#; = 1 when one target is at grig;
Linearly Discriminant Analysis (FLDA) [21] as the subspace otherwise; = 0. Since only K elements of© are nonzero,
learning method to project the RSS into a low-dimensionaly js a K-sparse K < N) signal [9]. According to the CS

subspace, and use the Bregman Divergence [22] as a regulgfeory, theN dimensional location vectd® can be recovered
ization term to measure the RSS distribution distances. Towarlom 1/ dimensional RSS vectdry, 1,

this end, different areas can share a unified sensing matrix. The
details of the transfer scheme are presented in Section IV, and Yairx1 = Xuxn - Onx1 + N, (2)

its efficiency is demonstrated in Section V. here Y r«1 is the RSS vector measured in the localization

Based on the proposed transfer scheme, whether the ase, X/« n is the sensing matrix constructed in the pre-
based DfL after transfer still satisfies the CS theory to perfombeployment phasey’ is the measurement noise. In this paper,
localizatior? To deal with this challenge, we provide a com-x ' (3..) .. is the RSS chandeof i-th link distorted
prehensive analysis to show that the sensing matrix after being, one targ(Jet at ]griqf, Yarxi = (yi1), (yi1) is the real-time
transferred obeys the Restricted Isometry Property (RIP) with

a high probability, which justifies the viability of the transfer = 3rss change is the difference between RSS measurement before and afte
CS based DfL approach. the target distort the link.




RSS change of-th link distorted by targets with unknown distribution distances af.. andx?, (thei-th link and location
locations. It has been proved thatXf satisfies the Restricted ; with different lengthl andu) are minimized, as Fig.3 shows.
Isometry Property (RIP) and the dimension of theobeys Then the sensing matrix of area 1 after being transferred is

M=0(Klog(N/K)) [9], © can be exactly recovered through . )
the ¢, optimization: LMxNxq = (WTX§j), ie[1,M],j€[1,N]. (6)

min |8, s.t. [|[XT(Y —XO)||o < cdy/2logM, (3) In the localization phase we transfer the real-time RSS

. . . streamy?* of area 2, and the RSS vector after being transferred
where () is the pseudo-inverse operator;> 0 is a constant, g ’

0 is a constant, and/ is the number of measurements. Yiining = (WTyg)’ i€ [1,M]. )

It is crucial to design the sensing matrix. In order to . )
better understand the RSS, we coll€ztcontinuous RSS as BY choosing the most frequent RSS of each stream after being

a stream for each linkie., x;; = {z;;(1), - ,2;(Q)}7, transferredZys « nxq and}’]’vjxlxq can.be reduced t@ ;. n
vi = {yi(1), - ,5:(Q)}T. Thus we have 3-dimensional and Y};.1- And the location vecto® in areau x b can be
sensing matrix and 2-dimensional RSS vector, recovered via the following; optimization [9],
X110 XIN min ||é)||1a st (Z)T(Y' - Zé)”oo <cdy/2log M. (8)
XMxNxQ = Coxy : (4)  Note that as the grids number is fixed A0 and the grid size
Xu1 e XMN of area 2 is bigger than area 1, the localization accuracy will
v Iy i 7 5) decrease in area 2. To tackle this problem, we divide the grids
Mx1xQ = Y1, ¥ YM] - of area 2 into subgrids, then we propose a distance based gric

After that, to acquire the true RSS distorted by target, weanterpolation method to generate the RSS of subgrids.
set the most frequent value amor@ values as the true
value of one link,ie., z;; = argmaxp(x;;(0)), yv; = IV. TRANSFERSCHEME ACROSSVARIOUS AREAS
arg max p(y; (o)), wherel < o < @ andp(-) is the probability This section presents the detailed process of the transfel
of the Gaussian estimation. By doing so, the sensing matrischeme. Specifically, we need to project the RSS distributions
Xurxnxg and RSS vectoF 1% are simplified aX/xn  and minimize the distribution distances. However, as different
and Y. RSS streams come from different distributions, the simple
methods such as Principle Component Analysis (PCA) and
. FITLOC OVERVIEW Fisher Linear Discriminant Analysis (FLDA) [21], cannot be
In view of CS based DfL, FitLoc transfers the sensingdirectly used to transfer the RSS streams to minimize the
matrix of one area and performs localization over other areadistribution distances. To do so, we add a regularization term to
with little cost. By assuming that there are two areas withthe basic subspace learning method to measure the distributior
different sizes, FitLoc goes through the following steps distances. Further, the well-known PCA cannot separate RSS
- ; —-— istributions of different locations as it is an unsupervised
1) We construct the sensing matrix of original area, and collec?I ethod. In contrast, FLDA uses the class label information to

