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Weaving a Proper Net to Catch Large Objects in
Wireless Sensor Networks

Alina Olteanu, Yang Xiao, Senior Member, IEEE, Kui Wu, Senior Member, IEEE,
and Xiaojiang Du, Senior Member, IEEE

Abstract—Wireless sensor networks consist of a large number
of sensors and have been broadly used for intrusion detection
in surveillance systems. To guarantee detection quality, such
networks are usually over-engineered, i.e., more than required
sensors are deployed and remain active in order to cover each
point in the monitored field with a high probability at any time
instance. Existing sensor scheduling schemes based on the point
coverage model tightly weave a sensor “net” that is unnecessarily
dense. Intuitively, when the size and the shape of intrusion
objects are considered, any net with holes no smaller than the
size of the intrusion object would work fine. With this design
philosophy in mind, we build a new mathematical model to
investigate the impact of size and shape of intrusion objects on
network configuration. We derive analytical results that provide
practitioners with insights on how to weave an effective sensor
“net” for intrusion object detection with minimum number of
active sensors.

Index Terms—Sensor networks, energy saving, intrusions,
intrusion objects, optimization.

I. INTRODUCTION

THE integration of sensor technology, wireless communi-
cation, and ad hoc networking leads to a popular network

system, termed wireless sensor networks. Such networks have
found various applications in civil monitoring and military
surveillance, including for instance environment monitoring,
intelligent transportation, smart home, and intrusion detection.
In general, a large number of wireless sensor nodes are
deployed in the field and report events (e.g., approaching
of enemy tanks) to a processing center. Wireless sensor
nodes are normally powered by battery and thus their energy
consumption becomes one of the major concerns. In many
cases, the density of wireless sensor nodes is high, leading to
high redundancy in sensor nodes’ monitoring areas. In other
words, a sensor node’s monitoring area is usually overlapped
with its nearby sensors’ monitoring areas. Such redundancy
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is a blessing feature of wireless sensor networks for energy
saving because it is unnecessary to make all sensor nodes
active at the same time. Sensor nodes should be scheduled
to work alternatively within certain Quality of Service (QoS)
constraints in order to save energy consumption [11], [18].

One of the important QoS constraints is the chance of
detecting an interesting event. Under this constraint, numerous
redundancy-based sensor scheduling schemes [12], [13], [14],
[18] have been proposed for energy efficiency. The state-of-
the-art mathematical models [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [18] are targeted at the goal that each
point in the field is monitored with a certain probability at any
time instance. By scheduling sensor nodes to work or sleep,
we are actually weaving a “net” with its grid size dynamically
adjusted with the number of working sensors. Analogously,
if we only want to catch fish, we should not weave a net
that can actually catch shrimp. Since in real applications,
the size and the shape of the monitored objects should not
be ignored, it is clear that scheduling schemes based on
existing point coverage models will form a network that is
unnecessarily dense. Further improvement on this broadly
investigated problem is possible and is of great importance
for both academic research and industrial practice.

In this paper, we build a detection model that takes into
consideration the impact of the size and the shape of monitored
objects. More specifically, we investigate the relationship
between the detection probability, the intrusion coverage in-
tensity, the number of working sensor nodes, and the size and
the shape of intrusion objects. We prove many mathematical
results related to the detection probability and intrusion cov-
erage intensity and study the asymptotic properties of these
detection metrics. Our model also provides analytical results
on two optimization problems: one is to find the minimum
number of working sensor nodes that can detect a given object
of non-negligible size with a given probability; the other is to
find the maximum detection probability given the ratio of the
number of sensor nodes over the size of the monitored area.
We also study the problem of maximizing network lifetime
under some QoS constraints. We prove the existence of the
solution and derive the explicit form of the solution under
certain conditions.

Our model is more accurate for applications where the shape
of monitored objects (e.g., tanks) should not be modeled as
points. Scheduling schemes based on our new detection model
can create a working network that accurately matches the
application requirement. Such a network can be useful when
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it is employed in a particular environment, as in detecting
enemy tanks, or in the border, for detecting human beings
crossing the border. In such cases the size of the intrusion
objects, whether they are tanks or human bodies, can be easily
approximated. In addition, many results in the paper remain
valid for any object size. In particular, the two optimization
problems in Section V are independent of the object’s shape
and size and are valid for any object of a given reasonable
area. The problem of maximizing network lifetime and the
results related to the intrusion coverage intensity provide some
insights on how the network can be adapted to the size and the
shape of the intruder, specifically, how many working sensors
should be used and how they can be scheduled depending on
the dimensions of the object we want to detect.

The rest of the paper is organized as follows. In Section II,
we introduce related work. In Section III, we present a naive
approach that covers a given area and detects an intrusion ob-
ject of circular or rectangular shape with the minimum number
of sensor nodes. In Section IV, we study a stochastic version
of the problem, i.e., the probabilistic approach to detecting
intrusion objects. We further investigate two optimizations
related to the detection probability and the shape and the
size of intrusion objects in Section V. Section VI focuses on
the intrusion coverage intensity (defined later in the paper),
and Section VII focuses on optimizing network lifetime. We
conclude the paper in Section VIII.

II. RELATED WORK

Much work has focused on sensor scheduling algorithms
with the purpose of achieving energy efficiency without
reducing sensing coverage. One way to minimize energy
consumption and extend network lifetime is to put some sensor
nodes into sleep but allow others to remain active as long
as the whole given area is covered. In the meantime, it is
required that both coverage and network connectivity should
be satisfied.

To solve the above problem, probabilistic coverage with
randomized scheduling algorithms is studied. In many cases,
existing research [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12], [13], [18] assumes that each point in the field
should be monitored. In [11], [12], [13], [18], a special case
of a randomized scheduling algorithm is investigated, where
k subsets of sensors work alternatively, with only one subset
being active at a certain moment. Each subset contains the
same number of sensors. The problem of maximizing network
lifetime under Quality of Service constraints is analyzed
in [11], [12], [13], [18]. The results are stated and proved in
terms of the network detection probability, the detection delay,
and the intrusion coverage intensity. The detection probability
is the probability that an intrusion event is detected, e.g.,
an enemy object enters the monitored area. The detection
delay is defined as the average delay with respect to the
scheduling rounds to detect such an event. The intrusion
coverage intensity is defined as the probability that a given
area is detected at any given time by at least one active sensor.
For more results concerning energy-efficient joint estimation
in sensor networks, please refer to [11], [12], [13], [18].

Xiao et al. [14], [19] study another case of the randomized
scheduling algorithm to detect intrusion objects with a large
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Fig. 1. Sensors are placed at the intersections of a virtual grid. The circles
represent the areas covered by sensors and the intrusion object is approximated
as a rectangle (left) or disk (right).

size, in which case treating the objects as points may be too
conservative. Using the same model, in this paper we perform
a comprehensive study on the detection of an intrusion object
that has a non-negligible size (such as a tank). Along the line,
the relevant optimization problems can be solved as well. This
is the purpose of the present paper.

III. A NAIVE APPROACH

In this section, we describe a simple approach to answering
the following question: how to use the minimum number of
sensor nodes to cover a given rectangular area such that an
intrusion object with a non-negligible size can be detected?

To simplify analysis, we assume that a sensor node’s sensing
coverage can be approximated as a circular area. Assume that
the whole rectangular area is divided by a virtual grid. Also
assume that the sensor nodes are placed at the intersections of
the virtual grid. We first determine the maximum size of the
square cells in the virtual grid, with which we can then easily
estimate the minimum number of nodes needed to cover the
area.

Let 𝑑 denote the diameter of the square cells in the virtual
grid. Let 𝑜 denote the size of the intrusion object. We use two
typical examples to illustrate our calculation.

∙ Case 1: Assume that the intrusion object can be approx-
imated as a rectangular shape, with side length of 𝑏 and
𝑜
𝑏 , respectively. Let 𝑟 be the size of the circular area
monitored by each sensor. It is easy to see that the radius
of the circular area is

√
𝑟
𝜋 . We can then choose to divide

the whole area into squares such that the diameter 𝑑 of
each square satisfies 𝑑 < min {𝑏, 𝑜𝑏} + 2

√
𝑟
𝜋 , as shown

in the left of Fig. 1.
∙ Case 2: Assume that the intrusion object can be approx-

imated as a disk. We can choose 𝑑 < 2
√

𝑜
𝜋 + 2

√
𝑟
𝜋 , as

shown in the right of Fig. 1.
By choosing the diameters the above way, we ensure that

no matter how we place an intrusion object on the grid, its
boundary will overlap with at least one sensor’s monitoring
area, i.e., the object cannot escape the detection.

