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Virtual machine placement in cloud systems through
migration process

Kangkang Li*, Huanyang Zheng1, Jie Wu2 and Xiaojiang Du3

Department of Computer and Information Sciences, Temple University, Philadelphia,
PA 19122, USA

(Received 17 March 2014; final version received 2 June 2014)

Cloud computing is an emerging technology that greatly shapes our lives, where users
run their jobs on virtual machines (VMs) on physical machines (PMs) provided by a
cloud service provider, saving the investment in upfront infrastructures. Due to the
heterogeneity of various jobs, different VMs on the same PMs could have different job
completion times. Meanwhile, the PMs are also heterogeneous. Therefore, different
VM placements have different job completion times, and our objective is to minimise
the total job completion time of the input VM requests through a reasonable VM
placement schedule. This problem is NP-hard, since it can be reduced to a knapsack
problem. We propose an off-line VM placement method through an emulated VM
migration process, while the on-line VM placement is solved by a real VM migration
process. The migration algorithm is a heuristic approach, in which we place the VM to
its best PM directly, if this PM has enough capacity. Otherwise, we migrate another
VM from this PM to accommodate the new VM, if a pre-specified migration constraint
is satisfied. Furthermore, we study a hybrid scheme where a batch is employed to
accept upcoming VMs for the on-line scenario. Evaluation results validate the high
efficiency of the proposed algorithms.

Keywords: VM migration; job completion time; off-line; on-line; VM placement

1. Introduction

Nowadays, cloud computing is an emerging technology that greatly shapes our lives. With

the large pools of computing and storage resources provided by cloud providers, many

companies can rent these resources and run their jobs on virtual machines (VMs), saving

the investment in upfront infrastructures. In particular, the technique of VM migration

[1,2] enables us to move a VM from one physical host to another. This spatial flexibility is

effective in server consolidation, power consumption saving and so forth.

Obviously, VMs are different among their resource demands and their running jobs.

Due to this heterogeneity, different VMs running on the same physical machine (PM)

could have different job completion times. Moreover, in most circumstances, the host PMs

are also heterogeneous, such as different CPU architectures, different OS, differing

amounts of memory, storage and so on. Hence, the same VM placed on different PMs

would have different completion times, and our objective is to minimise the total job

completion time of the input VM requests through a reasonable VM placement schedule.

This problem is NP-hard, since it can be reduced to a knapsack problem.

VM migration is an efficient tool for resource provisioning, by dynamically

rearranging the previous placement. For instance, when all PMs do not have enough
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capacities for the new VM, through migrating one running VM to another host,

we could save space to accept the incoming VM. In this paper, we consider both off-line

and on-line VM placement problems with the objective of minimising the total job

completion time.

Under the off-line scenario, the information of input VMs is known a priori. Therefore,

we propose a VM placement algorithm through an emulated VM migration process, in

which we place the VMs one-by-one. Suppose that there is an incoming VM waiting for

placement in a cloud system with three PMs: PM1, PM2, PM3. The job completion times of

the incoming VM placed on PM1, PM2, PM3 are, respectively, t1, t2, t3. As shown in

Figure 1(a), for the incoming VM, we could directly place it in PM1, which has enough

remaining capacity to support it. Then, the total completion time will increase by t1.

However, this option might not be optimal. Suppose that placing the VM in PM2 has the

minimal completion time t2 (among t1, t2 and t3), then PM2 is the best choice for the

incoming VM to minimise the total completion time. However, as shown in Figure 1(b),

the capacity of PM2 is not sufficient. Instead of placing the incoming VM in PM1, an

alternative is to migrate one VM on PM2 to PM3, which makes room for the incoming VM.

In that case, the incoming VM could be accepted into PM2 to minimise the total job

completion time.