RSS of only a few randomly chosen locations in the ne S . . S
area. Then FitLoc solves the transfer matrix on the basiha@ximize the distances between different classes and minimize
. e distance within the same class. On the other hand, we

of the transfer scheme. . o
2) We collect the real-time RSS of unknown locations in theUS€ the Bregman Divergence [22] to measure the distribution

new area. After that, we transfer the sensing matrix an&hstances. Therefore, the transfer scheme can be formulated a

real-time RSS vector. At last, FitLoc performs localization a FLDA subspace learning method combined with a Bregman

in the new area based on the CS theory. Divergence based regularization term.

Now we briefly present the framework of the transfer A. Formulate the transfer scheme
scheme, and leave the detailed descriptions in Section IV. \we first collect a few RSS measurementsrofandomly
Consider two areas depicted in Fig.3, which are with linkcposen |ocations in area 2, then integrate it with the sensing
length  (area 1 with sizel x a , grid edge lengthu;) and  mairix of area 1. Letx! be the RSS stream vector of
u (area 2 with size: x b , grid edge lengthv,), respectively, |qcations in area 1ig., the vector description form of the

and suppose thdt< v . For each area, the number of location gensing matrix), anet* be the RSS stream vector efchosen
grids is N. For the same grig, the RSS stream distributions |gcations in area 20 < N

of the first link significantly differs from each other, thus the

sensing matrix are completely different. While it requires a lot  x'=(x};, -, xhy, - x4, Xy o Xy 5 Xgn), - (9)
of time and labor to reconstruct the sensing matrix in area 2, yu—(x% ... 58U .. xU .. 58 U U

we aim to find a transfer matrid’ € R2X4 to make the RSS (1,7 X+ X Xy w5 Xy 5 Xy ) (10)
distribution distances minimized in the subspa® so that wherex!; andx}; are the RSS streams of lirikunder location

we can use the sensing matrix of area 1 after being transferredwith link length I and «, and the distributions ok!. and

to locate the targets in area 2. The framework of the transfej‘(gj are different. Our goal is to find a transfer matkix, with
scheme includes two phases. which one can project!; andx? into a subspace, where with

In the pre-deployment phase we transfer the sensing matrix the same link length, i) the RSS distribution distances between
of area 1. By collecting RSS of (n < N) randomly choosing different links but under the same location are maximized,
locations in area 2 and integrate with the sensing matrix op(x;;) # p(xi/;), @ # i € [1, M]; ii) distribution distances
area 1, we can find a transfer matiiX, with which the RSS between same link but under different locations are maximized,

l
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Fig. 3: lllustration of Transfer Scheme. For two different monitoring areas with sizéx a andu x b, the link lengths aré and v, respectively. We divide
each area intdV location grids, and when the target locates in grithe will distort some of\/ links, and for the same link the distributions of) continuous
RSS with link lengthl andu are different. By transfer the RSS streaﬁfg andx?j into a projected subspad@ aszlij andz}., the distributions are made as
close as possibla,e., the RSS stream distribution distances for the same locations are minimized. Afterwards, the 3 dimensional sensing matiixaf area
after being transferred @), « v x4 Can be applied to perform localization in area< b.

