
Dynamic Cache Cleaning on Android

Sean Finley, Xiaojiang Du

Department of Computer and Information Sciences

Temple University

Philadelphia, PA 19122, USA

Email: {s.finley, dux}@temple.edu

Abstract—Android developers cache data to improve the

performance of their applications. Caching is the technique of

transparently storing data such that future requests can be

accessed more quickly. At times when a mobile device is not

under heavy use the cached data, including sensitive data, can

remain on the device for an extensive period of time. This poses a

security risk, especially when developers do not take the

necessary security measures to protect their users' sensitive

information. While there does exist ways to clear application

caches built within the Android operating system and third-party

applications, these approaches require the user to manually

perform these tasks. This paper presents a dynamic cache cleaner

that more aggressively pushes out unused cache data. We also

present other possible solutions to more effectively manage the

cache.

Keywords—Android, cache, performance, security, memory

I. INTRODUCTION

As smart phone and tablet capabilities continue to expand,

society's dependence on them is rapidly growing. Businesses

are commonly converting their computer applications to work

on mobile platforms like iOS, Android and Windows Mobile

[1]. Some organizations go as far as relying on mobile

technology to conduct day-to-day tasks. However, as the

number of users grows and the capabilities of these devices

continue to expand, so do the inherent risks attached [9]. Many

security researchers expected major breaches in security and

privacy through the vulnerabilities of mobile devices [14]. The

use of these devices to email, make online purchases with

credit cards, and the possibility of a lost or stolen device can

leave sensitive data in the wrong hands [7]. This paper uses

the Android operating system to demonstrate privacy risks

within mobile applications and their caching techniques.

While the Android API offers security measures for

application developers to implement into their code, it does

not guarantee that developers will follow safe programming

practices. Furthermore, the question is raised as to whether the

application developers should hold responsibility over users'

privacy.

Caching is a mechanism for transparently storing data such

that future requests can be accessed more efficiently. Any

future requests for the data will be satisfied by a quick query

within the application's cache storage partition, eliminating the

need to open a network connection and access a web server or

any other distant entity to fulfill the request. Temporarily

storing data into its local cache can greatly improve the

performance of an Android application by avoiding redundant

downloading of recently requested information.

While the benefits of caching are obvious, hindrances an

improperly managed cache can have on a device’s

performance, memory, and even security do exist. The

Android operating system may delete files from application

caches when the device is low on internal storage space;

however, it is the responsibility of the application developers

to maintain their application’s cached files. Android’s

development website suggests to limiting the space consumed

by the cache to roughly 1MB [8]. Unfortunately, these

practices are not always followed. One can go into their

Android mobile device, view the amount of space their

applications are hoarding for their cached files, and discover

that nearly all of their applications are well above this

recommended amount – Note that some heavier applications

such as a web browser are expected to exceed the

recommended storage capacity for cached files due to the

frequency in use and versatility of the application.

The internal storage space of mobile devices, though

continually growing, does not compare to their desktop or

even laptop counterparts. Therefore, this internal storage is

scarce and expensive real-estate. Additionally, when cached

files begin to accumulate and clog the limited available space

within the device, it negatively affects the device’s

performance.

II. THREAT MODEL

Mobile devices are beginning to face many of the same

security threats that plague conventional desktop and laptop

computers. Since the first virus to target mobile devices in

2004 [2], the rate at which is targeting mobile devices, more

specifically Android devices, has grown astronomically;

especially in the last few years, due to Android’s rise in

popularity and security flaws. Figure 1 displays the number of

new malware targeting Android devices by quarter in 2010

and 2011.

The seemingly endless amount of applications being

developed for the Android platform all but guarantees the

occurrence of malicious or vulnerable applications from

reaching the market. In a study of Android application

security, researchers at Pennsylvania State University [12]

found that “Many developers fail to securely use Android

APIs. These failures generally fall into the classification of

insufficient protection of privacy sensitive information.”

Android’s open source framework leaves it vulnerable to

typical mobile device attacks. Attacks through cellular

networks, USB, the internet, Bluetooth, and other vectors

expose user private information [13]. Their ability to connect

to 3G and now 4G mobile networks and access the internet

through WiFi opens an often times unsecure avenue of

approach for hackers who plan to steal users’ sensitive

information and strip them of their privacy. A 2009 survey

conducted by AdMob, a mobile advertising researcher,

indicates that mobile device users were greatly raised the use

of WiFi hotspots [11]. When connected to unencrypted

networks, these devices are left vulnerable to man-in-the-

middle attacks. A 2011 report by PCWorld stated that “even

remote access to your phone to harvest cached data is now

becoming possible” [5].