Having a constraint on the diameter of the square cells, we
can easily derive an upper bound on the edge length of the
squares, 𝑙𝑠𝑞𝑢𝑎𝑟𝑒:

𝑙𝑠𝑞𝑢𝑎𝑟𝑒 <

{(
min{𝑏, 𝑜𝑏}+ 2

√
𝑟
𝜋

)
/
√
2, Case 1;(

2
√

𝑜
𝜋 + 2

√
𝑟
𝜋

)
/
√
2, Case 2.

While this method of placing sensor nodes can provide
deterministic intrusion detection, it requires that all sensor
nodes to be active at any given time, which may deplete
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Fig. 2. The sensing areas intersect with the surface of an intrusion object.

sensors’ energy quickly. In addition, placing sensor nodes
accurately on the intersections of a grid may not be an easy
job and may require high human labor. As such, we investigate
the probabilistic methods in the following sections.

IV. PROBABILISTIC METHODS FOR DETECTING

INTRUSION

Assume that 𝑛 sensors are randomly deployed in a field.
To simplify analysis, we assume that the field is much larger
than a sensor’s sensing range and as such the boundary effort
can be ignored. We assume that the 𝑛 sensors are evenly put
into 𝑘 disjoint subsets and the 𝑘 subsets work according to the
round-robin scheduling. We also assume that the network is
homogeneous and the intrusion object is completely contained
in the network. Therefore our results are independent of the
location of the object. We are interested in the intrusion
coverage intensity and the detection probability, which are
defined later.

Let 𝑟 be the size of the sensing area of each sensor and
𝑎 the size of the whole sensing field. The probability that
each sensor covers a given point in the field is 𝑟/𝑎. Since
every sensor is scheduled in one of the 𝑘 subsets, and there
are 𝑛/𝑘 sensors in each subset, then [1 − 𝑟/𝑎]𝑛/𝑘 represents
the probability that a given point is not covered by any of the
active sensors. Following this line of reasoning, the probability
that a point in the field is detected by at least one sensor at
any given time is 1− [1− 𝑟/𝑎]𝑛/𝑘.

In the following, we derive the probability that a sensor’s
sensing area intersects the surface of an intrusion object,
denoted as 𝑝1. As shown in Fig. 2, any sensor within the
boundary of the grey lines can detect the intrusion objects.
Let the area bounded by the grey lines shown in Fig. 2 (left
and right) be denoted by 𝑜1.

∙ Case 1: Assume that the intrusion object can be approxi-
mated as a disk of size 𝑜. It is easy to see that the size of
the area 𝑜1 bounded by the grey lines as shown in Fig. 2
(right) could be calculated by

𝜋

(√
𝑜

𝜋
+

√
𝑟

𝜋

)2

= (
√
𝑟 +

√
𝑜)2.

In this case,
𝑝1 =

(√
𝑟 +

√
𝑜
)2

/𝑎. (1)

∙ Case 2: Assume that the intrusion object can be approx-
imated as a rectangular shape with side length of 𝑏 and
𝑜/𝑏, respectively. The size of the area 𝑜1 as shown in
Fig. 2(left) could be calculated by

𝑜+ 2𝑏

√
𝑟

𝜋
+ 2

𝑜

𝑏

√
𝑟

𝜋
+ 4𝑟

1

4
= 𝑜+ 2(𝑏+

𝑜

𝑏
)

√
𝑟

𝜋
+ 𝑟,

which is obtained by adding the areas of 4 smaller
rectangles: two with side length of 𝑏 and

√
𝑟
𝜋 , and two

with side length 𝑜
𝑏 and

√
𝑟
𝜋 , plus 4 quarters of a disk of

area 𝑟 (at the corners), to the initial object area 𝑜. In this
case,

𝑝1 =

(
𝑜+ 2(𝑏+

𝑜

𝑏
)

√
𝑟

𝜋
+ 𝑟

)
/𝑎 (2)

With 𝑝1 calculated, we can obtain the intrusion coverage
intensity, which is defined as the probability that any intrusion
object is detected by at least one sensor at any given time.
Since there are 𝑛 sensors and 𝑘 rounds in total, the probability
that the intrusion object is not detected by any active sensor, at
any time, is [1−𝑝1]

𝑛/𝑘. Then the intrusion coverage intensity
is given by 𝑉𝑛 = 1− [1− 𝑝1]

𝑛/𝑘.
The intrusion coverage intensity discloses how well the

whole area is covered with respect to the detection of intrusion
objects with non-negligible size. Assume that 𝐿 is the duration
of an intrusion event and 𝑇 is the length of a round-robin
scheduling round. We need to know the probability that
the intrusion event is detected by at least one sensor. This
probability is called detection probability and is denoted as
𝑃𝑑. By replacing 𝑟/𝑎 with 𝑝1 in [11], [12], [13], [18] 1, we
obtain:

𝑃𝑑 =

⎧⎨
⎩

1− (1− 𝑝1)
𝑛
, 𝐿 ≥ (𝑘 − 1)𝑇

1− (1− 𝑠)
(
1− 𝑝1

⌈𝐿/𝑇⌉
𝑘

)𝑛
− 𝑠
(
1− 𝑝1

⌈𝐿/𝑇 ⌉+1
𝑘

)𝑛
, 𝐿 < (𝑘 − 1)𝑇

(3)

This expression depends on ⌈𝐿/𝑇 ⌉ , 𝑛, 𝑘, 𝑟/𝑎, and 𝑠,
where 𝑠 = (𝐿/𝑇 + 1− ⌈𝐿/𝑇 ⌉). The assumption is that 𝐿
may not be a natural multiple of 𝑇 .

V. THE PROPERTIES OF DETECTION PROBABILITY

A. Constrained Optimal Detection Probability

Having derived the analytical expression of the detection
probability 𝑃𝑑, we now investigate the constrained optimal
intrusion detection by solving two main optimization problems
and their variations. The results provided by these two opti-
mization problems are independent of the object’s shape and
size and are valid for any object of a given area 𝑜, reasonably
assuming that 𝑜 is smaller than the total area to monitor. We
also determine a lower bound and an upper bound on the
detection probability.

The first problem is concerned with maximizing/minimizing
the detection probability 𝑃𝑑 under different constraints. For
instance, we may put the constraint on the ratio of 𝑛/𝑎 (i.e.,
the ratio of the number of sensors over the size of the whole
area), since this ratio represents the density of the sensor nodes
and thus the system cost. For comparison, we use 1/𝑟 as a
measure of benchmark, because this measure means the ideal
situation: one sensor per area of size 𝑟.

Optimization Problem 1: Determine the sufficient condi-
tions for finding the maximum value and the minimum value

1Note that there is a slight difference in the model used in [11], [12], [13],
[18], in which each sensor randomly joins one of the 𝑘 subsets. Nevertheless,
the derivation of 𝑃𝑑 in [11], [12], [13], [18] holds true for the model in this
paper.
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of 𝑃𝑑 under the constraint that 𝑛/𝑎 ≤ 𝑢0, where 𝑢0 is a given
positive constant.

By changing the value of 𝑢0, particularly by checking
whether or not 𝑢0 is larger than 1/𝑟, we obtain the prop-
erties of detection probability in different scenarios. To ease
derivation, we will use 𝑥, a real number, instead of 𝑛, to make
the differential calculation possible. In the above optimization
problem, since the detection probability 𝑃𝑑 is considered as
a function of two variables, the number of sensors 𝑥 and the
size of the whole area 𝑎, we rewrite 𝑃𝑑 as 𝑃𝑑(𝑥, 𝑎) and build
a Cartesian coordinate system with the x-coordinate represent-
ing the number of sensors and the y-coordinate representing
the size of the whole area. To obtain results meaningful in
practice, we use a rectangle 𝑅1 = [4, 𝑢0𝑎0] × [4𝑟, 𝑎0] on
the Cartesian coordinate system to confine the variables, i.e.,
4 ≤ 𝑥 ≤ 𝑢0𝑎0 and 4𝑟 ≤ 𝑎 ≤ 𝑎0. This limitation is to exclude
certain uninteresting scenarios, e.g., the number of sensors is
too small (smaller than 4), or the size of the whole area is
too small (smaller than 4𝑟). We put an upper bound 𝑎0 on the
size of the whole area, because it is impractical to consider
an area having infinite size.

The following results hold for intrusion objects with either
circular or rectangular shape.

Theorem 1 provides the maximum and minimum values of
𝑃𝑑(𝑥, 𝑎) on rectangle 𝑅1 under constraint 𝑥/𝑎 ≤ 𝑢0 where
𝑢0 ≥ 1/𝑟. It also provides the maximum and minimum values
of 𝑃𝑑(𝑥, 𝑎) with constraint 𝑥 = 𝑎𝑢0 on the same rectangle.