p(xi;)#p(xi51), 777’ €[1, N]; and with different link lengths, the streams in the same class are compressed as compact
the RSS distribution distances between the same links angbssible. Here the class labels are decided by the locations
locations are minimizeq?(xﬁj):p(x;ﬁj), i=1,j=7. That is to say, the RSS streams for the same location but with
Let x! andx" after being transferred até = W7x! and diffe_rent link Ieng_th belong to _the same class_, and RSS streams

z* = WTx" the distributions ofz' and z* are p(z) and of different locations even with the same link length belong

i ol ou P to different classes. Letz be the between-class covariance

pu(z), respectively, where = (z‘,z%), x = (x’,x"*). Then X . ; .

the general framework can be denoted as matrix which denc_Jte_s the separation betweer_\ dlffe_rent streams
and Sy, be the within-class covariance matrix which denotes
z =Wk, (11) the separation between RSS streams around their respectiv

W= arg min{F(W)+ ADw(pi|lp.)}, (12) stream center,

WeRQxa MN —n; T
_ - ) Sw = E - E (%) —my) (x5 — my) (14)
with respect toW'W = I. F(W) + ADw (pi||p.) is the i=1 £~j=1

merit function, F'(W) is the FLDA subspace learning method Sp — MN = _m) 7T 15
which projects the RSS streamsxdfor x* into the subspace B Zi:l i (m; — m) (m; - m) (13)
RY, ¢ < @, where the data classification loss are minimized, m, — 1 Z” i = 1 ZMN”“' X, (16)
Dw (pi||p.) is the Bregman Divergence regularization that B TRy e MNn; &~j=1 7’

measures the distances betweefz) and p,(z), A is the  phara 3/ is the class number and; is the number of RSS
regularization parameter that controls the trade-off betweeRiaams in the-th class. in additionm; andm are the mean
F(W) and Dy (pi[[p.). In fact, FLDA gives a good initial  4f ,, RSS streams and mean of all RSS streams, respectively
solution to the regularization term. FLDA maximizes the trace ratio betwee$y and Sy, and

B. Obtain the transfer matrix F(W) becomes

We introduce the solving process of the transfer scheme F(W) = tr(WTSpW)~ ' tr(W" SwW), 17)
to obtain the transfer matri/. There are many optimization
algorithms to solve the transfer matrix, and we choose th
simplest Gradient Descent algorithm [21] to obtain the optimal oF(W) T -1
solution iteratively. By taking steps proportional to the negative oW 2tr (W= SpW) ™" tr(SwW)
of the gradient of the function at the current point, we have — 2r[(WT SpW) " PPtr(WT Sy W)tr(SpW). (18)

OF(W) + A aDW(pl||p7“‘)), (13) Second to give a computational tractable realization of
ow ow Dw (pi]|pw.), we choose the simplest convex functi®z) =

where 7, is the learning rate for thé-th iteration which 22 and the Bregman Divergence which measures the distance

controls the gradient step size, and we ggt= no/k t0  between distributiong; (z) andp, (z) is

achieve an effective iteration. Thé#i can be obtained when

the derivative ofo (W) and Dy (p;||p.) are known to us. Dw (pi||pa) = /pl2 () —2py(2) pu (z) +p2(z)dz.  (19)

First, we computedF' (W) in (13). FLDA aims to find
a subspace where RSS streams in the high-dimensional spate take the noisiness of individual samples into account and
R€ with different classes are separated as far as possible, whitaitigates the sample variations caused by the environment, we

gnd its derivative with respect @ is

Wigr = Wi —n(k)(



use the Kernel Density Estimation (KDE) [21] which estimates
the probability function as a sum of kernels between the a 5 i

Target locates in
subgrid / with RSS
to be interpolated.

Target locates in grid j

variable and each of the other samples, and the probability " i ik

functionsp,(z) andp,(z) are

1 MN 7 — zﬁ
= MN~O‘[ Zi:l GZL( oy )’

1 Mn 7 — Z;L
= Mn - ou Zi:l qu( Ou )’

wherez! andz? are samples of variabte andz*, M N and
Mn are the variable lengths; ando, are the kernel widths,

p1(2) (20)

Pu(2) (21)

Gy, and Gy~ are the Gaussian kernel functions with the

covariance matrixy_, and ) . Here we use the Gaussian

with transferred RSS 3;,
and the distance to
subgirdi’ isd;.