Andrew Hoog, chief information officer of viaForensics, a

digital security firm that focuses on computer and mobile

forensics, addressed the risk of caching sensitive data on a

mobile device in an interview for Eric Huber’s “A Fistful of

Dongles” blog, “A growing part of our business is performing

testing and analysis for corporations who are trying to mitigate

the risks introduced by mobile devices. And the risks are

considerable. On the obvious side, an enormous amount of

corporate data is cached on mobile devices and is outside the

control of the IT department. The data can easily end up on

personal computers or even eBay/Craigslist.” [4]

Fig. 1: Android Malware by Quarter [2]

III. RELATED WORK

There exists some cache cleaners in Google’s Play Store.

These applications simplify the process for a user to clear

application caches. Generally, these cache cleaners display a

list of applications that are currently storing cached data and

how much space these caches are consuming on the mobile

device’s internal storage. Using these ‘one-stop-shops’ to clear

application caches can be done in one of two ways: clearing a

single applications cache, or using a single tap on the screen to

remove all cached data from all applications[10].

Albeit this type of model for a cache cleaner does make it

easy for a user to more quickly free up some memory than

using Android application manager, it does nothing without

user interaction. While the Android operating system purges

old cached files when additional internal memory is required,

stale and potentially private cached files could remain on a

device that experiences limited use; despite having a primitive

cache cleaner that doesn’t manage the device’s cache without

user interaction.

In an early 2012 article, techShout, a site known for

providing critical reviews on the latest in technology,

characterizes the seven best cache cleaners meant to speed up

a device’s performance by clearing redundant data on Android

devices [6]. Just by its name alone, the application topping off

the list, 1Tap Cache Cleaner, demonstrates the necessity of

user interaction.

Asking users to perform such a task through just a single

tap of the screen may certainly not be asking for much to keep

the user’s device to maintaining smooth performance, the

average smartphone user is not familiar with how the Android

system works, let alone aware of the benefits cache clearing

has on device performance.

A few current cache cleaners, like App Cache Cleaner, do

possess potential for cache clearing without the need for the

user to do so physically [6]. However, these applications have

the user define specific intervals to remove all applications

cached data, instead of dynamically deciding an appropriate

time to remove a specific application’s cache.

IV. DYNAMIC CACHE CLEANER MODEL

The idea behind a dynamic cache cleaner is to remove stale

cached files more aggressively without the need of user

interaction. This will free up internal memory through

transparent background services and in turn result in better

device performance. Additionally, it provides more security

for the device and its user by removing potentially sensitive

files quickly and effectively.

The dynamic cache cleaner measures two things, device

idle time and application use, logging key events. This section

will discuss these measurements and how they are examined

to decide when an applications cache should be cleared.

The cache cleaning process is not a gradual one. Instead,

once the idle time of the device and an application reaches a

certain point, the application's cache is completely cleared

from the device. The equation is simple:

where S is the size of the application's cache in bytes,  being

the application's idle time, D as the device idle time in

milliseconds, and I the size of the applications cache. I allows

applications with less data cached to keep the data for a longer

period of time, while the dynamic cache cleaner is more

aggressive towards applications with larger caches. T is

calculated by the settings made by the user. Once the left

surpasses the value of T the application's cache is cleared.

A. Device Idle Time

There are a number of ways to approach tracking whether

an Android device is idle. This model tracks CPU load to

determine the usage of the device. Other methods, such as

checking whether the screen is on or off, hinders additional

dynamic components which will be touched upon later.

Measuring CPU load tolerates small tasks, such as checking

the time and reading an email or text message, allowing the

dynamic cache cleaner to believe the device is still idle when

such actions are performed. This sort of behavior leads to

more effective cache cleaning. Allowing minor tasks to

constantly reset the service’s device idle time tracker would

hinder the dynamic cache cleaner’s ability to clear any

application cache.