Theorem 1: Consider the problem of finding max
𝑅1

𝑃𝑑 (𝑥, 𝑎)

and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) with the variables confined in 𝑅1 =

[4, 𝑢0𝑎0] × [4𝑟, 𝑎0] and with the constraint 𝑥/𝑎 < 𝑢0

where 𝑢0 is a given positive constant greater than 1/𝑟. We
have max

𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4𝑟𝑢0, 4𝑟) and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) =

𝑃𝑑 (4, 𝑎0). If we change the constraint 𝑥/𝑎 < 𝑢0 to 𝑥/𝑎 = 𝑢0,
we have max

𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4𝑟𝑢0, 4𝑟) and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) =

𝑃𝑑 (𝑢0𝑎0, 𝑎0).
As shown in Fig. 3a, the trapeze 𝑇 = 𝑇𝑀𝑁𝑃𝑄 has

vertices 𝑀 (4𝑟𝑢0, 4𝑟), 𝑁 (𝑢0𝑎0, 𝑎0), 𝑃 (4, 𝑎0) and 𝑄(4, 4𝑟).
Theorem 1 indicates that when 𝑥/𝑎 < 𝑢0, the maximum value
and the minimum value of 𝑃𝑑(𝑥, 𝑎) is reached at vertex 𝑀
and vertex 𝑃 , respectively. When 𝑥/𝑎 = 𝑢0, this constraint
defines a line segment with end points 𝑀 and 𝑁 , and 𝑃𝑑 (𝑥, 𝑎)
reaches the maximum value and the minimum value at points
𝑀 and 𝑁 , respectively.

The following corollary considers the special case 𝑢0 =
1/𝑟, that is, the trapeze becomes triangle 𝑇𝑀𝑁𝑃 , and the
vertices 𝑀 , 𝑁 and 𝑃 are given by (4, 4𝑟), (𝑎0/𝑟, 𝑎0) and
(4, 𝑎0), respectively, as shown in Fig. 3b.

Corollary 1: Let the optimization problem be as in The-
orem 1. If 𝑥/𝑎 < 𝑢0 and 𝑢0 = 1/𝑟, then max

𝑅1

𝑃𝑑 (𝑥, 𝑎) =

𝑃𝑑 (4, 4𝑟) and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4, 𝑎0). If 𝑥/𝑎 = 𝑢0

and 𝑢0 = 1/𝑟, then max
𝑅1

𝑃𝑑 = 𝑃𝑑 (4, 4𝑟) and min
𝑅1

𝑃𝑑 =

𝑃𝑑 (𝑎0/𝑟, 𝑎0).
Theorem 1 and Corollary 1 present the results when 𝑢0 >

1/𝑟 and 𝑢0 = 1/𝑟, respectively. Theorem 2 considers the case
where 𝑢0 < 1/𝑟.

Theorem 2: Consider the problem of finding max
𝑅1

𝑃𝑑 (𝑥, 𝑎)

and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) with the variables confined in 𝑅1 =

[4, 𝑢0𝑎0] × [4𝑟, 𝑎0] and with the constraint 𝑥/𝑎 < 𝑢0 where
𝑢0 is a given positive constant smaller than 1/𝑟. We have
max
𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4, 4/𝑢0) and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4, 𝑎0).

If we change the constraint 𝑥/𝑎 < 𝑢0 to 𝑥/𝑎 = 𝑢0,
we have max

𝑅1

𝑃𝑑 (𝑥, 𝑎) = 𝑃𝑑 (4, 4/𝑢0) and min
𝑅1

𝑃𝑑 (𝑥, 𝑎) =

𝑃𝑑 (𝑢0𝑎0, 𝑎0).
The above constraints determine a triangle 𝑇𝑀𝑁𝑃 inside

rectangle 𝑅1, shown in Fig. 3c. The vertices 𝑀 , 𝑁 and 𝑃
of the triangle have coordinates: (4, 4/𝑢0), (𝑎0𝑢0, 𝑎0) and
(4, 𝑎0), respectively. Theorem 2 indicates that when 𝑥/𝑎 < 𝑢0,
the maximum value and the minimum value of 𝑃𝑑(𝑥, 𝑎)
is reached at vertex 𝑀 and vertex 𝑃 , respectively. When
𝑥/𝑎 = 𝑢0, the constraints define a line segment with end
points 𝑀 and 𝑁 , and 𝑃𝑑(𝑥, 𝑎) reaches the maximum value
and the minimum value at points 𝑀 and 𝑁 , respectively.

It is interesting to see the practical meaning that Theorems 1
and 2 deliver. In both cases, the minimum detection probability
is the case when the minimum number of sensors is used to
cover the entire area, as we would have expected intuitively. If
we look at the maximum detection probability, in the case of
Theorem 1, maximum detection is achieved when the area
is minimal and the number of sensors is an intermediary
value between 4 and 𝑎0𝑢0, while in the case of Theorem 2,
maximum detection is reached when the number of sensors
equals 4 and the size of the area equals 4/𝑢0.

The second problem we consider consists in the reverse
optimization problem: minimize the ratio of the number of
sensors over the size of the whole area, given a certain
detection probability or an upper bound on the detection
probability.

Optimization Problem 2: Find min(𝑥/𝑎), with constraint
𝑃𝑑 = 𝑃0 where 𝑃0 is a constant greater than zero. If possible,
find tighter lower and upper bounds on 𝑃0(0 < 𝑃0 < 1).

The restriction 𝑃𝑑 = 𝑃0 defines implicitly 𝑥 as a function
of 𝑎 and conversely 𝑎 as a function of 𝑥, if we do not assume
that 𝑎 is given 𝑎 𝑝𝑟𝑖𝑜𝑟. We thus use the implicit function
theorem [17] to solve the problem. As before, we confine the
variables, the number of sensors 𝑥 and the area to be covered
𝑎, within a rectangle 𝑅2 := [4, 𝑛0] × [4𝑟, 𝑎0], where 𝑛0 is a
natural number and the upper bound on the number of sensors.
Let 𝑘0 := 𝑛0/𝑚 , where 𝑚 is the number of sensors in each
of the 𝑘 subsets. To obtain results, we need to assure that the
curve 𝑃𝑑 = 𝑃0 intersects the interior of rectangle 𝑅2. The
condition 𝐿 > 𝑇 (𝑘0 − 1) allows us to express 𝑥 explicitly as
a function of 𝑎. Here, again, we have an optimization problem
of two variables: the number of sensors 𝑥 and the area to be
covered, 𝑎. However, by expressing 𝑥 as a function of 𝑎, we
are able to convert the problem to an optimization problem in
only one variable 𝑎.

Theorem 3: Assume that 𝑃𝑑 (4, 𝑎0) < 𝑃0 < 𝑃𝑑 (𝑛0, 𝑎0)
and that 𝑃𝑑 (4, 𝑎0) < 𝑃0 < 𝑃𝑑 (4, 4𝑟). Also assume that for
any 𝑎 ∈ [𝑎 (4) , 𝑎0] there exists 𝑥 = 𝑥 (𝑎) ∈ [4, 𝑥 (𝑎0)] such
that 𝑃𝑑(𝑥 (𝑎) , 𝑎) = 𝑃0.

1) Then there exist strictly increasing functions,

𝑥 = 𝑥 (𝑎) , 𝑎 = 𝑎 (𝑥) ,
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Fig. 3. (a) Constraints 𝑥/𝑎 ≤ 𝑢0 and 𝑢0 ≥ 1/𝑟 determine trapeze MNPQ inside rectangle 𝑅1 = [4, 𝑢0𝑎0] × [4𝑟, 𝑎0]. (b) Constraint 𝑥/𝑎 ≤ 𝑢0 = 1/𝑟
determines triangle MNP inside rectangle [4, 𝑎0/𝑟] × [4𝑟, 𝑎0]. (c) Constraints 𝑥/𝑎 ≤ 𝑢0 and 𝑢0 < 1/𝑟 determine triangle MNP inside rectangle 𝑅1 =
[4, 𝑢0𝑎0]× [4𝑟, 𝑎0].

inverses of each other, such that 𝑃𝑑(𝑥, 𝑎) = 𝑃0. Func-
tion 𝑥(𝑎)

𝑎 is increasing with 𝑎, hence

min

{
𝑥(𝑎)

𝑎
∣𝑃𝑑(𝑥(𝑎), 𝑎) = 𝑃0, 𝑎 ∈ [𝑎 (4) , 𝑎0]

}
=

4

𝑎 (4)
.

2) If in addition we assume that 𝐿 ≥ (𝑘 − 1)𝑇 , we have:
𝑥 (𝑎) = ln(1−𝑃0)

ln(1−𝑜1/𝑎) , 𝑎 (𝑥) = 𝑜1
1−(1−𝑃0)

1/𝑥 , which leads
to

min

{
𝑥 (𝑎)

𝑎
∣𝑃𝑑(𝑥(𝑎), 𝑎) = 𝑃0

}
=

4

𝑜1

[
1− (1− 𝑃0)

1/4
]
.