......... » grid interpolation

9 grid
center

«—0
subgrid
center

Fig. 4: Distance based grid interpolation It shows the interpolation case
when the subgrid is in the middle region of the monitoring area. The distorted
RSS with target locates in this subgrid is interpolated by RSS with target

kernel function since most of the RSS streams fit the log4ocates in its 9 neighbor grids.

normal distributions [9]. Then (19) becomes
MN MN

1
Dw (pllpo) = 3ppag2 >y D, Goory (2 —2i)
1 Mn Mn u w

+ M?2n202 Zi:l Zi’:l Coors., (2 =)

2 MN Mn N
~ M2Nno,o; Zi:l Zyzl Gorsiozs, (2 —2).
(22)

Note thatDyw (p;||p.) is related to the transferred RSS streams

z} andz!. For (22), we have
9
8z§
And the derivative ofDy (p;||p.) can be obtained as follows

aDW(lepu) :aDW(pl”pu) ﬁ

GZHrZu(Zé _Z;'J) = (Z?_Zé)(zl +Zu)_1GZL+Zu(Z§ _Z?)a

ow 0z ow
5 ODw () | 9 v 2w (plln)  Oat
Tl T 94 oW =1 Oz ow
MV ODw (pillpu) mn ODw (pil|pu) .,
B~ D D
with which

ODw (pillp) — (21) 7" M
a(zl. = AN Dy~ 7) Cao o (=)

AP i+ 02 ) M '
_ l l Zi,zl(zi’_Zé)GUIZZHrUﬁZI(Zli_Zi/)v
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a(zy ) = M2l Zi’:l(zi/ —Z; )Gggﬁ Z“(Zi _Zi’)
K3 u
20PN +02 ) MY,
B ZM2NnJuoz Z¢/=1(Z; _Zi')GUZ“EWUEEu(Zi'_Zg)'

The kernel widthr; ando,, are unknown and critical to solving
(22), and we test the best values in our experiments (Secti
VI-B).

C. Grid interpolation to improve the localization accuracy

After we get the transfer matrix, the sensing matrix of (1-6) <

To deal with this problem, we divide the grid into subgrids
and use the interpolation method to generate the RSS of
subgrids. However, traditional methods, such as Newton or
Hermite interpolation, don’t consider the inherent relations
between RSS of different locations, having a limited accuracy.
As a matter of fact, RSS fingerprints are similar when the target
is at neighbor locations. Therefore, by using RSS of neighbor
locations, we propose a distance based gird interpolation
method to generate the RSS of subgrids.

According to Section IV-A, the number of grids is fixed
to be N when the link length changes frointo u, and the
gird edge length isv; and w,, respectively. The size of the
j-th grid in two area’ satisfiesw? /w2 = 12/u?. In order to
increase the number of grids in area 2, we divide each grid into
[u/1]? subgrids with edge length2, and the total number
of subgrids in area 2 iV [u/l]>.

For grid i in area 2, we choose its 8 neighboring grids.
Fig.4 shows that each grid is divided into four subgrids. When
the grid ¢ locates at the middle of the area, we choose the
grids which locate at the square region around dris the
neighbors. Then RSS of subgritican be generated by

(24)
(25)

wherei’ € [1, [u/l]?], zy andz; are the RSS of subgrid and
grid j, d; is the Euclidean distance betweé&nand j. After
that, the localization accuracy of area 2 can be improved.

V. THEOCRATICAL ANALYSIS OF FITLOC

In this section, we prove that the transferred sensing matrix
satisfies the RIP , which is the sufficient condition to enable
CS based DfL. Particularly, we present a theorem that the
transferred sensing matriksatisfies RIP with high probability
tending to 1, and this ensures high recovery accuracy.

Theorem 1:If the RSS of each row in the transferred
sensing matrixZ is subject to Gaussian distribution and
M = O(Klog(N/K)), then the probability thaZ satisfies

o2
”HZ@OH”; < (149) for all N-dimensional K-sparse
2

on

area 1 and real-time RSS with unknown targets’ locations/ector© tends to 1, wheré € (0, 1).

of area 2 can be projected into a subspace, then the targets’

Proof: It is easy to verify that each row of the transferred

locations in area 2 can be estimated by solving (8). Owe Qgnsing matrixz follows the Gaussian distribution [9Rfter

the fact that grid size of area 2 is bigger than area 1, the

localization accuracy in area 2 will decrease.

