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Abstract—We consider the distributed channel allocation
problem in an asymmetrical opportunistic spectrum access
(OSA) system where each secondary user possibly has different
channel reward even in the same channel due to geographic
dispersion. We formulate this problem as a Gale-Shapley stable
theorem using game theory to optimize the sum reward of
all secondary users. It is challenging to achieve the stable
matching of user-channel pairs without centralized control and
prior knowledge of channel availability statistics. In this paper,
we present a novel decentralized order-optimal learning Gale-
Shapley scheme (OLGS) in which secondary users learn from
their local history data and individually adjust their behaviors
in a time-varying OSA system. The proposed scheme eliminates
collisions among secondary users by a one-to-one user-channel
matching policy. It also achieves stable spectral allocations using
learning method without assuming known channel parameters
and independent of information exchange among secondary
users. Simulation results show that the system regret of the
OLGS solution grows with time at the logarithmic order with
low complexity.

I. INTRODUCTION

Cognitive radio (CR) technology is a promising solution
to resolve the dilemma between spectrum scarcity and in-
efficient spectrum usage in licensed spectrum bands [1].
One of underlying models is the interweave paradigm (or
opportunistic spectrum access, OSA) where secondary users
(i.e., unlicensed users or cognitive users) are allowed to
access spectrum holes only when they do not interfere
with high-priority primary users (i.e., licensed users) [2]. A
lot of algorithms for opportunistic channel selection have
been published [3]-[8]. Most of them are based on two
assumptions. Firstly, existing work assumes that secondary
users have symmetrical transmission rates in accessing the
same channel [3]-[6]. Secondly, full knowledge of channel
parameters or information about other users operations is
assumed known [7]-[8]. However, these assumptions may
not be valid in a realistic asymmetrical network. Due to
geographic dispersion in proximity of different primary users,
spectral opportunities available to secondary users may be
dissimilar even in the same channel. Moreover, spectrum
holes are time-varying due to burst traffic of primary users.
Hence, it is difficult for secondary users to have complete
knowledge of channel parameters and fully sense all channels
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in a limited sensing period. Furthermore, mass information
exchange about actions among secondary users also leads to
large communication overhead in a distributed CR network.

In this paper, we study the channel allocation problem
without the above assumptions. We consider an OSA system
with the following characteristics: (1) Secondary users are
dispersed in overlay CR network and have asymmetrical
channel rewards. (2) Primary traffic statistics are not available.
(3) There is no centralized controller node and no information
exchange among secondary users. In this case, each secondary
user can only utilize their individual history decision and
local observation to independently access a channel. In order
to improve the system throughput, it is desirable to design
an intelligent and distributed cognitive spectrum sensing and
accessing policy.

In this paper, we present a novel decentralized order-
optimal learning Gale-Shapley scheme (OLGS) to achieve this
goal. The problem is formulated as a game theoretic Gale-
Shapley stable theorem due to two reasons. The first reason
is that a one-to-one matching of user-channel pairs minimizes
collisions among secondary users if at most one secondary
user gains reward from a channel. Since the Gale-Shapley
(G-S) theorem always has a stable one-to-one matching for
any preference function [9], it can avoid multi-user contention
under this interference model. The second reason is that the
G-S theorem has a unique stable matching when entries of
the preference matrix are all different [8]. Hence, the G-S
theorem is suitable to solve the spectral allocation problem in
asymmetrical networks. Besides, we exploit the order-optimal
learning rule to implement the stable matching in an unknown
random environment because it is an efficient algorithm which
achieves the logarithmic order of the regret.

Our main contributions are summarized as follows: (1) We
apply the G-S theorem to allocate channels that effectively
avoids multi-user collisions. (2) When channel rewards are not
available and information exchange is restricted, we exploit
the order-optimal learning algorithm to achieve the stable
matching. This distributed OLGS algorithm neither needs
prior knowledge of primary traffic, nor requires information
exchange about secondary actions.