However, migration has a preliminary constraint, even if the remaining capacity of

PM3 could accept the migrated VM. On the one hand, by saving space to accept this

incoming VM into PM1, we could have the minimal completion time t2 for the incoming

VM. On the other hand, since the completion time of the same VM on different PM hosts

varies, for the migrated VM, there might be an increase in completion time due to the

change of host. Since we aim to minimise the total completion time of the whole VMs set,

if the time increase of the migrated VM is too large, we would rather select the first choice

without migration. This is because migration would be meaningless in minimising the

total completion time. Therefore, we conclude that the migration constraint is that, even

with the increased completion time of the migrated VM, the migration-based VM

placement (MBVMP) is still better than the direct placement in minimising the total

completion time.

Therefore, in the emulated-MBVMP, we have two options, i.e. direct placement and

migration-based placement. The insight behind the option selection is to compare the total

job completion time of these two choices: we choose migration-based placement, if its

gain of placing the incoming VM minus the switching loss of migrating the victim VM is

larger than the gain of direct placement; otherwise, we choose direct placement. Again,

note that the migration process is only emulated in the off-line VM placement scenario.

We do not actually place the VMs until all VMs’ final positions are determined.

C1 R

Incoming
VM

PM1

Remaining
Capacity

(a) Direct placement

C2 R
C3

PM2PM3

Placed
VM

Incoming
VM

Remaining
Capacity

(b) Migration-based placement

Figure 1. An illustration of the VM placement.
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Regarding the on-line scenario where pre-information is not available, our VM

placement algorithm is based on real VM migrations, which will inevitably introduce

migration delay.[3] In fact, VM migration basically consists of transferring its memory

image from the source host to the destination. Through experiments, Verma et al. [4]

observed that there is a linear relationship between the active memory of a VM and the

duration of migration. We refer to this delay as the migration overhead, since it will

increase the total job completion time. Obviously, migrating a VM with a larger resource

demand will lead to a longer delay, and thereby, a large migration overhead.

Furthermore, we conduct a study on a hybrid scheme, where we introduce a batch to

help the VM placement in the on-line scenario. Instead of one-by-one placement, several

on-line incoming VMs are reserved into a batch. Then, the information of the VMs in the

batch would be known to us. In that case, we can simultaneously place them together

through the off-line placement algorithm without the migration overhead. However, the

batch will introduce the waiting time of the VM placement. Therefore, there exists a

tradeoff between the on-line migration overhead and batch waiting time.

In this paper, we formulate the total completion time minimisation VM placement

problem under both off-line and on-line scenarios. Due to the NP-hardness of this

problem, we propose a heuristic MBVMP algorithm to give an efficient solution. Our main

contributions are summarised in the following:

. To the best of our knowledge, our work is the first to adopt VM migration for the

total completion time minimisation VM placement problem, considering both off-

line and on-line scenarios.

. For the off-line VM placement, we also study the case of homogeneous resource

demand, and compare our heuristic algorithm with the optimal solution of

the maximal matching problem. The results show that the performance of our

algorithm is very close to the optimal solution, verifying the high efficiency of our

algorithm.

. We also conduct a study on a hybrid scheme, where a batch is introduced in

the VM placement. In that case, we can integrate the off-line VM placement

into the on-line scenario, which could avoid the migration overhead.

The remainder of the paper is organised as follows: in Section 2, we study the VM

placement problem under the off-line scenario, and propose our off-line MBVMP

algorithm. In Section 3, we perform research on the on-line scenario. Section 4 introduces

a hybrid scheme of VM placement. In Section 5, we conduct experiments to evaluate the

performance of our algorithms under both off-line and on-line scenarios. In Section 6, we

introduce some previous work. Finally, we give the conclusions in Section 7.