“We supposé/u = a/b to simplify the size scale of the location grid.



that, we normalizeZ as y/ —+:[Z1,Z2,- - ,Zy)" to simplify
the proof, and assumg(Z;;) = p, Var(Z;;) =E((Z;;)*) =o. 7
And the mean and variance of the proddet 7 Z;, ©) are D R il

oM Monitorng area
1 1 N Ku
E((—==%i,0)) = E(Zij)0; = ——,
<<W ) UMZJ:l (2583 VoM
(26)
1 1 N . ol = v .| GEREERSE 1SS
Var(<WZ”@>)_aM jzlvar(z”)ej_ M < £ A & eoges 9
(27) = cemeceomcamanmamcaan]

Then we can obtain the mean Hﬂ@H% as Fig. 13: Experiment scene with area size of X4#am.

B(IZ0I3) =Y Var((y/ -1-7.0)) = [6]3.  (29)

TABLE I: DEFAULT VALUES OF PARAMETERS.

2
Based on [23]p( “Zs“; —1] > 6) < 2exp (%”2) , where
i Iz N\ K i Parameters Default Values
c is a constant number. Then fa&tf < (<%)" possible The number of target& 2
K-dimensional subspace @, the probability of K-sparse® The number of chosen linka/ 4
. Lo HZ9H2 i The number of chogen locations 4
which satisfies ol ~ 1| >4is The kernel widiho 3.5dBm
Il2 The regularization parameter 0.5
_ 2 _ 2 The initial learning rate;(0) 10
(ﬂ)K . 26Xp( M ) = 2exp ( + K log (g) + 1). The transfercase from 4m td.2m
K c c
(29)
With this and M = O(K log(N/K)), the probability thatZ g jmpact of parameters
satisfies(1—4) < HHZ(_)@HHf < (1+40) for all N-dimensionalK - We discuss the parameteks, M, n, o, A andn(0) under
sparse vecto€ tends tol. u the default transfer case, and the values are the same to th

Based on the analysis in Theorem 1, the targets’ locationgther two transfer cases.
can be recovered by the CS theory as the transferred sensing Target Number K: we discuss how many targets can be

matrix satisfies the RIP with high probability. accurately localized by FitLoc, and the other parameters are se
as the default values. When the targets humber increases fron

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS 1 to 6, Fig. 5 shows that FitLoc can localize 3 targets with the
A. Experimental setup average localization error of 0.89m, and the localization error

We attempt to perform localization when the areas are®f RTI w/ Trans. and RASS w/ Trans. are much bigger than
6mx6m and 12nx12m under the condition that knowing the FitLoc. According to the CS theory, FitLoc satisfidd >
sensing matrix of area 3r8m and 4nx4m, then the transfer X (log(N/K)) = 3.98, thus FitLoc can accurately localize
work includes three cases: doubling the link length frierBm ~ multiple targets and performs better than RTI w/ Trans. and
to u=6m, tripling the link length fromi=4m to v=12m, and RASS w/ Trans. algorithms. It also illustrates that RTI w/p
quadrupling the link length front=3m tou=12m. We add our Trans. and RASS w/o Trans. performs worse when comparing
transfer scheme into two state-of-the-art algorithms RASS [5Vith RTI w/ Trans. and RASS w/ Trans., which demonstrates
and RTI [13], referred as RASS w/ Trans. and RTI w/ Trans.the effectiveness of our transfer scheme.
for a fair comparison. And we also compare with the traditional  Link Number M : we inspect the number of links used in
CS based localization method with the sensing matrix of linklocalization and increase the link numberfrom 1 to 6. Fig. 6
length » as ground truth, referred as CS w/o Trans. Theshows the average localization error under differghtlt can
performance of FitLoc are investigated by considering thebe seen that the localization errors of RTI and RASS without
following parameters: (i)/X: the number of targets, (ij)/:  transfer (RTI w/o Trans. and RASS w/o Trans.) are large and
the number of chosen links, (iiip: the number of chosen random. On the contrary, the localization errors of FitLoc, RTI
locations in the new area, (iV): the regularization parameter, and RASS with transfer (RTI w/ Trans. and RASS w/ Trans.)
(v) o: the kernel width, and (vi}(0): the initial learning rate, decrease significantly when the link number increases. FitLoc
and the default values are shown in Table I. performs almost as well as the method which directly uses