The minimum ratio of the number of sensors over the size
of the whole area, given a desired detection probability, can
be reached when the minimum number of sensors is used for
area size 𝑎 (4). We have also deduced a constrained minimum
ratio.

The next result represents the upper and lower bounds for
𝑃𝑑.

Theorem 4: The following inequalities stand:

1−
[
1−

⌈
𝐿
𝑇

⌉
𝑘

𝑝1

]𝑛
< 𝑃𝑑 < 1−

[
1−

⌈
𝐿
𝑇

⌉
+ 1

𝑘
𝑝1

]𝑛
.

Theorem 4 presents some very simple, tight bounds for
𝑃𝑑. We can see that 𝑠 has been eliminated from the rather
complicated expression of 𝑃𝑑 in (3). Instead of using formula
(3) we can now use either one of the two bounds in Theorem 4
as an approximation of 𝑃𝑑.

B. Detection Probability Related To The Shape Of The Intru-
sion Object

Intuitively, the detection probability increases as the size of
the intrusion object increases. But it is unclear for two rect-
angular intrusion objects, which one is easier to be detected:
a square object or a long thin strip? We answer this question
in this subsection.

Assume that the size of the rectangular intrusion object is 𝑜,
and its one side length is 𝑏. In the following we study 𝑃𝑑 as a
function of 𝑏, shifting the problem from the size to the shape of
the intrusion object. Lemma 1 determines the signature of the
derivative of 𝑝1 as a function of 𝑏, and Lemma 2 determines
the signature of the derivative of 𝑃𝑑 as a function of 𝑏. We
show that the minimum detection probability is reached when

𝑏 =
√
𝑜, i.e., when the intrusion object is a square. We then

give an asymptotic result for 𝑃𝑑 𝑚𝑖𝑛.
Lemma 1: The signature of 𝑑𝑝1

𝑑𝑏 is:

𝑑𝑝1
𝑑𝑏

(𝑏)

{
< 0, 𝑏 <

√
𝑜,

≥ 0, 𝑏 ≥ √
𝑜,

Therefore, 𝑝1 decreases on [ 0,
√
𝑜 ], and increases on the right

of
√
𝑜.

Lemma 2: 𝑠𝑖𝑔𝑛(𝑑𝑃𝑑

𝑑𝑏 (𝑏)) = 𝑠𝑖𝑔𝑛(𝑑𝑝1𝑑𝑏 ).
Lemma 2 shows that 𝑃𝑑 behaves similarly to 𝑝1, so

√
𝑜

is also a minimum point for 𝑃𝑑. Therefore a square shaped
intrusion object is most likely to go undetected.

By replacing 𝑏 with
√
𝑜 in the expression of 𝑝1 for a

rectangle (see Section IV), we obtain the following expression
of 𝑃𝑑 𝑚𝑖𝑛:

1− (1− 𝑠)

[
1−

⌈
𝐿
𝑇

⌉
𝑘

𝑝1min

]𝑛
− 𝑠

[
1−

⌈
𝐿
𝑇

⌉
+ 1

𝑘
𝑝1 min

]𝑛
,

where 𝑝1 min = 1
𝑎

[
𝑜+ 4

√
𝑜
√

𝑟
𝜋 + 𝑟

]
. If 𝑚 is the number

of sensors per subset (i.e., 𝑘 = 𝑛/𝑚), we have the following
asymptotic result:

lim
𝑛→∞𝑃𝑑 min = 1−(1− 𝑠)𝑒−𝑚⌈𝐿

𝑇 ⌉𝑝1 min−𝑠𝑒−𝑚(⌈𝐿
𝑇 ⌉+1)𝑝1 min .

VI. THE PROPERTIES OF INTRUSION COVERAGE

INTENSITY

We denote the intrusion coverage intensity as 𝑉 (𝑥, 𝑜) if
we treat the intrusion coverage intensity as a function of two
variables, the number of sensors 𝑥 and the size of the intrusion
object 𝑜. From Section IV, by replacing 𝑝1 as a function of
𝑜, we have the following expressions:

𝑉 (𝑥, 𝑜) = 1− [1− 1

𝑎
(
√
𝑟 +

√
𝑜)2]𝑥/𝑘 (4)

for a circular intrusion object, and

𝑉 (𝑥, 𝑜) = 1− [1− 1

𝑎
(𝑜+ 𝑟 + 2

√
𝑟/.𝜋(𝑏+ 𝑜/.𝑏))]𝑥/𝑘 (5)

for a rectangular intrusion object, respectively.
To study the properties of 𝑉 (𝑥, 𝑜), we build a Cartesian

coordinate system with the 𝑥-coordinate representing the
number of sensors and the 𝑦 -coordinate representing the size
of a sensor’s coverage area. Similar as before, we confine
the variables in an area, denoted as 𝑆, over the Cartesian
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Fig. 4. (a) Strip 𝑆 = [2𝑘,∞) ×
[
𝑟,
(√

𝑎−√
𝑟
)2]. (b) Rectangle 𝑅3

included in strip 𝑆 = [2𝑘,∞)× [
𝑟, (

√
𝑎−√

𝑟)2
]
.

coordinate system. Theorem 5 finds a point over 𝑆 that
minimizes 𝑉 (𝑥, 𝑜) when the intrusion object has a disk shape.

Theorem 5: If we define an area over the Cartesian coordi-
nate system, 𝑆 = [2𝑘,∞)×

[
𝑟, (

√
𝑎−√

𝑟)
2
]
, (
√
𝑎−√

𝑟)
2
>

𝑜 and 𝑜 > 𝑟, then min
𝑆

𝑉 (𝑥, 𝑜) = 𝑉 (2𝑘, 𝑟) = 1−(1− 4𝑟/𝑎)
2.

The reason that we confine the variables within 𝑆 as shown
in Fig. 4a is as follows. When the intrusion object has a disk
shape, we have (

√
𝑟 +

√
𝑜)

2
/
𝑎 = 𝑝1 ≤ 1. This leads to 𝑜 ≤

(
√
𝑎−√

𝑟)
2. In addition, it is only interesting to assume 𝑜 ≥ 𝑟

because we only want to detect objects with a large size. We
also assume that the number of sensors is large enough, e.g.,
larger than 2𝑘.

The following corollary takes the supermum over all points
in the set 𝑆 and shows that it is upper-bounded by a finite
number.

Corollary 2:

sup
(
𝑉 (𝑥, 𝑜)− ∂𝑉

∂𝑥 (2𝑘, 𝑟) (𝑥− 2𝑘)− ∂𝑉
∂𝑜 (2𝑘, 𝑟) (𝑜− 𝑟)

)
≤ 𝑉 (2𝑘, 𝑟)
= 1− (1− 4𝑟/𝑎)

= 1− 𝑒2 ln(1−4𝑟/𝑎)

≤ 1− 𝑒2
−4𝑟/𝑎

1−4𝑟/𝑎

= 1− 𝑒−
8𝑟

𝑎−4𝑟 .

If we put an upper bound on the number of sensors,
i.e., 𝑥 ≤ 𝑛0, we reduce the area 𝑆 to a rectangle 𝑅3 =

[2𝑘, 𝑛0] ×
[
𝑟, (

√
𝑎−√

𝑟)
2
]

over the Cartesian coordinate
system, as shown in Fig. 4b. The following theorem shows that
with variables confined in 𝑅3, the maximum and minimum
intrusion coverage intensity are reached.

Theorem 6: max
(𝑥,𝑜)∈𝑅3

𝑉 (𝑥, 𝑜) = 𝑉
(
𝑛0, (

√
𝑎−√

𝑟)
2
)
= 1

and min
(𝑥,𝑜)∈𝑅3

𝑉 (𝑥, 𝑜) = 𝑉 (2𝑘, 𝑟) = 1− (1− 4𝑟
𝑎

)2
.

Based on the previous result, we obtain the following
bounds.

Corollary 3: 1 − 𝑒−
8𝑟
𝑎 < 1 − 𝑒2 ln(1− 4𝑟

𝑎 ) ≤ 𝑉 (𝑥, 𝑜) ≤ 1,
for all (𝑥, 𝑜) ∈ 𝑅3.

Corollary 4: Let 2𝑘 < 𝑥 < 𝑛0 and let 𝑘 = 𝑛0

𝑚 . The follow-
ing asymptotic result stands: 1− 𝑒−

8𝑟
𝑎 ≤ 𝑉 (𝑥, 𝑜) ≤ 1− 𝑒−𝑚.