2. Off-line VM placement

2.1 Off-line problem description

In this section, we study the VM placement problem under the off-line scenario, in which

we know the information about the incoming VMs set a priori (e.g. each VM’s resource

demand, and the total number of VM requests). Suppose a cloud system has N PMs, where

the capacity of the jth PM is Cj. There are M VMs waiting for the placement, and the

resource demand of the ith VM is Ri. Due to the heterogeneity of PMs and VMs, different

VMs on the same host have various job completion times. Therefore, the element of tij in

completion time matrix ½tij� denotes the job completion time of the ith VM, which is

placed into the jth PM. For simplicity, we assume tij is a constant, which is not related to
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the current load in the jth PM. Table 1 presents the notations for the variables. The

objective is to find an optimal placement that minimises total completion time of input

jobs. Then, this optimisation problem is formulated as follows:

Minimise
XM

i¼1

XN

j¼1

xijtij; ð1Þ

s:t:
XN

j¼1

xij # 1;
XM

i¼1

xijRi # Cj; xij [ f0; 1}: ð2Þ

It can be seen that this problem is essentially a multi-knapsack problem, where VMs

are the items selected for the PMs (equivalent to knapsacks). Resource demands of the

VMs are the weights of the items, and the job completion time is equivalent to the

values of the items. Note that here we are minimising the job completion time, rather

than maximal values in the knapsack problem (but they are essentially the same).

Therefore, this problem is NP-hard. Hence, we prepare to give a heuristic solution to

solve it.

2.2 Off-line problem analysis

In this section, we analyse the off-line VM placement problem, which is based on the idea

of VM migration. The VMs are placed one after another. As discussed before, for VMi,

there is an optimal PMj with minimal tij. If the remaining capacity Cj is enough, we could

finish placing VMi and switch to the next VM. Otherwise, if Cj is not sufficient, we have

two options below to place it.

. Direct placement: Among those PMs which have enough resources to accept the

incoming VM, we select the one with the minimal completion time.

. Migration-based placement (emulated): We try to migrate one VM placed on the

optimal PM to another host for saving space to accept the incoming VM. In the off-

line scenario, the migration process is emulated. Therefore, we call it (emulated)

migration-based placement.

Obviously, direct placement is not the optimal choice for the incoming VM, since we

should not miss the opportunity to place the incoming VM into the PM corresponding to

the minimal completion time, especially under some circumstance that the completion

time of the first-choice is much less than that of the others. Therefore, we want to take

advantage of VM migration to do the placement.

Table 1. Notations.

Notation Description

VMi The ith VM
PMj The jth PM
Ri The resource demand of VMi

Cj The remaining capacity of PMj

xij {0,1} variable indicates whether VMi is placed into PMj

tij The job completion time of VMi in PMj
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The key for the feasibility of migration-based placement is to satisfy the migration

constraint, i.e. the migration-based placement is better than the direct placement in terms

of the total completion time. To achieve our migration-based placement, we need to find a

qualified victim VM placed on the optimal PM to migrate, which is not always searchable.

There are three qualifications that such a qualified victim VM must meet:

(1) Could save enough resources for accepting a new VM.

(2) Could find a new available host with enough current capacity to accept the victim

VM.

(3) With the increased completion time of the migrated victim VM, the completion

time by migration-based placement is less than that of direct placement.

If such a qualified victim VM is found on the minimal completion time PM, then we

would directly choose migration-based PM. If more than one qualified victim VM exists in

the minimal completion time PM, we would choose the VM with the minimal completion

time increase to migrate. Of course, there could exist some special circumstances for a

particular incoming VM.

. We could not find a qualified victim VM on the minimal completion time PM. We

then try to place the incoming VM in the next-minimal completion time PM. If the

incoming VM still could not be placed, we continue to try the next-next-minimal

completion time PM. The search process is terminated when the incoming VM is

placed, or encounters the best available PM found by direct placement.

. After trying all the PMs, and if the incoming VM is still not placed, we have no

choice but to reject it.

Algorithm 1. VM placement algorithm

1: for i ¼ 1 to M do
2: Sort PMs increasingly by tij.
3: for j ¼ 1 to N do
4: if Cj is sufficient for VMi then
5: Place VMi in PMj

6: if migration-based placement (VMi,PMj) then
7: Do VM migration and place VMi into PMj

8: if VMi is still not placed then
9: Reject VMi

Algorithm 2. (emulated/real) Migration-based placement

1: for all the VMs (VMk) on PMj do
2: if VMk’s migration makes enough room for VMi then
3: for all the PMs (except PMj) do
4: Find the best available PM (except PMj) for VMk

5: Select the best qualified victim VM running on PMj

6: if migration constraint is satisfied then
7: return true
8: else
9: return false
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As we discussed before, under the off-line scenario, VM migration is not actually

implemented. However, the emulated migration process shows great promise in

dynamically improving the previous placement to lower the total completion time.