We perform extensive experiments in an open-space ddhe CS algorithm with the ground truth sensing matrix (CS
picted in Fig. 13. Based on the work in [9], we set the gridW/o Trans.), illustrating the feasibility and effectiveness of the
edge length as=0.5m when the link length is 4nthus the transfer scheme. In addition, $ = 4 is a sparse deployment,
grid number is 64. We use the MICAZ [24] nodes that work CS w/o Trans. and FitLoc satisty/ = 4 > K(log(N/K)) ~
on 2.4G as the transceivers, and put them on the he|ght &, SO they outperform RTI w/Trans. and RASS w/Trans. which
0.95m to obtain the best propagation property [9], each linkieed a dense deployment to collect enough data.
records 100measurements. Location Number n: we attempt to test the best location

5In fact, when the gird size is other values, the performance of FitLocnumbern to solve the tr.anSfer matrix, and the average lo-
are consistent through our extensive experiments. To save the space, we oﬂﬁl|2§t|0n errors Under d“cf?rem number.Of randomly chosen
report the experiments witly=0.5m. locations are shown in Fig. 7. When increases from 0
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to 1, the localization error for all three methods decrease§. Effectiveness of FitLoc
dramatically, which suggest that the localization accuracy can \ye attempt to discuss the effectiveness of FitLoc from the

be greatly improved by randomly choosing a location withingo|iowing three aspects: localization performance, human effort
the effective area of a link. And as the location numbercqst and energy consumption.

increases continuously, it is easily to understand that the big
location number is, the more precise of the transfer matrix is
and the lower the localization error will be. We set4 as

Localization Performance. Fig. 11 illustrates the CDF
of localization error under the transfer from 4m to 12m in

: ' ; L utdoor environment. It shows that the performance of FitLoc
the most appropriate location number since It will increase th% approximate to the CS w/o Trans. angthe localization errors
collection effgrt if we use too ma.ny I.ocatlons. for three transfer based methods do not change obviously.
_ Kernel Width o and Regularization Parameter \: we  Fit oc performs best witt50t" and 80" percentile error of
investigate the most appropriate kernel width which used fog) gom and 1.23m, respectively. When compared with RTI
estimating the RSS distributions under link length 3m, 4m, 6my/o Trans. and RASS w/o Trans., RTI w/ Trans. and RASS
and 12m. The average localization errors under different kerngly Trans. improve58% and 66% for 80" percentile error,
width are illustrated in Fig. 8. It shows that the appropriateyespectively, which shows that the transfer scheme significantly
kernel widths for link length 3m, 4m and 6m and 12m improves the performance of RTI and RASS algorithms. In
are between 3dBm and 4dBm. And we find that the mosgqgition, under the transfer from 3m to 6m and 3m to 12m,
appropriate kernel widths are almost consistent with the RSge |ocalization error for RTI and RASS respectively improves
noise, and we set=3.5. We also inspect the localization 54%, 59% and 76%, 85% with the transfer scheme. This

performance under different regularization parameteFig.  ngicates that after transfer, the pre-obtained sensing matrix
9 shows that the most appropriate value)ois 0.5. It is not  can pe adaptively reused in the new area.

difficult to understand that wheix = 0.5, the regularization

part is the same important to the FLDA algorithm and makes _ O" the other hand, when the deployment areas are in-dool
the transfer scheme most effective. environment with the similar presence of multipath (i.e., the