Fig. 2: Samsung Galaxy Tab 2 CPU Spikes Idle Over 30 Minutes

When CPU usage goes above 10% the device is considered

under use. However, as shown in Figure 2, most mobile

devices can see a spike in CPU load as high as 40% from

background services that run while the device is not in use or

when simply turning on the screen. These spikes are ignored

when surrounded by valleys lower than the minimum

threshold and the device is still thought to be idle. Once a

steady stream above 15% has been recorded, accepting

infrequent drops below this usage percentage is the device

considered being used. Additionally, acceptance of peaks

when the device is considered idle and valleys when

considered in use, prevent the cache cleaner from requiring a

high amount of CPU cycles. The process of switching from

idle to in-use and vice versa leads to considerable overhead,

while the background service required to track the device idle

time is comparable to Android’s default alarm clock

application.

B. Application Usage

Figure 3 demonstrates the process the dynamic cache

cleaner would follow regarding application usage and when to

clear its cache. The idea is simple. Once an application that

has cached files is terminated, the dynamic cache cleaner logs

the event. At this point one of two things can happen, the

application can be reopened, flagging the application and

preventing its cache from being cleared, or the applications

expiration date can pass, at which point the dynamic cache

cleaner will clear the application's cache.

The quantum of time an application can go unused before

clearing the cache depends on two things. First, the idle time

of the device. If the device is not idle, it will require more time

to clear an application's cache, even if the application has not

been used in a while. However, once the device goes idle, by

its CPU usage dropping below 10%, the quantum begins to

drop. A device that has been idle for eight hours or longer will

be more aggressive at removing application caches than a

device that has only been idle for an hour. Second, the amount

of memory an application's cache is using affects the amount

of time before its cache is cleared. An application with more

cached data will have smaller quantum than one using little

storage. This is because the more data stored within an

application's cache, the greater chance there is some sensitive

information stored within. Additionally, those applications

with small caches are not taking up enough memory to

negatively affect the device's performance.

V. EVALUATION

For the evaluation, tests are performed on a Samsung

Galaxy Tab 2.0 with Android 4.0 Ice Cream Sandwich, testing

device memory, performance and security. [Note: Identical

test were performed on a Samsung Galaxy Nexus smartphone

running Android 4.1 Jelly Bean with nearly identical trending

results.] Test cases include the dynamic cache cleaner services

Fig. 3: Dynamic Cache Cleaner Application Usage Flowchart

running and a control experiment where there dynamic cache

cleaner is not running on the device. Additionally, tests are

done on security by tracking a sensitive file while it is cached

by an application and determine the length of time which the

file remains on the device, only in the application’s cache and

no other directory. Each test case is begun with all application

caches cleared.

A. Memory Consumption

As mentioned previously, without any user activity to

prevent the occurrence, caching from multiple applications on

an Android device accumulates and can take up a large portion

of the device’s internal memory. While the Android operating

systems clears out stale application caches when it requires

more internal storage than available, this is not aggressive and

only clears the minimal amount to allow the requesting

process to run.

This specific model tablet comes with 4.59GB internal

storage. After initial setup of the device with stock Android

4.0 and installing popular applications from Google’s Play

Store, the device was down to 3.62GB available storage.

[Note: Applications installed include two web browsers, three

flash games, two social media, two multimedia, and three

news source applications.]

Under the control case, with the dynamic cache cleaner

installed on the device but no services running, the

applications’ caches were able to consume a big portion of the

remaining available storage. After just four hours of heavy

usage of various applications, available internal storage was

down to 2.36GB. This means that application caches were able

to collectively take up more than a gigabyte of memory.

Considering Android’s development website, which gives

guidelines for application developers to follow to ensure their

application is running as smooth as possible and with no

deficiencies to the device, recommends no more than 1MB of

cache storage per application.

The dynamic cache cleaner has little effect when the

device is under heavy use. Under similar conditions, heavy use

rotating between all tested applications, available internal

storage after four hours was 2.65GB. This is only 0.29GB less

than the control case. This small amount could possibly be a

result of the dynamic cache cleaner or just from the random

actions performed by the user. However, after setting the

control case device down and returning to the device,

regardless of length of absence, the cached storage never

drops, remaining at 1.26GB. This is not the case when the

cleaning service is running. After 24 hours (default setting) of

idle time, application caches are completely cleared from the

device.