In the following, we consider 𝑉 as a function of 𝑥 and 𝑏
and we establish the upper and lower bounds for 𝑉 (𝑥, 𝑏).

Theorem 7: Let 𝑜 be a fixed constant, 𝑜 = 𝑏 𝑜𝑏 , where 𝑏 is

variable. Assume that 𝑥 ∈ [4, 𝑛0] and
√
𝑜 ∈ [𝑏1, 𝑏2]. We have

1−
[
1− 1

𝑎

(
𝑜+ 𝑟 + 4

√
𝑟

𝜋

√
𝑜

)]4/𝑘
≤𝑉 (𝑥, 𝑏)

≤ max
𝑗∈{1,2}

⎧⎨
⎩1−

(
1− 𝑜+ 𝑟 +

√
𝑟/𝜋 (𝑏𝑗 + 𝑜/𝑏𝑗)

𝑎

)𝑛0/𝑘
⎫⎬
⎭ .

The last result of this section uses some well-known in-
equalities to obtain the upper and lower bounds for 𝑉 only as
a function of the number of sensors, 𝑥.

Theorem 8: max
{
1− 𝑒−𝑝1𝑚, 3−4𝑒−𝑝1𝑚

4(1−𝑒−𝑝1𝑚)

}
≤ 𝑉𝑛 ≤ 1 −

𝑒−
𝑚𝑝1
1−𝑝1 .
We summarize the analytical results of this section and their

practical meaning as follows.
∙ When the intrusion object has a disk shape, we have

found the minimum intrusion coverage intensity on an
unbounded strip (Theorem 5) and have shown that this
value can be upper bounded by a finite number (Corol-
lary 2). By putting a limit on the number of sensors,
we further found the minimum and maximum coverage
intensities (Theorem 6).

∙ When the intrusion object has a rectangular shape, the
intrusion coverage intensity becomes a function of the
number of nodes and the side length of the rectangle.
We have found upper and lower bounds for the coverage
intensity (Theorem 7). By fixing the size of the object,
the intrusion coverage intensity is only a function of the
number of sensor nodes and its upper and lower bounds
can be calculated as well (Theorem 8).

∙ Corollary 3 and Theorem 8 imply that if the intrusion
object is large, then the ratio 𝑛/𝑘 (the total number of
sensors over the number of subsets) should be kept small.
Likewise, if the intrusion object is small, the ratio 𝑛/𝑘
could be large. These results provide some insights on
the relationship between the size of the object and the
active sensors required in each round of scheduling.

VII. OPTIMIZING NETWORK LIFETIME

Maximizing the network lifetime leads in fact to maxi-
mizing the number subsets of sensors (𝑘) that work alter-
natively [11], [12], [13], [18]. Following the idea in [11],
[12], [13], [18], we look to maximize 𝑘 as a function of the
size of the intrusion objects, 𝑜, with the following constraints:
1) 𝑃𝑑 = 𝑃0, 2) fixed number of sensors 𝑛, 3) QoS𝑉𝑛

, and
4) bounds on the object size, where 𝑃0 is a given constant
between 0 and 1 and QoS𝑉𝑛

is a predefined Quality of Service
(QoS) constraint. We are able to obtain the form of the
solution, not only its existence as in [11], [12], [13], [18].
In addition, by choosing equality constraints for the detection
probability, we derive the explicit expression of function 𝑘(𝑜).
Theorem 9 is for an intrusion object shaped as a disk, while
Theorem 10 refers to an intrusion object shaped as a rectangle.
In the following, let 𝑄 = ⌈𝐿/𝑇 ⌉.

Theorem 9: Consider an intrusion object that has a disk
shape. Let 𝑜1 > 0 and let be a given natural number
such that: a)

(√
𝑜1 +

√
𝑟
)2 ≥ 𝑎

[
1− (1−𝑄𝑜𝑆𝑉𝑛)

1/𝑐
]
;
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b) 𝑜1 ≤ (
√
𝑎−√

𝑟)
2; c) There exists 𝑃0 such

that 𝑃0 = 1 − (1− 𝑠)
[
1− 𝑄

𝑎

(√
𝑟 +

√
𝑜1
)2]𝑐 −

𝑠
[
1− 𝑄+1

𝑎

(√
𝑟 +

√
𝑜1
)2]𝑐

; d) There exists 𝑘1 =

𝑘1

(
(
√
𝑎−√

𝑟)
2
)

such that 𝑃𝑑

(
(
√
𝑎−√

𝑟)
2
, 𝑘1

)
= 𝑃0;

in addition 𝑘1 ≤ 1
1−(1−𝑄𝑜𝑆𝑉𝑛 )1/𝑛

. Then the problem
of maximizing 𝑘 with constraints: i) 𝑃𝑑 = 𝑃0; ii)

1 ≤ 𝑘 ≤ (
√
𝑟+

√
𝑜)

2

𝑎[1−(1−𝑄𝑜𝑆𝑉𝑛 )1/𝑛]
; iii) 𝑛 = 𝑐, where 𝑐 is

a given constant; iv) 𝑜1 ≤ 𝑜 ≤ (
√
𝑎−√

𝑟)
2; has the

solution max 𝑘 =
⌊
𝑎
/(√

𝑜1 +
√
𝑟
)2⌋

. Furthermore, from
constraint (i.) we obtain an explicit expression for 𝑘:

𝑘 (𝑜) =
( √

𝑟+
√
𝑜√

𝑟+
√
𝑜1

)2
.

Note that Constraint ii. is derived from the QoS constraint
𝑉𝑛 ≥ 𝑄𝑜𝑆𝑉𝑛 > 0, which can be rewritten as 1 ≤ 𝑘 ≤

(
√
𝑟+

√
𝑜)2

𝑎[1−(1−𝑄𝑜𝑆𝑉𝑛 )1/𝑛]
using the definition of 𝑉𝑛. Constraint iii.

shows that we keep 𝑛 fixed and we only modify 𝑘. Con-
straint iv. is to assume that 𝑜 is larger than some number
𝑜1. Constraint iv. is motivated by the fact that the circular
object plus its shadow (see Fig. 2 and Section IV), given by
(
√
𝑟 +

√
𝑜)

2, should be smaller than 𝑎, the area of the whole
region. Conditions a.-d. are related to the Constraints i.-iv.,
and are used to obtain the solution faster.

Theorem 10: Consider an intrusion object that has a rect-
angular shape. Let 𝑜 be the area of the intrusion ob-
ject, 𝑏1, 𝑏2 > 0 such that 𝑏1 + 𝑜/𝑏1 ≤ 𝑏2 + 𝑜/𝑏2, let
𝑐 be a natural number and 𝑃0 ∈ [0, 1] such that: a)

𝑜 + 𝑟 + 4
√

𝑟/𝜋
√
𝑜 ≥ 𝑎

[
1− (1−𝑄𝑜𝑆𝑉𝑛)

1/𝑐
]
; b) 𝑏1 <√

𝑜 < 𝑏2, where 𝑏2 = 𝑏max satisfies the equation 𝑜 +
2
√

𝑟/𝜋 (𝑏2 + 𝑜/𝑏2) + 𝑟 = 𝑎; c) There exists 𝑃0 such that

𝑃0 = 1 − (1− 𝑠)
[
1− 𝑄

𝑎

(
𝑟 + 𝑜+ 2

√
𝑟/𝜋 (𝑏1 + 𝑜/𝑏1)

)]𝑐
−

𝑠
[
1− 𝑄+1

𝑎

(
𝑟 + 𝑜+ 2

√
𝑟/𝜋 (𝑏1 + 𝑜/𝑏1)

)]𝑐
; d) There ex-

ists 𝑘2 = 𝑘2 (𝑏2) such that 𝑃𝑑 (𝑏2, 𝑘2) = 𝑃0, 𝑘2 ≤
1

1−(1−𝑄𝑜𝑆𝑉𝑛 )1/𝑐
. Then the problem of maximizing 𝑘 with

constraints: i) 𝑃𝑑 = 𝑃0; ii) 1 ≤ 𝑘 ≤ 𝑜+2
√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

𝑎[1−(1−𝑄𝑜𝑆𝑉𝑛 )1/𝑛]
; iii)

𝑛 = 𝑐, where 𝑐 is a given constant; iv) 𝑏1 ≤ 𝑏 ≤ 𝑏2; has the
solution max 𝑘 =

⌊
𝑎
/(

𝑜+ 2
√

𝑟/𝜋 (𝑏1 + 𝑜/𝑏1) + 𝑟
)⌋

. Fur-
thermore, from constraint (i.) we obtain an explicit expression

for 𝑘: 𝑘 (𝑏) =
𝑜+2

√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

𝑜+2
√
𝑟/𝜋(𝑏1+𝑜/𝑏1)+𝑟

.