2.3 MBVMP algorithm

As we could observe from Algorithm 1, for each incoming VMi, we first sort the

completion time tij of each PM and accordingly rearrange the PMs set. After that, starting

from the first PM (the best choice to place VMi in minimising total completion time) in the

rearranged PMs, we try to place the incoming VMi. If PMj’s remaining capacity Cj is

sufficient, we could directly place VMi and switch to place the next VM. Otherwise, by

using the direct placement to test the migration constraint, we try to adopt the MBVMP.

Considering the two loops in Algorithm 1, the total time complexity of our off-line

MBVMP algorithm is O(M 2N). Again, note that the migration-based placement is only

emulated for the off-line scenario.

In Algorithm 2, we try to achieve the MBVMP. That is, we try to find the qualified

victim VM among all VMs on PMj to migrate. For each VMk already placed in PMj, if it

could make enough room for the incoming VMj, we then try to find it a best new host. That

is, among all the other PMs (except PMj itself) with enough remaining capacity to accept

VMk, we select the PM that could yield the minimal completion time increase as the best

new host. Among these VMs that could make enough room for the incoming VMj, we

select the best victim VM that has the minimal increased completion time. After that, we

verify whether the victim is qualified by testing the migration constraint. Through

comparing the direct placement and migration-based placement in minimising the total

completion time, we could know whether the selected best victim VM is qualified. If the

migration constraint is satisfied, the victim VM is qualified. Then, we do the migration and

place the incoming VMi.

2.4 Case study

Now we consider a special case under the off-line scenario, in which the resource type is

uniform. That is, each PM’s resource capacity could be sliced into unit slots, and all of the

VMs have the same resource demand of one slot. Each VM is placed into one slot in the

PM, thus there exists a unique correspondence with each VM and each PM’s unit slot.

Given this, we could transfer the VM placement into a minimal matching problem in the

graph theory. We would use Figure 2 to illustrate the mapping from VM placement to

minimal matching.

In Figure 2, each VM and PM unit pair is regarded as the vertices in the bi-partite

graph, and the weighted edge connecting each VM and PM unit pair refers to the

completion time of placing VM in that unit of the PM. Thus, finding a minimal total

completion time VM placement is equal to finding the minimal matching between VM and

PM unit pairs in the weighted bi-partite graph. There is an optimal Kuhn–Munkras (KM)

algorithm to solve this problem, and we use an example to compare our proposedMBVMP

algorithm with the optimal solution.

We assume that each PM in the cloud system has the capacity of six VM slots, and we

vary the number of PMs from 50 to 250. We set that the total resource demands of VMs are

equal to the total capacity of PMs. In that case, given the N PMs, we have a set of N £ 6

VMs to be placed into the cloud system. Since all of the VMs have the same resource

demand of one slot, each VM should have a corresponding slot in the PM to be placed into.
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We also randomly generated the set of each element in completion time matrix ½tij�. From
the comparison results shown in Figure 3, we could see that the performance of our

proposed algorithm is very approximate to the optimal solution. Given M incoming VMs

and N PM hosts, the time complexity of the KM algorithm is O(M 2N), which is equal to

our off-line MBVMP algorithm.

2.5 Multiple-hop migration

In the previous discussion, we only consider the one-hop migration, which has a low time

complexity. However, multiple-hop migration might lead to a better performance. In

Algorithm 3, we present the multi-hop algorithm. Suppose the average number of placed

VMs on a PM is K, then the time complexity of Algorithm 3 is K times as much as that of

unit unit

VM 1

PM 1

PM 2

w(i,j)

unit

VM 2

unit

VM 3

unit

VM 4

unit

unit

unit

Figure 2. Minimal matching and VM placement.
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Algorithm 1. Obviously, Algorithm 3 introduces multiple-hop migrations with a better

performance on minimising the total completion time, as the tradeoff of a higher time

complexity.