The rest of this paper is organized as follows. We describe



the system model as well as the problem formulation in
Section II. We propose the distributed OLGS scheme in
section III. Simulation results are presented in Section IV.
We conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider an OSA system with N orthogonal channels
in licensed bands and M secondary users, where N > M >1.
In an asymmetrical CR network, different secondary users ex-
perience different transmission rates in the same channel due
to widespread locations and diverse channel conditions. The
above system model is more realistic than the symmetrical
channel rate assumption in some previous works.

An asymmetrical OSA scenario is illustrated in Fig. 1.
Three geographically dispersed secondary users, S1, S2, and
S3, are assumed to be in three different hierarchical areas of
three primary users labeled as P1, P2, and P3, who occupy
channel 1, 2, 3 respectively. Each value in the table denotes
the reward for a secondary user operating in a channel. If the
reward table is available, channel allocation solution becomes
straightforward. As the example shows, the optimal allocation
policy is to assign channel 2 to user S1, channel 3 to user S2,
and channel 1 to user S3. However, primary traffic information
and secondary channel quality are time-varying such that
rewards are difficult to be known in advance. Therefore, an
online learning policy is required when secondary users only
have partial channel sensing capabilities. In addition, since
the optimal centralized allocation is to exhaustively search
the maximum overall throughput in permutations P(N, M),
it is desirable to find a distributed policy that can reduce
computational complexity.

reward | Chan1 | Chan2 |[Chan3
$1 0.1 0.9 0.4
S2 0.6 0.2 0.8
S3 0.7 | 0.5 | 0.3

Fig. 1.

An asymmetrical OSA scenario

B. Problem Formulation

In our formulation, M secondary user pairs (or equivalently
M pairs of secondary transmitters and receivers) share N
primary channels. A simple channel utility (or reward) is the
ergodic capacity of a user on a channel. We denote R;,; () as
the actual reward, i.e., the normalized available transmission
rate or throughput obtained by secondary user ¢ on channel j

at time slot n.
T —Ts(n)
T

where T denotes the duration of a slot and T(n) is channel
sensing and waiting time in a slot. Sensing time is decided
by the hardware detection period. Waiting time is related
to the secondary users back-off duration that monotonically
decreases with the channel reward. Hence, a secondary user
with more channel reward has higher priority to access this
channel. The channel reward depends on the primary traffic
and interaction of secondary users. Let I;,; be the channel
idle indication where “1” is idle and “0” is busy. E;(Kj;) is
the multi-user contention indication where “1” is successful
and “0” is failed. Both I;,; and E;(K) are Bernoulli random
variables, and their probability density functions (pdfs) are
given below:

o, (Lirj ) = Oirj -0(Lin —1) + (1 = 05,5) - 6(Lir5) ()

Ri,j(n) = |- 1iyj -Ei(K;) - Ciyj (1

where 0(-) is the delta function and 6;,; is the mean idle
probability of the primary channel.

pE(K) =

J

O(Ei(K;) —

where K; indicates the number of competitive secondary
users. The expectation F;(K) is inversely proportional to
the number of competitive secondary users K;. Cj,; is the
channel capability of secondary user ¢ under i.i.d Rayleigh
fading channel j.

Ci,j:lOg(1+SNR'X) (4)

where X ~ y3 and SNR=%;.

Based on (1)-(4), the expected reward achieved by sec-
ondary user ¢ on channel j is given by

T—Ts, 0:,;-Cij
E[Ri,j]—E{[ TR J} 5)
J

The utility matrix R has M row by N column, in which
each element is the preference of a secondary user to a
channel. Since secondary users are located in widespread
areas, channel utilities of secondary users are different. This
characteristic is suitable to exploit the Gale-Shapley stable
theorem.