The practical meaning of Theorems 9 and 10 is that the
number of sensor subsets 𝑘 can be selected and tuned based
on the size and the shape of the intrusion object. These
results provide some guidelines on how the network should
be adapted to the size and the shape of an intruder.

VIII. CONCLUSIONS

In real applications with wireless sensor networks, the size
and the shape of objects are usually non-negligible. Traditional
coverage models mainly focus on monitoring each point in the
field with a high probability. As a result, scheduling decisions
based on existing coverage models create sensor networks that
are unnecessarily dense. In this paper, we remedy this problem
by proposing a more accurate coverage model that discloses

the relationship among detection probability, coverage inten-
sity, and the size and the shape of intrusion objects. We
investigate and solve several important optimization problems
in this model. Our analytical results provide researchers and
practitioners with insights on how to build an effective sensor
network to detect large objects with a small number of active
sensors.

APPENDIX

Proof: (Theorem 1) To prove that the minimum
detection probability is reached at point (4, 𝑎0), we compute
the difference between the value of 𝑃𝑑 in a random point
(𝑥, 𝑎), inside trapeze 𝑇 , and 𝑃𝑑(4, 𝑎0), and show that this
difference is always positive. For this we first compute the
partial derivatives of 𝑃𝑑 with respect to both 𝑥 and 𝑎 and
establish their sign.

∂𝑃𝑑

∂𝑥 (𝑥, 𝑎) =

− (1− 𝑠)
[
1− 𝑄

𝑎𝑘 (
√
𝑜+

√
𝑟)

2
]𝑥

ln
(
1− 𝑄

𝑎𝑘 (
√
𝑜+

√
𝑟)

2
)

−𝑠
[
1− 𝑄+1

𝑎𝑘 (
√
𝑜+

√
𝑟)

2
]𝑥

ln
(
1− 𝑄+1

𝑎𝑘 (
√
𝑜+

√
𝑟)

2
)

> 0.

∂𝑃𝑑

∂𝑎 (𝑥, 𝑎) =

−𝑥

[
(1− 𝑠)

(
1− 𝑄

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
)𝑥−1

𝑄
𝑎2𝑘 (

√
𝑟 +

√
𝑜)

2

+𝑠
(
1− 𝑄+1

𝑎𝑘 (
√
𝑜+

√
𝑟)

2
)𝑥−1

𝑄+1
𝑎2𝑘 (

√
𝑟 +

√
𝑜)

2
]

< 0.

Next, using Lagrange’s mean value theorem [15], let us
consider the difference:

𝑃𝑑 (𝑥, 𝑎)− 𝑃𝑑 (4, 𝑎0)

= ∂𝑃𝑑

∂𝑥 (𝜌1, 𝜌2) (𝑥− 4) + ∂𝑃𝑑

∂𝑎 (𝜌1, 𝜌2) (𝑎− 𝑎0)
≥ 0

Therefore, 𝑃𝑑 (𝑥, 𝑎) ≥ 𝑃𝑑 (4, 𝑎0) for any (𝑥, 𝑎) ∈ 𝑇.
Hence, minimum 𝑃𝑑 is reached at (4, 𝑎0).
A more complicated solution is needed for the maximization

problem. Since we want to show that at (4𝑟𝑢0, 4𝑟) 𝑃𝑑 reaches
the maximum value, the previous technique cannot be used
as we do not know the sign of 𝑥 − 4𝑟𝑢0. Therefore, to find
the maximum of 𝑃𝑑 we first use the fact that, according to
Fermat’s theorem for stationary points [16], the maximum is
reached on the trapeze’s boundary, hence, on one of 𝑇 ’s sides.

𝑃𝑑 decreases with 𝑎 along the vertical side 𝑄𝑃 , so that the
maximum on 𝑄𝑃 is reached in 𝑄. 𝑃𝑑 increases with 𝑥 so
that 𝑃𝑑 increases along sides 𝑄𝑀 and 𝑃𝑁 . Therefore, the
possible maximum points are on the line segment 𝑆𝑀𝑁 . So
all we need to study is the maximum of 𝑃𝑑 on 𝑀𝑁 . On the
segment 𝑀𝑁 , 𝑥 = 𝑎𝑢0, so we can express 𝑃𝑑 as a function
of only one real variable, 𝑎. Let this function be 𝜑.

𝑃𝑑 (𝑎𝑢0, 𝑎)

= 1− (1− 𝑠)
[
1− 𝑄

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
]𝑎𝑢0

−𝑠
[
1− 𝑄+1

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
]𝑎𝑢0

= 𝜑 (𝑎) .
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We take the derivative of 𝜑 and study its sign in order to
establish the function’s monotony.

𝜑
′
(𝑎) = − (1− 𝑠)𝑢0

[
1− 𝑄

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
]𝑎𝑢0

[
ln
(
1− 𝑄+1

𝑎𝑘 + (
√
𝑟 +

√
𝑜)

2
)

+𝑎
(𝑄/𝑎2𝑘)(

√
𝑟+

√
𝑜)

2

1−(𝑄/𝑎𝑘)(
√
𝑟+

√
𝑜)

2

]
−𝑠𝑢0

[
1− 𝑄

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
]𝑎𝑢0

[
ln
(
1− 𝑄+1

𝑎𝑘 (
√
𝑟 +

√
𝑜)

2
)
+ 𝑎

((𝑄+1)/𝑎2𝑘)(
√
𝑟+

√
𝑜)

2

1−((𝑄+1)/𝑎𝑘)(
√
𝑟+

√
𝑜)2

]
≤ 0,

The above is true because the sum of two negative numbers
is also negative. Here we have used the inequality:

(1− 𝜌) ln (1− 𝜌) + 𝜌 ≥ 0 for all 𝜌 < 1.

Therefore, 𝑃𝑑 is non-increasing on 𝑀𝑁 , which means that
the maximum is reached at 𝑀 : max

𝑇
𝑃𝑑 = 𝑃𝑑 (4𝑟𝑢0, 4𝑟). The

monotony of 𝑃𝑑 along segment 𝑀𝑁 also solves the related
problem, when 𝑥/𝑎 = 𝑢0, as stated in the theorem. We have:
max
𝑆𝑀𝑁

𝑃𝑑 = 𝑃𝑑 (𝑀) = 𝑃𝑑 (4𝑟𝑢0, 4𝑟) and min
𝑆𝑀𝑁

𝑃𝑑 = 𝑃𝑑 (𝑁) =

𝑃𝑑 (𝑢0𝑎0, 𝑎0).
Similar computations can be done in the case of a square

shaped intrusion object. Hence the results are valid for both
square and circular objects.

Proof: (Theorem 3) (a) Direct computations show that
∂𝑃𝑑/∂𝑥 > 0 and ∂𝑃𝑑/∂𝑎 < 0. It follows that 𝑥 = 𝑥 (𝑎)
and 𝑎 = 𝑎 (𝑥) are strictly increasing. Let 𝑔 = 𝑥 (𝑎)/𝑎. A
more complicated computation leads to 𝑔′ (𝑎) > 0 for all 𝑎 ∈
[𝑎 (4) , 𝑎0]. More precisely:

(∂𝑃𝑑/∂𝑥)(𝑥, 𝑎)

=− (1 − 𝑠)(1− 𝑜1
𝑎

𝑁

𝑘
)𝑥 ln(1− 𝑜1

𝑎

𝑁

𝑘
)

− 𝑠(1− 𝑜1
𝑎

𝑁 + 1

𝑘
) ln(1− 𝑜1

𝑎

𝑁 + 1

𝑘
)

>0,

and

(∂𝑃𝑑/∂𝑎)(𝑥, 𝑎)

=− 𝑥[(1 − 𝑠)(1− 𝑜1
𝑎

𝑁

𝑘
)𝑥−1 𝑜1

𝑎2
𝑁

𝑘

+ 𝑠(1− 𝑜1
𝑎

𝑁 + 1

𝑘
)𝑥−1 𝑜1

𝑎2
𝑁 + 1

𝑘
]

<0.

Since 𝑢 + (1− 𝑢) ln (1− 𝑢) > 0 for any 𝑢 < 1, we
have the following inequality based on the Implicit Function
Theorem [17]

𝑠𝑖𝑔𝑛 (𝑔′ (𝑎)) = 𝑠𝑖𝑔𝑛 (𝑥′(𝑎) 𝑎− 𝑥 (𝑎))

= 𝑠𝑖𝑔𝑛
[
− ∂𝑃𝑑/∂𝑎
∂𝑃𝑑/∂𝑥

(𝑥 (𝑎) , 𝑎) 𝑎− 𝑥 (𝑎)
]

= 𝑠𝑖𝑔𝑛
(−∂𝑃𝑑

∂𝑎 𝑎− 𝑥 (𝑎) ∂𝑃𝑑

∂𝑥

)
=

𝑠𝑖𝑔𝑛
[
(1− 𝑠)

(
1− 𝑜1

𝑎
𝑁
𝑘

)𝑥−1 ( 𝑜1𝑁
𝑎𝑘 +

(
1− 𝑜1𝑁

𝑎𝑘

)
ln
(
1− 𝑜1𝑁

𝑎𝑘

)
+𝑠
(
1− 𝑜1(𝑁+1)

𝑎𝑘

)
ln
(
1− 𝑜1(𝑁+1)

𝑎𝑘

))]
> 0.