3. On-line VM placement

Under the on-line scenario, the VM requests are coming one by one without knowing the

information beforehand. Hence, we place VM one after another through an emulated

process. Since our MBVMP algorithm places VMs one after another for the off-line

scenario, it could still work in the same way for on-line VM placement.

The major difference between on-line and off-line VM placement is that the migration

process is actually implemented. Hence, it is a real process which would introduce a

migration delay, increasing the total completion time. Therefore, for the victim VM, not

only do we have the completion time increase caused by migration, but we also have an

extra migration overhead due to the on-line migration process.

Similar to the off-line scenario, we place the incoming VM one after another. When a

new VM0 comes, we first try to place it into the PM that corresponds to the minimal

completion time value. If the corresponding minimal completion time PM does not have

enough resources, we would have the same two options (direct placement and migration-

based placement) as in the off-line scenario.

However, the migration constraint is different. Due to the migration overhead, the

migration constraint would be that, even with both the migration overhead and the

completion time increase, migration-based placement is still better than direct placement

in minimising the total completion time. Thus, different with the off-line scenario, the

third item of qualifications for a qualified victim VM under the on-line scenario should be

changed into: even with both the completion time increase and migration overhead, the

completion time by migration-based placement is still better than direct placement. We

want to choose the qualified victim VM with the minimal sum of migration overhead and

completion time increase. Besides, we could have similar special circumstances as in the

off-line VM placement; constrained by the literature, here we do not discuss them further.

Besides, for on-line VM placement, we are not aware of the information of the

incoming VMs, such as how many total VMs will arrive. Thus, when all the PMs are so

fully loaded that even migration is not helpful to accept more VMs, we need to stop the

placement process for this PMs set. This requires us to reserve a buffer to determine when

we should directly reject the new VM request. In our evaluation, we set the size of a buffer

to 10. That is to say that if 10 consecutive VMs are rejected, then we conclude the VM

placement.

Algorithm 3 Multiple-hop VM placement

1: for each PM in the set do
2: Sort PMs set increasingly by completion time of the VM to be placed
3: Select the best PMj with the minimal completion time for the incoming VM
4:if Cj is sufficient for VMi then
5: Place the VM in PMj

6: for all the VMs running on the best PM do
7: Select the best victim VM by comparing migration gain
8: Recursively call this algorithm to place the best victim VM among PM [ P2 PMj
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4. A hybrid scheme

Obviously, the major disadvantage of the on-line scenario is the migration delay, which

will cause much overhead in the total completion time. However, the off-line scenario

does not have such a drawback, because we know all the VMs’ information beforehand,

and they could all be placed at one time together. Thus, there is no migration overhead in

the off-line scenario. This advantage of off-line scenario leads to the intuition that we

could adopt a hybrid scheme that integrates the off-line scheme into the on-line scenario.

In fact, we could reserve a batch to store the on-line VM requests. In that case, the

reserved VMs’ information is known to us. Therefore, we could place the VMs in a batch

according to the off-line scenario, in which case, we could avoid the migration overhead.

However, the batch will introduce a waiting time overhead, since we need to wait for

the VMs in the batch to reach a certain number, and then place them together. Therefore,

this waiting overhead will also increase the total completion time, although we avoid the

migration overhead. Therefore, there is a tradeoff between the migration overhead and the

waiting overhead. Due to this, there are two batch models: user-oriented and provider-

oriented batch models.

4.1 Provider-oriented batch model

The provider-oriented batch model is that we place all the VMs in the batch until it is full,

as shown in Figure 4. By this, the advantage of the batch could be fully utilised, and the

migration overhead could be largely reduced, which is beneficial to the cloud providers.

An extreme case is that, the batch size is very large, and we place the VMs together until

the total resource demands of VMs are up to the total capacity of PMs. In that case, it is

equivalent to the off-line scenario.