Rig Rip Ry N
Ry1 Rao Ry N
R= ) ) . (6)
Ry Rz Ryn

The overarching utility function is to maximize

K M
E[U) = E[ 33" Riey ()] %)
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n=1



Where 7(4) is the channel selected by secondary user i using
strategy 7. The objective function is to maximize overall
throughput of all secondary users under primary interference
restriction. If the utility matrix R is given, the optimal
centralized scheme based on the Hungarian method is to
search the maximum sum reward in collision-free permuta-
tion P(N, M). The challenges are that secondary users are
unaware of the channel-idle probability and no information
exchange is available among secondary users.
The loss of a learning strategy m can be expressed as:

K M
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where R* = maz} ; icyy) Risj is the expected maximum
overall reward. T;,; (n) is the slot number that secondary
user ¢ senses channel j. M(n) is the collision number that
is made by secondary users in M-best channels. The upper
bound of regret under any distributed policy is represented in
(8). The first term expresses performance loss for selection
of the M -worst channels, while the second term involves lost
transmission opportunities due to collisions among secondary
users in the M -best channels [10].

III. ORDER-OPTIMAL LEARNING GALE-SHAPLEY
SCHEME

To minimize multi-user collision loss, we exploit the Gale-
Shapley theorem to obtain a one-to-one stable matching
between secondary users and primary channels. Furthermore,
we adopt the order-optimal learning algorithm to implement
the stable matching without prior channel knowledge and
full sensing capabilities supported in a dynamic environment.
Without central control, back-off timers are used to implement
distributed spectral allocations. Next, we briefly describe the
Gale-Shapley theorem and the learning algorithm.

A. The Gale-Shapley Theorem

The Gale-Shapley theorem [9] is a well-known one-to-
one stable matching algorithm concerned with the problem
of college admission and marriage stability. There always
exists an iterative procedure to find a stable set of marriage.
The uniqueness is proved by induction [8] in the context of
cognitive spectral allocation problem. The convergence rate of
the Gale-Shapley algorithm can be accelerated by exploiting
multi-channel sensing capabilities.

In Fig. 2, we give an example to illuminate the Gale-
Shapley theorem. Table I shows a 3 by 5 utility matrix for
three secondary users and five channels in an OSA network.
Each element is the utility of a user-channel pair and the
value in parentheses is the back-off timer value. Fig. 2 shows
ping time from the utility matrix. Based on the Gale-Shapley
theorem, secondary users 1, 2, and 3 are allocated to channel3

(t=0.6), channel2 (¢t=0.7) and channel5 (t=0.83), respectively.

TABLE I
UTILITY MATRIX

CHI CH2 CH3 CH4 CHS5
Userl 5(0.95) 11(0.89) | 40(0.60) | 22(0.78) | 13(0.87)
User2 | 25(0.75) | 30(0.70) | 35(0.65) | 14(0.86) | 29(0.71)
User3 | 12(0.88) | 28(0.72) | 21(0.79) 4(0.96) 17(0.83)
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Fig. 2. The Gale-Shapley theorem ping time

B. Order-optimal Learning Algorithm

In a dynamic CR network, it is difficult to obtain complete
channel information and incapable to monitor all channels si-
multaneously due to hardware constraints. A learning method
is necessary to achieve the stable matching of the Gale-
Shapley theorem. The existing learning algorithms, such as
regret learning, reinforcement learning and learning automata,
can learn unknown channel parameters in a time-varying
wireless environment. To achieve the consistency and less
regret with fast convergence, we adopt a linear complex-
ity learning algorithm to estimate the reward value. The
order-optimal learning rule is simple and efficient which is
extensively applied to a tradeoff between exploration and
exploitation [5,7]. According to the finite-time analysis result,
the estimated R,y,,, () will converge to the real Ry, (j) as
step j increases as long as sample number of each channel
grows as fast as O(InT) [11].

The notations are given below:

Xy (§): number of times for which secondary user m
has successfully accessed channel n in time slot j.

Yo (4): number of times for which secondary user m
has selected channel n in time slot j.

Cimyn () capability of channel n to which secondary user
m has accessed in time slot j.

R (7): estimated channel reward of secondary user m
in channel n in time slot j.