The conclusion follows.
(b) Consider the expression of 𝑃𝑑 given by 3, the first

case. This leads immediately to the explicit formulas for
𝑥 = 𝑥 (𝑎) and 𝑎 = 𝑎 (𝑥) in this particular case. We have:

𝑔 (𝑎) = 𝑥(𝑎)
𝑎 = ln(1−𝑃0)

𝑎 ln(1−𝑜1/𝑎) . Simple computations show that
𝑔 is increasing as a function of 𝑎. Hence min (𝑔 (𝑎)) = 4

𝑎(4) =

4
𝑜1

[
1− (1− 𝑃0)

1/4
]
. This concludes the proof.

Proof: (Lemma 1) 𝑝1 (𝑏) = 1
𝑎

[
𝑜+ 2

(
𝑏+ 𝑜

𝑏

)√
𝑟
𝜋 + 𝑟

]
.

Hence: 𝑝
′
1 (𝑏) =

1
𝑎2
√

𝑟
𝜋

(
1− 𝑜

𝑏2

) { < 0, 𝑏 <
√
𝑜

≥ 0, 𝑏 ≥ √
𝑜

. Function

𝑝1 (𝑏) first decreases and then increases, so 𝑏0 =
√
𝑜 is the

point for 𝑝1 to become the minimum.
Proof: (Lemma 2) By using composed function deriva-

tion, we have: 𝑑𝑃𝑑

𝑑𝑏 = 𝑑𝑃𝑑

𝑑𝑝1

𝑑𝑝1
𝑑𝑏 . The first fraction on the right

hand side is strictly positive, so the sign of 𝑑𝑃𝑑

𝑑𝑏 is given by
the sign of 𝑑𝑝1

𝑑𝑏 , for all 𝑏 > 0.
Proof: (Theorem 4)

𝑃𝑑 = 1− [(1− 𝑠)(1 − ⌈𝐿/𝑇 ⌉
𝑘

𝑝1)
𝑛 + 𝑠(1− ⌈𝐿/𝑇 ⌉+ 1

𝑘
𝑝1)

𝑛]

<1− (1 − 𝑠+ 𝑠)(1− ⌈𝐿/𝑇 ⌉+ 1

𝑘
𝑝1)

𝑛

=1− (1 − ⌈𝐿/𝑇 ⌉+ 1

𝑘
𝑝1)

𝑛.

Likewise, 𝑃𝑑 > 1− (1 − ⌈𝐿/𝑇⌉
𝑘 𝑝1)

𝑛.
Proof: (Theorem 5) 𝑉 (𝑥, 𝑜) − 𝑉 (2𝑘, 𝑟) =

∂𝑉
∂𝑥 (𝜃1, 𝜃2) (𝑥− 2𝑘)+ ∂𝑉

∂𝑜 (𝜃1, 𝜃2) (𝑜− 𝑟) ≥ 0. The inequality
holds since the left side is the sum of two nonnegative terms
for any (𝑥, 𝑜) ∈ 𝑆. Obviously, 𝑥 − 2𝑘 and 𝑜 − 𝑟 are
nonnegative, so all that remains to be shown is that the first
order partial derivatives of 𝑉 are positive. Recall that for an
intrusion object shaped as a disk, the analytic expression of

𝑉 is: 𝑉 (𝑥, 𝑜) = 1−
[
1− (

√
𝑟+

√
𝑜)

2

𝑎

]𝑥/𝑘
. 𝑉 is an increasing

function of both 𝑥 and 𝑜, so ∂𝑉
∂𝑥 > 0 and ∂𝑉

∂𝑜 > 0. It follows
that 𝑉 (𝑥, 𝑜) ≥ 𝑉 (2𝑘, 𝑟) for any (𝑥, 𝑜) ∈ 𝑆.

Proof: (Corollary 2) By Taylor’s formula, we have:

𝑉 (𝑥, 𝑜)

= 𝑉 (2𝑘, 𝑟) +
∂𝑉

∂𝑥
(2𝑘, 𝑟)(𝑥 − 2𝑘)

+
∂𝑉

∂𝑜
(2𝑘, 𝑟)(𝑜 − 𝑟) +

1

2
[
∂2𝑉

∂𝑥2
(𝑡1, 𝑡2)(𝑜− 𝑟)2

+ 2
∂2𝑉

∂𝑥∂𝑜
(𝑡1, 𝑡2)(𝑥− 2𝑘)(𝑜− 𝑟) +

∂2𝑉

∂𝑜2
(𝑡1, 𝑡2)(𝑜− 𝑟)2].

The last term is negative, since all second order partial
derivatives of 𝑉 are negative. The conclusion follows from the
expression of 𝑉 (2𝑘, 𝑟) and from the inequality ln (1 + 𝑢) ≥
𝑢

1+𝑢 , 𝑢 > −1.
Proof: (Theorem 6)

𝑉 (𝑥, 𝑜)− 𝑉 (𝑛0, (
√
𝑎−√

𝑟)2)

=
∂𝑉

∂𝑥
(𝜃1, 𝜃2)(𝑥− 𝑛0) +

∂𝑉

∂𝑜
(𝜃1, 𝜃2)(𝑜 − (

√
𝑎−√

𝑟)2),

where (𝜃1, 𝜃2) is a point situated on the segment with end

points (𝑥, 𝑜) and
(
𝑛0, (

√
𝑎−√

𝑟)
2
)
.

The first order partial derivatives of 𝑉 (𝑥, 𝑜) are positive,
and are multiplied by negative quantities. Hence, the difference
𝑉 (𝑥, 𝑜) − 𝑉 (𝑛0, (𝑎 − √

𝑟)2) is negative. Likewise, it can be
shown that the difference 𝑉 (𝑥, 𝑜)− 𝑉 (2𝑘, 𝑟) is positive. The
conclusion follows.
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Proof: (Corollary 3)

(1− 1/𝑘)
𝑛0 = (1−𝑚/𝑛)

𝑛0 = 𝑒𝑛0 ln(1−𝑚/𝑛)

≥ 𝑒𝑛0
−𝑚/𝑛

1−𝑚/𝑛 = 𝑒−
𝑚𝑛0
𝑚−𝑛 .

(6)

According to Theorem 6 we can write:

max
𝑅3

𝑉 = 1− (1− 1/𝑘)𝑛0 ≤ 1− 𝑒−
𝑚𝑛0
𝑛−𝑚 .

For the left-hand side inequality, we use the well-known
inequality: ln (1 + 𝑥) ≤ 𝑥, for all 𝑥 > −1, and we obtain:
(1− 4𝑟/𝑎𝑘)

2𝑘
= 𝑒2𝑘 ln(1−4𝑟/𝑎𝑘) ≤ 𝑒−

8𝑟
𝑎 .

Proof: (Corollary 4) According to Corollary 3, we get:
1 − 𝑒−

8𝑟
𝑎 = 1 − lim

𝑘→∞
(
1− 4𝑟

𝑎𝑘

)2𝑘 ≤ 𝑉 (𝑥, 𝑜) ≤ 1 −
lim

𝑛0→∞

(
1− 𝑚

𝑛0

)𝑛0

= 1− 𝑒−𝑚.

Proof: (Theorem 7) Consider the expression of 𝑉 (𝑥, 𝑏)
given by (6). ∂𝑉

∂𝑥 (𝑥, 𝑏) ≥ 0 for all (𝑥, 𝑏) ∈ [4, 𝑛0] × [𝑏1, 𝑏2]

and 𝑠𝑖𝑔𝑛
(
∂𝑉
∂𝑏 (𝑥, 𝑏)

)
= 𝑠𝑖𝑔𝑛

(
1− 𝑜

𝑏2

)
=

⎧⎨
⎩

1, 𝑏 >
√
𝑜,

0, 𝑏 =
√
𝑜,

−1, 𝑏 <
√
𝑜.

Therefore,

𝑉 (𝑥, 𝑏) ≥ 𝑉 (𝑥,
√
𝑜) = 1− [1− 1

𝑎

(
𝑜+ 𝑟 + 4

√
𝑟
𝜋

√
𝑜
)]𝑥/𝑘

≥ 1− [1− 1
𝑎

(
𝑜+ 𝑟 + 4

√
𝑟
𝜋

√
𝑜
)]4/𝑘

.