However, this waiting overhead will also largely increase the total completion time,

since we have to wait for the batch to be full, and then, place the VMs together. Obviously,

the larger the batch is, the larger the waiting overhead will cost. Under the on-line

scenario, we do not know when a VM will arrive, and how long it will take to fulfil the

batch. If the batch waiting overhead is too large, users will suffer the degradation of their

applications’ performance. Hence, we have another user-oriented batch model.

4.2 User-oriented batch model

The performance of users’ applications needs to be guaranteed by the cloud provider,

according to service-level agreement (SLA). Therefore, the batch overhead cannot be so

large as to harm the user’s applications’ performance requirements. The user-oriented

batch model is that, after waiting for a certain period of time, we place the VMs in the

batch no matter whether the batch is full or not, as shown in Figure 5. In that case, the

applications’ performance could be guaranteed as the users’ requirements.

PM1 PMN

PMs

Placement On-line
VMs flow

Batch is full

Figure 4. Provider-oriented batch.
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4.3 Qualitative analysis on batch size

In the previous sections, we have discussed the implementation method of the batch, i.e.

provider-oriented batch and user-oriented batch. In this section, we give a qualitative

analysis on the batch size. According to [5], the time consumption of VM migrations

usually varies from 30 to 150 s, due to the transmission time of the memory (usually

several GBs). Therefore, the bandwidth has significant influence on the migration time. On

the other hand, the acceptable waiting time of the user greatly depends on the application.

For example, web services [6] generally respond in less than 1 s. In this case, migration-

based placement is not practical, i.e. the batch is useless and we should place the VMs as

soon as possible. Therefore, the batch model should be applied to user applications which

takes a relatively long time (e.g. several hours or more).

For most cases, we can determine the batch size through a utility model. The user’s

utility monotonously decreases with respect to the batch size, while the provider’s utility

monotonously increases with respect to the batch size. The objective is to maximise the

summation of the user’s utility and the provider’s utility. Moreover, the utility function

should exhibit some certain properties, as shown in Figure 6. According to the experience

of daily life, the utility function of the user should have three stages as follows. (1) In the

first stage, the utility is high and decreases slowly, since the user is not sensitive to a small

waiting time. For example, the waiting time of 2 and 10ms does not make too much

difference, since people are not aware of such a small time duration. (2) Generally

speaking, the user has an expected maximal waiting time (no one wants to wait too long).

Once this time is approaching, the utility decreases quickly in the second stage. (3) In the

third stage, the user has been waiting for too long. The utility is very low, such that waiting

for an addition time does not greatly turn down the utility. Meanwhile, the utility function

of the provider is very simple, since it should have a diminishing return property. The

utility gain should decrease with respect to the batch size.

The two utility functions should be designed according to real systems and

applications, i.e. different systems and applications should have different function

formats, although they should have the properties discussed above. If the user’s utility

dominates (usually in some real-time applications and user interactive applications), then a

small batch size is desired. If the provider’s utility dominates (usually in some large

PM1 PMN

PMs
After a period of time

Placement On-line
VMs flow

Batch is not full

Figure 5. User-oriented batch.

second
stage

Batch Size

U
til

ity

first
stage

third
stage

Batch Size

U
til

ity

Figure 6. The utility functions of the user (left) and the provider (right).
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computation applications), then a large batch size is desired. This tradeoff always exists in

the cloud system.

5. Performance evaluation

In this section, we evaluate our proposed MBVMP algorithms under both off-line and on-

line scenarios. We made comparisons with first-fit and best-fit algorithms. Notably, for the

off-line scenario, we adopt the first-fit-decreasing and best-fit-decreasing algorithms.[7]

In order to compare the performance of one-hop and multiple-hop migration, we conduct

extended simulation by adopting two-hop migration under off-line scenarios. As for the

on-line scenario, multiple-hop migration would largely increase the migration cost.

Therefore, we usually do not consider it as an alternative in the on-line VM placement.