. ) . areas are similar furnitured rooms), the localization perfor-
Initial Learning Rate n(Q):We study the cr|t|c_al parameter mance of FitLoc degrades and is showed in Fig.12. It can
n(0) that used in the gradient descent to achieve an optimale seen that th&0!" localization error of FitLoc is 1.4m
solution for the transfer matrix, which with initial solutions gnq 529 higher than the CS w/o Trans. algorithm, which
generated by the FLDA algorithm, referred as w/ FLDA with jjjystrates that the transfer scheme performs bad in the in-
differentn(0) in Fig. 10. It can be seen that the values of theqoor environment, due to the fact that different indoor areas
merit function (W) + Dw (pi|[p.) converge to the minimum gy fer from severe multipath and noisy environment. In spite of
under three different)(0) after about 20 iterations, and the this FitLoc performs better than RTI w/ Trans. and RASS w/

convergence rate have little difference from each other. Werrans., which shows that CS based localization is more robust
setn(0) = 10 as the default value since the convergenceq the environment noise.

curve is more smooth. What's more, in order to study the
efficacy of the FLDA algorithm, we directly use the gradient
descent to solve the transfer matrix, referredy@® = 10 w/o
FLDA. The convergence curve falls more slowly and more
iterations are needed when compared wiftd) = 10 w/
FLDA., which illustrates that the FLDA algorithm provides
a good initialization toDy (p;||pw)-

Human Effort Cost. In general, the RSS of a new area are

obtained manually. We use the time-cost of the pre-deployment
to examine the human effort. The area is divided into grids
with edge length 0.5m, and 100 continuous RSS changes are
collected at each grid with 1.5 seconds each measurement
Thus the construction time-cost of the sensing matrix for area

4mx4m and 12nx12m are at Ieasﬂ%ogl/o's)2 ~ 2.67
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and 100x1.5x(12/0.5) _ o man-hours, respectively. And when «={6m,12n}, u={4m,6m,12m and /=4m to u={3m,6m},

we use the transfer scheme, in addition to the time-cost foru={6m,12m}, «={3m,6m,12n}, and the results are illustrated
the 4mx4m area, only 4 grids’ human effort are needed forin Fig. 17. It can be seen that the average localization error
the 12m<12m area, thus the time-cost ¥X15X(4/0.541) = of FitLoc, RTI w/ Trans. and RASS w/ Trans. keep stable,
2.83. Fig. 14 shows the time-cost of three transfer casesince the transfer scheme is used for the coverage area of
with and without our transfer scheme, and the human efforgpecific link, the transfer scheme performs well when there are
decreases artl% from 3m to 6m,88% from 4m to 12m93%  multiple link lengths in the new area.

from 3m to 12m.

Energy Consumption. We compare the energy consump- £+ Discussions
tion of FitLoc, RASS w/ Trans. and RTI w/ Trans. by increas- ® To achieve the best localization performance, it needs
ing the number of links until the localization accuracy reaches  to set a proper grid size in the pre-deployment phase.
the given value, and then calculate the energy consumption. On one hand, a small grid size provides a fine-grained
According to the first order radio model [25], the energy resolution of localization accuracy, and vice versa. On
consumption for each packet of the link is calculated by  the other hand, a big grid size results in an unreliable

FEradio = ¢, Bb?> +2BE,;., whereB is the size of a packet in RSS interpolation. In view of these, the proper grid size
bits, b is the link length¢;=100pJ/(bit/m) and E,;,=50nJ bit. should be determined by the specific application accuracy
We set B=320bits,b=12m and send 100 packets each time.  requirement. And we choose a grid size of 0:6005m
Thus, the energy consumption for one algorithm withlinks through the extensive experiments.