On the other hand, from the signature of 𝑉 we know that 𝑉
decreases and then increases with respect to 𝑏. Therefore the
maximum is reached in one of the extremities 𝑏1, 𝑏2. We have:
𝑉 (𝑥, 𝑏)

≤ max𝑗∈{1,2}

{
1−
(
1− 𝑜+𝑟+

√
𝑟/𝜋(𝑏𝑗+𝑜/𝑏𝑗)

𝑎

)𝑥/𝑘}

≤ max𝑗∈{1,2}

{
1−
(
1− 𝑜+𝑟+

√
𝑟/𝜋(𝑏𝑗+𝑜/𝑏𝑗)

𝑎

)𝑛0/𝑘
}
.

Proof: (Theorem 8) From Section IV we know that 𝑉𝑛 =
1− [1− 𝑝1]

𝑛/𝑘. We use the following well-known inequality:(
1− 𝛼

𝑛

)𝑛 ≤ 𝑒−𝛼, 𝛼 ≥ 0. 𝑉𝑛 is therefore bounded by:

𝑉𝑛 ≥ 1− 𝑒−𝑚𝑝1 ⇒ 1− 𝑉𝑥 ≤ 𝑒−𝑚𝑝1 . (7)

On the other hand, it is well known that

𝑉𝑛 (1− 𝑉𝑛) ≤ 1

4
. (8)

It follows that: 1− 𝑉𝑛 ≤ 1
4𝑉𝑛

(9)

≤ 1
4(1−𝑒−𝑚𝑝1 )

.

⇒ 𝑉𝑛 ≥ 1− 1

4 (1− 𝑒−𝑚𝑝1)
=

3− 4𝑒−𝑝1𝑚

4 (1− 𝑒−𝑝1𝑚)
. (9)

From (9) and (11) we obtain the conclusion: 𝑉𝑛 ≥
max

{
1− 𝑒−𝑝1𝑚, 3−4𝑒−𝑝1𝑚

4(1−𝑒−𝑝1𝑚)

}
.

Following, we prove the upper bound. Using inequality:
ln (1 + 𝑥) ≥ 𝑥

𝑥+1 , for all 𝑥 > −1, we obtain: 𝑛𝑘 ln (1− 𝑝1) ≥
− 𝑚𝑝1

1−𝑝1 . It follows that: (1− 𝑝1)
𝑛/𝑘 ≥ 𝑒

− 𝑚𝑝1
1−𝑝1 . This leads to

the conclusion 𝑉𝑛 ≤ 1− 𝑒−
𝑚𝑝1
1−𝑝1 .

Proof: (Theorem 9) In the case of a circular intrusion
object, by combining Equations (1) and (3), 𝑃𝑑 is given by:

𝑃𝑑 =1− (1− 𝑠)

[
1− 𝑄

𝑎𝑘

(√
𝑟 +

√
𝑜
)2]𝑐

− 𝑠

[
1− 𝑄 + 1

𝑎𝑘

(√
𝑟 +

√
𝑜
)2]𝑐

.

We have
∂𝑃𝑑

∂𝑜 = 𝑐
𝑎𝑘 (1 +

√
𝑟/𝑜)[(1 − 𝑠)𝑄(1 − 𝑄

𝑎𝑘 (
√
𝑟 +

√
𝑜)2)𝑐−1 +

𝑠(𝑄 + 1)(1− 𝑄+1
𝑎𝑘 (

√
𝑟 +

√
𝑜)2)𝑐−1] > 0

∂𝑃𝑑

∂𝑘 = − 𝑐
𝑎𝑘2 (

√
𝑟+

√
𝑜)2[(1− 𝑠)𝑄(1− 𝑄

𝑎𝑘 (
√
𝑟+

√
𝑜)2)𝑐−1 +

𝑠(𝑄 + 1)(1− 𝑄+1
𝑎𝑘 (

√
𝑟 +

√
𝑜)2)𝑐−1] < 0

Therefore, ∂𝑃𝑑/∂𝑜 > 0 and ∂𝑃𝑑/∂𝑘 < 0.
According to the Implicit Function Theorem [17], around

each point (𝑜, 𝑘) which satisfies the constraints in the theo-
rem’s hypothesis and the fundamental equality 𝑃𝑑 (𝑜

′, 𝑘) =
𝑃0, there exists a function 𝑘 = 𝑘 (𝑜′) having derivatives of
any order, such that 𝑃𝑑 (𝑜′, 𝑘 (𝑜′)) = 𝑃0 for any 𝑜′ close to 𝑜.

The first order derivative of 𝑘 is given by: 𝑘′ (𝑜) =

−
∂𝑃𝑑
∂𝑜 (𝑜,𝑘(𝑜))

∂𝑃𝑑
∂𝑘 (𝑜,𝑘(𝑜))

= 𝑘(𝑜)√
𝑟
√
𝑜+𝑜

> 0.

Dividing by 𝑘(𝑜) and integrating, we get:
∫ 𝑜
𝑜1

𝑘′(𝑡)
𝑘(𝑡) 𝑑𝑡 =∫ 𝑜

𝑜1
𝑑𝑡

𝑡+
√
𝑟
√
𝑡

√
𝑡=𝑢
=
∫√

𝑜√
𝑜1

2𝑑𝑢
𝑢+

√
𝑟
= 2 ln

√
𝑜+

√
𝑟√

𝑜1+
√
𝑟
.

This implies:

𝑘 (𝑜)

𝑘 (𝑜1)
=

( √
𝑜+

√
𝑟√

𝑜1 +
√
𝑟

)2

. (10)

Using condition (𝑑.) and using the fact that 𝑘 is an
increasing function of 𝑜, we obtain the constrained solution:

max 𝑘 =
⌊
𝑘
(
(
√
𝑎−√

𝑟)
2
)⌋

=

⌊
𝑎

(
√
𝑜1+

√
𝑟)2

⌋
.

In addition, from (𝑐.) we have that 𝑘 (𝑜1) = 1. Therefore,

using (10) we obtain 𝑘 (𝑜) =
( √

𝑜+
√
𝑟√

𝑜1+
√
𝑟

)2
.

Proof: (Theorem 10) By combining Equations (2) and
(3), we have:

𝑃𝑑 = 1− (1− 𝑠)
[
1− 𝑄

𝑎𝑘

(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

)]𝑐
−𝑠
[
1− 𝑄+1

𝑎𝑘

(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

)]𝑐
.

∂𝑃𝑑

∂𝑏 = 2𝑐
𝑎𝑘

√
𝑟
𝜋

(
1− 𝑜

𝑏2

) [
(1− 𝑠)𝑄

(
1− 𝑄

𝑎𝑘(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

))𝑐−1

+ 𝑠 (𝑄+ 1)(
1− 𝑄+1

𝑎𝑘

(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

))𝑐−1
]
.

∂𝑃𝑑

∂𝑘 = − 𝑐
[
𝑜+2

√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

]

𝑎𝑘2

[
(1− 𝑠)𝑄

(
1− 𝑄

𝑎𝑘(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

))𝑐−1

+ 𝑠 (𝑄+ 1)(
1− 𝑄+1

𝑎𝑘

(
𝑜+ 2

√
𝑟/𝜋 (𝑏+ 𝑜/𝑏) + 𝑟

))𝑐−1
]
< 0.

Next, we apply the Implicit Function Theorem [17]. We

have: 𝑘′ (𝑏) = −
∂𝑃𝑑
∂𝑏 (𝑏,𝑘(𝑏))

∂𝑃𝑑
∂𝑘 (𝑏,𝑘(𝑏))

= 𝑘 (𝑏)
2
√
𝑟/𝜋(1−𝑜/𝑏2)

𝑜+2
√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

.

This implies:
∫ 𝑏
𝑏1

𝑘′(𝑡)
𝑘(𝑡) 𝑑𝑡 = ln

𝑜+2
√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

𝑜+2
√
𝑟/𝜋(𝑏1+𝑜/𝑏1)+𝑟

⇒

𝑘 (𝑏) =
𝑜+2

√
𝑟/𝜋(𝑏+𝑜/𝑏)+𝑟

𝑜+2
√
𝑟/𝜋(𝑏1+𝑜/𝑏1)+𝑟

.

The last equation, the signature of 𝑘′(𝑏), and the fact that
𝑏1 + 𝑜/𝑏1 ≤ 𝑏2 + 𝑜/𝑏2 together imply:

max 𝑘 = ⌊𝑘 (𝑏2)⌋ =
⌊
𝑎
/(

𝑜+ 2
√

𝑟/𝜋 (𝑏1 + 𝑜/𝑏1) + 𝑟
)⌋

.
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