5.1 Off-line MBVMP algorithm evaluation

We evaluate the performance of our off-line MBVMP algorithm under three groups of

simulations on the total completion time. We use mathematical abstraction to describe the

physical meaning of PM capacity and VM resource demand. The measuring unit of

resources is the unit slot, which could be easily interpreted to real configuration. For

instance, one unit slot for Amazon S3 could be interpreted as unit storage space for renting.

The set of each element in completion time matrix ½tij� is randomly generated.

(1) Simulation settings

. Group 1: We deploy PMs’ numbers N ¼ 100, 150 and 200. We set all PMs’

resource capacity range [150,150] and all the VMs’ resource demand range

[10,100], which conforms to the real proportional relationship.

. Group 2: We deploy all VMs’ resource demand ranges [10,50], [10,100] and

[10,150]. We set PMs’ number N ¼ 150 and all PMs’ current capacity range

[150,150].

. Group 3: We deploy all PMs’ current capacity ranges [50,150], [100,150] and

[150,150]. We set PMs’ number N ¼ 100 and all VMs’ resource demand range

[10,100].

(2) Simulations results: Results for three groups of simulations are shown in

Figures 7–9. From these figures, we can see that under all settings of the number

of PMs, our MBVMP algorithm could achieve a significantly higher total

completion time than the other two heuristic algorithms. Besides that, we could

still have the following observations:
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Figure 7. Performance comparisons of total completion time versus number of PMs.
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. In each of subfigures (a)–(c), with the increase of the number of VMs, the total

completion time increases. This is quite straightforward, since more VMs are

placed in the PMs, thus bringing more completion time.

. By comparison of (a)–(c) of Figure 7, we find that when the number of PMs

increases, the gap of the total completion time between the 250 VMs and 200

VMs increases. This is due to the fact that, when number of PMs is few, given a

250 VMs input, many VMs actually cannot be accepted. Thus, there is not much

difference between 200 VMs input and 250 VMs. However, due to the increase

of PM hosts, and thereby more resources, more VMs could be accepted into the

cloud system, and we could get an increase in total completion time. This also

applies to comparisons between Figure 9(a)–(c), due to the increase of PM’s

capacity. On the other hand, Figure 8(a)–(c) shows the opposite trend, due to

the increase of VMs’ resource demand.

5.2 On-line MBVMP algorithm evaluation

For the on-line scenario, we could not know how many VM requests would come;

therefore, we set it so that if 10 consecutive VM requests could not be placed, we then

would stop the whole VM placement process. As discussed before, migration overhead has

a positive correlation with the VM’s resource demand. For analysis simplicity without loss

of generality, we set a linear coefficient a to show that the migration overhead is a times

the VMi’s resource demand, which is ci ¼ a £ Ri. We also conducted three groups of
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simulations with settings similar to those of the off-line scenario. In the first group, we

change the number of PMs, while keeping the PMs’ capacity and migration cost

coefficient stable. In the second group, we vary the migration cost coefficient a to test its

effect on the performance. At last, we vary the variance of PMs’ capacities, while keeping

the number of PMs and cost coefficient a stable. Simulation results are presented in

Table 2. Table 2 shows that our MBVMP algorithm outperforms the best-fit and first-fit

algorithms under the on-line scenario in all settings of variables.

5.3 Comparison of one-hop and two-hop migrations

We can see from the comparison in Figures 10–12, the performance is almost comparable

between one-hop and two-hop migrations. This indicates that the two-hop migration will

not significantly improve the performance. Therefore, our one-hop MBVMP algorithm

will be good enough.

6. Related work

As a new paradigm of distributed computing, cloud computing has brought several key

advantages into our lives, such as on-demand scaling and pay-as-you-go metred service.

The development of virtualisation technologies has boosted the spread of cloud

computing. Through management by VM monitor, [8–11] the physical resources of one

PM could be sliced into multiple VMs. Such resource multiplexing largely reduces the

total cost of ownership, and significantly improves the resource utilisation. As a

contribution of virtualisation technology, VM migration [12–17] improves the resource

rearrangement on the fly.