The order-optimal learning algorithm is given below:
- Initialization: At the beginning of each time slot, each
secondary user senses every channel once.

- Loop: The secondary user chooses the channel that
maximizes the reward R, ,, (j), then updates X, (4),



Y (4) and Cy, ., () after each accessing.
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The learning algorithm can achieve the logarithmic regret
uniformly over the iteration number j without any knowledge

about the reward distribution. In [11], the expected regret of
the order-optimal learning algorithm is proved to be at most:
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The learning cost results from the time spent in sampling
inferior channels during learning true value is Ry, (j).

C. Order-optimal Learning Gale-Shapley Scheme

Now we present a joint order-optimal learning scheme
with the Gale-Shapley theorem to allocate channels in an
asymmetrical CR network. In order to realize the distributed
algorithm, we set back-off timers to implement a rejection
mechanism, which does not need information sharing in a
central node. The OLGS solution is described below.

1) Initially: Set the monotonically decreasing function
T = f(R) and calculate back-off timers in light of
f(R), t=0, Yi,n(1) =1, X (1) =1, Cpryn (1) =1, j=1.
For the secondary user m, set a(m)=0, done(m)=0,

(m=1,...,M).

For the primary channel n, set idle(n)=0, ¢(n)=0,
(n=1,...,N).

the channel utility R,,,, (1) = 1/N,Vm € M,n €
{1,...,N}.

2) At the beginning of each time slot, secondary user m
calculates and sets the back-off timer

{timer(Rpmn (j)) | m,n}(m=1,...,M;n=1,...

in light of the function T = f(R).

3) At every time ¢t when a back-off timer expires, ¢t €
{timer(Rpmn (j)) | m,n} do:
For secondary user m s.t. done(m)=0 selects channel
n¥ (t), where n} (t) is determined by:

m(t) = {n | timer(Rp.n (§)) = t}.

That is, n}, (t) is the channel that leads to an unexpired
minimal back-off timer or the residual maximal channel
reward. Ym,njn(t) (J) = Ym,n;*n (t) (]) + L

4) If idle(nk,(t))=1 and c¢(n},(t))=0, then a(m) = nk (¢),
done(m) = 13 Xm,n;‘n(t) (]) = Xm,n;‘”(t) (.7) + 1
That is, if the selected channel n}, (¢) is idle and
no collisions among secondary users on this channel,
secondary user m access channel n’ (t) and get the
channel transmission rate Cy, 5= (1)(7)-

n

V)

5) If idle(n},(t))=0 or c(nk,(t))=1, then done(m)=0, ex-

clude n}, (t) from the channel set N, then go to step
(3).
That is, if the selected channel n, (¢) is busy or has
collision among secondary users over this channel,
secondary user m excludes n, (¢) from the channel set
N then go to step (3) to update n} (¢) until finding
suitable channel.

6) At the end of the jth slot, secondary user m updates

o () = | (G220 +

2lnj
Rm;n (]) = Y (])

J
as : Copn (5) =D Conon (£)/4-
t=1
Secondary user updates each channel utility related
with successful access probability and average channel
capability.
7) Go to step (3) and repeat the process.

IV. SIMULATION RESULTS

We conduct simulation experiments with MATLAB soft-
ware to evaluate the system throughput and the convergence
rate of the OLGS scheme. The simulation results are shown
in Fig. 3 and 4. Several algorithms are compared: optimal,
random, order-optimal learning, and the OLGS algorithm. The
optimal algorithm serves as an upper bound of the achievable
throughput where a central controller implements exhaustive
searching under ideal assumptions of known system parame-
ters. The random allocation scheme is that secondary users ac-
cess an arbitrary channel with equal probability. In the order-
optimal algorithm, secondary users learn unknown channel
parameters but randomly access a channel after sensing. The
OLGS algorithm is different from other schemes in which
it achieves a stable one-to-one user-channel matching with a
collision-free mechanism among secondary users.