is M x3.66mJ. Note that for each algorithm, the number of e For areas with similar indoor environmentse( the
links required for achieving the same localization error is dif- deployment of furniture, wireless interference, etc.), the
ferent. Fig. 15 shows the energy consumptions under different ~ performance of FitLoc degrades to an average localization
localization errors. When the given localization error is 1m,  error of 1.4m from 0.89m in the outdoor environment,

the energy consumption for FitLoc, RTI w/ Trans. and RASS  according to Section VI. This indicates that FitLoc is
w/ Trans. are 18.3mJ, 47.59mJ, and 54.91mJ, respectively. It ~more capable of areas with relatively similar environment.
illustrates that RTI and RASS require more measurements for ~ Even so, we suggest that FitLoc satisfies the daily indoor
an accurate localization, while FitLoc can accurately localize  localization requirement with a room-level accuracy with-
targets even with a small number of measurements, highly out the need of re-calibration.
reducing the energy consumption. e Since the communication range of wireless transceivers is
D. Robustness and Scalability of FitLoc limited, we divide the large area into small subareas [5],
' [9]. Then when the area scales up, the cost can be greatly
Robustness.In order to investigate the robustness of Fit- reduced by applying the transfer scheme to a number
Loc, we evaluate the localization performance when the link of subareas. Note that for the irregular deployment of
length of a new area is not used for modeling the transfer func-  transceivers with different link length in an area (it is not
tion. A new link length means a new Bregman Divergence over  common in most settings actually), the transfer can be
the existing link lengths, and how do the Bregman Divergence  done for the effective area of each link.
differences among links affect the localization performance?
By randomly choosing some locations and recording the RSS VIl RELATED WORK
with different new link length, the average localization error  DfL has received much more attention with the needless
and the Bregman Divergence are depicted in Fig. 16. It showsf target-attached devices [3]-[5], [7]-[14]. Compared with
that the localization error is bound to 2.3m when the link lengthvideo-based [26] and ultrasonic-based DfL [27], one main
smaller than 6m or bigger than 10m, but become large fomdvantage of RF based DfL is that the RSS measuring are
the other link lengths. Another observation is that when thaubiquitous in existing wireless infrastructures and without
absolute value of the Bregman Divergence larger than 4dBnrequiring additional devices. It can be generally divided into
the localization error increases distinctly. In other words, thewo categories. The first one is Radio Topology Imagine model
robustness of FitLoc is good when the noise lower than 4dBmbased approaches [10]-[14] which have a limited performance
Scalability. We also study the scalability of FitLoc when @s the model is vulnerable to environment noise. The other one
there are more than two kinds of link length in a new areaiS the radio-map based methods [3]-[5], [7]-[9] which could
which means that the RSS to solving the transfer matrix@chieve a fine-grained localization accuracy by comparing the
corresponding to diverse link length in the new area. We®al-time RSS with the radio-map.
evaluate the localization performance in the new area under Most radio-map based DfL approaches require a high
6 different transfer cases, includidg= 3m to u={4m,6m}, deployment and human effort cost to perform localization



over various areas. In this paper, we propose FitLoc, which(g]
employs the CS based DfL proposed in [9] to reduce the
deployment cost and combines with the rigorously designed
transfer scheme to reduce the calibration cost. Work [10]-
[12] are related to FitLoc which take advantage of the CS (9]
theory, but they are model based and need dense deployment.
Work [20] uses the similar transfer method to FitLoc, while
it transfers the information of different domains in image pro-[10]
cessing, and doesn't consider the noise influence. To transfers
RSS of one target to another, work [28] designs a linear
transfer model by utilizing the Maximum Mean Discrepancy[11]
to measure the distribution distance, but it can not be used
as an regularization term in FitLoc. Another related work [15] 12]
transfers the learned model from one spatial area to another f[‘)r
indoor WiFi localization, but it follows the simple premise that
the two areas must share some common devices and the target
needs to carry a wireless device. In summary, FitLoc equips the
target without any wireless devices, and enables fine-grained
multiple targets localization over various areas with little cost,[14]
thus more practical for deployment setups.
(15]
VIIl. CONCLUSION

This paper presents the first fine-grained multiple target$L6l
DfL approach over various areas with little cost. By a novel
transfer scheme, which projects the RSS into a subspace Whﬁrﬁ]
the distribution distances over different areas are minimized;
the radio-map of one area can be reused by various areas. Thus,
the calibration effort is greatly reduced. On the other hand,
based on the CS theory, FitLoc reduces the deployment cost khys]
deploying a small number of transceivers and collecting only a
few of RSS. We have also evaluated the effectiveness of FitLoc
through both theoretical analyses and extensive experiments[19]
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