Much work has been done regarding VM placement in the cloud computing

environment, which is a complicated task involving various constraints, including

performance,[18] availability,[19] network [20,21] and cost.[22] Economic interests are

one popular topic that shows up in research literature.[23,24] They tried to find an optimal

VM placement that could either minimise the revenue for the cloud provider, or minimise

the costs for the customers. In [24], for minimising the total economic completion time of

the cloud provider, the author introduced an SLA-based dynamic resource allocation. The

pricing mechanisms are related to the performance of quality of service (QoS) that the

cloud provider could guarantee. The better performance the cloud provider could offer, the

more revenue the cloud provider could obtain. Since different service requests have

different pricing, higher priced services can get more resource provisioning from the cloud

provider. The author also used a convex optimisation to present the optimal resource

allocation. On the contrary, the author in [23] proposed an optimal VM placement with the

objective of minimising the total renting of the users. In this paper, the author gives

another pricing mechanism, referring to two payment plans: reservation plan and on-

demand plan. Since the total resource demand is uncertain, and reservation plan has to be

decided in advance, it may not meet the future demands of the user. For that reason, the

author used the optimal solution of stochastic integer programming to give an optimal VM

placement that could minimise total renting. However, the VM placement problem in

[23,24] could achieve an optimal solution, which is not a common case. Many VM

placement issues are NP-hard, thus we need to find a good heuristic algorithm to solve the

problem, such as the first-fit and best-fit greedy algorithms used in [7].

Apart from the problems above aiming to get an optimal economic interest, network is

another constraint needing consideration in the VM placement problem. In [20], a
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network-aware VM placement is proposed. In [20], when performing VM placement, not

only are the physical resources (such as CPU and memory) considered, but the traffic

demands between different VMs are also taken into account. The author gave a heuristic

algorithm to allocate placement to satisfy both the communication demands and physical

resource restrictions. In [25], Oktopus uses the hose model to abstract the tenant’s

bandwidth request, including both virtual cluster and oversubscribed virtual clusters. The

virtual cluster provides tenants with guarantees on the network bandwidth they demand,

which, according to [26], could be interpreted as minimal guarantee requirements. In [27],

the author proposes to minimise the traffic cost through VM placement. Their objective is

to place VMs that have large communication requirements close to each other, so as to
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Figure 10. Performance comparisons of total completion time versus number of PMs.
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demand.
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reduce network capacity needs in the data centre. A quadratic-assignment formulation of

the traffic-aware placement problem is presented and solved with an approximation

algorithm. However, their algorithm did not take into account the VM migration traffic,

leading to a near complete shuffling of almost all VMs in each round. To alleviate this,

VirtualKnotter [28] minimises the continuous congestion mainly in core and aggregation

links with controllable migration traffic, which enables online VM replacement. In [29],

a distributed cloud system is studied. The authors propose a network-aware VM placement

algorithm, which considers the difference of latencies between inter-data-centre and inner-

data-centre. They developed data-centre selection algorithms for VM placement that

minimise the maximum distance between the selected data centres.

Moreover, our work is also potentially related to the process assignment problem in

both symmetric and asymmetric multiprocessing.[30] In that technology, processes can

also be migrated from one processor core to another. In the case of the non-uniform

memory access (NUMA) model, the pages on the NUMA nodes are migrated. The idea of

process migration is further applied into our VM placement strategy, where we emulate a

VM migration process for the objective of off-line VM placement.[31]

7. Conclusion

In this paper, we studied the VM placement problem, focusing on minimising the total

completion time of cloud providers under both off-line and on-line scenarios. Due to the

NP-hardness of this problem, we propose our heuristic MBVMP algorithm. In particular,

for the off-line scenario and homogeneous resource type, we compare our algorithm with

the optimal maximal matching solution, which shows a high approximation of our

algorithm with the optimal one. Furthermore, we study the hybrid scheme of integrating

off-line placement into the on-line scenario, and propose two batch models considering

users or providers separately. The simulation shows the high efficiency of our proposed

heuristic algorithms, compared to the best-fit and first-fit heuristic algorithms.
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