A. Performance of the Asymmetrical OSA System

We consider an asymmetrical OSA system where different
secondary users have diverse channel utilities. The system
parameters are randomly set as follows: M=3, N=5,

0.8284 0.0253 0.7813 0.9182 0.9106
0.9161 0.3270 0.4243 0.8545 0.6396
0.0076 0.1803 0.8674 0.8286 0.4646

R =

Simulation results are averaged over 10° independent trials.

The optimal channel allocation pairs are: userl-to-
channel4, user2-to-channell and user3-to-channel3. The over-
all throughput of the optimal scheme is about 2.70. Fig.
3 compares the system throughput of various algorithms
and shows that the overall throughput of the order-optimal
learning scheme (2.39) is more than that of the random
selection approach (1.57), but less than that of the OLGS
algorithm (2.62). The reason is that the single learning
approach explores more idle opportunities than the random
method but it cannot effectively avoid multi-user collisions.



Comparison in asymmetrical OSA system
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Fig. 3. Comparison of normalized system throughput of various schemes
in an asymmetrical OSA system

In contrast, the OLGS algorithm exploits back-off timers to
implement a one-to-one stable matching so that multi-user
collision loss is negligible. Since the best channel of each
secondary user is different in the case, all secondary users
are spread over different channels with the OLGS algorithm.
The proposed algorithm considerably outperforms the random
allocation approach and the learning algorithm. The proposed
OLGS algorithm gradually approaches the optimal allocation
through the learning process. Fig. 3 shows that the throughput
under the OLGS algorithm is improved owing to the one-to-
one stable matching in an asymmetrical OSA system.

B. The Convergence Rate

To measure the convergence rate of the OLGS scheme,
channel reward matrix is randomly generated as follows:

0.6892 0.9845 0.2898 0.8752 0.2197
0.7371 0.7208 0.0156 0.4974 0.6887
0.5814 0.6440 0.5479 0.8395 0.4394

R:

The stable matching policy based on the Gale-Shapley
scheme is: userl-to-channel2, user2-to-channell and user3-
to-channel4. Fig. 4 shows that the achievable throughput of
the OLGS algorithm converges to the stabilization in about 45
iterations. Each secondary user selects its own best channel
at the end and the average throughput converges to its largest
channel reward.

In Table II, we compare the expected ratio to optimal rate
and the convergence time of several algorithms. Note that
the convergence time of the optimal scheme is O(N?3). The
OLGS algorithm not only converges to the stable matching
status as quickly as the order-optimal learning algorithm but
also achieves a higher throughput.

V. CONCLUSION

In this paper, we studied the problem of distributed channel
allocations in a time-varying asymmetrical OSA system,
in which secondary users have limited sensing capabilities
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Fig. 4. Evolution of the throughput of each secondary user

TABLE II
PROTOCOLS COMPARISON
Algorithm Type Ratio to Convergence
optimal rate time(slots)
Optimal centralized 1 O(N?)
Random distributed | ~ 0.58 (simulation)
Order-optimal | distributed | ~ 0.80 (simulation) O(logN)
OLGS distributed | ~ 0.95 (simulation) O(logN)

and lack prior channel information. We presented an order-
optimal learning Gale-Shapley scheme in which secondary
users learn from their individual history data and adapt
to a dynamic network. The Gale-Shapley spectrum sharing
provides a one-to-one user-channel matching policy to avoid
collisions among secondary users. The order-optimal learning
algorithm implements the stable spectral matching without
prior channel knowledge and mass information exchange.
Simulation results demonstrated that about 95% of the optimal
rate is achieved by the stable matching for collision-free
spatio-spectral reuse in an asymmetrical network. The OLGS
scheme improves system throughput with fast convergence
and achieves logarithmic regret over time. The proposed
solution is completely distributed and it provides cognitive
medium access without requiring full capabilities of sensing
all channels. Furthermore, it does not require the powerful
signal processing hardware and the incurred computation cost
is low.
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