Figure 4 displays memory consumption of a device under

heavy use for four hours then left idle for an additional ten

hours. As shown, the dynamic cache cleaner is able to keep

application caches less than that of the control case even while

the device is in use. This demonstrates the need for recording

the lack of use of specific applications. Although the device is

under heavy use, if a particular application is not used for

quite some time, its cache will be automatically cleared after

given time.

Fig. 4: Memory Consumption After 4 Hours Heavy Use.

Most notable is the effect the dynamic cache cleaner has

on the device when idle. As mentioned earlier, the device in

the control case, when idle, has no mechanism garbage

collecting stale data within the cache. In fact, the only time

garbage collecting is performed is when the device is being

used and requires additional free internal storage. This is not

the case with the dynamic cache cleaner. Even after the device

is not used, it continues to clear application caches, more

effectively at that.

Lastly, Figure 4 shows how the dynamic cache cleaner's

purpose becomes clearer when the device sits idle; to clear

unnecessary caches that are consuming internal storage,

negatively effecting performance, and potentially harboring

sensitive information.

B. Performance

The performance of the device is directly affected by the

size of application caches. When there is nothing inside an

application's cache, it requires more time to fetch information

from the web server. However, when there is too much

memory being used by application caches it can negatively

affect the device's overall performance.

Performance of running single threaded processes was

tested using Linpack for Android. Under both cases the results

were similar with no application's storing cached data. After

one hundred single thread tests both cases averaged 2.28

seconds. This is evidence that the dynamic cache cleaner’s

background services have no negative effect on device

performance when it is not actively removing application

caches.

The differences between the two cases are examined after

heavy use followed by idle time. This is when the dynamic

cache cleaner begins to garbage collect and clear up internal

storage. When the device allowed excessive caching from

applications it showed a negative side-effect on performance.

At 0.5GB total cache, an application with cached data

performed better than with no cache. However, at 1GB total

cache, overall device performance suffers. Average single

thread start time was up to 2.35 seconds. At 1.25GB it was up

to 2.52 seconds. Continuing this trend, at 1.83GB total cache

on the tablet, which was the max we could reach due to

Android's own cache cleaning mechanism, to run a single

thread took 3.09 seconds.

When the device was under heavy use and the dynamic

cache cleaner service running, similar results were achieve.

However, continuing the trend the benefits were displayed

after the device went unused after the period of heavy use.

After cleaning some caches, results began to decrease until all

application cache memory was cleared, at which point it was

back to 2.28 seconds for starting a single threaded process.

C. Security

Device integrity can be aided with the dynamic cache

cleaner's services. When sensitive information is cached by an

application, which is never a good programming practice,

without the cleaning service it has the potential to remain on

the device for a considerable length of time, even days. To test

the effects of the dynamic cache cleaner, an application was

created whose only function was to cache information input by

the user. Under the control experiment this file was able to

remain on the device until the operating system cleared it

during garbage collection to free requested internal storage.

Because Android uses a least-recently-used algorithm, this file

would only be removed after all older cached files were

removed first. Under ideal settings, where the sensitive file is

the first file cached, then the device is run under heavy use,

this file was removed in little as 2 hours 43 minutes. Similar

results occur while the cleaner is running. Once again, as the

device continues to sit idle with the sensitive file on the

device, with no dynamic cleaning mechanism running it may

and will remain on the device until the user manually clears

the application's cache. With the dynamic cache cleaner, this

file will remain on the device no longer than 24 hours of idle

time as long as the device remains powered.

VI. CONCLUSION

While the benefits from caching with respect to device
performance are apparent, excessive caching can lead to
unreasonably high memory consumption. This in turn has a
negative impact on device performance. In addition, poor
programming practices may lead to caching of sensitive
information. Under certain circumstances, where the
application itself or the Android operating system are not
aggressive enough to clear out such a file, it has potential to
remain on the device for a great length of time. Mobile device
caches are becoming victims of malicious hackers and any
sensitive information within an application’s cache is
vulnerable. The dynamic cache cleaner is set to help resolve
these issues by more aggressively, and in turn more effectively,
garbage collecting stale cached files.

ACKNOWLEDGMENT

This work was supported in part by the US National

Science Foundation under grants CNS-0963578, CNS-

1022552, and CNS-1065444.

REFERENCES

[1] Google. Android – an open handset alliance project.

http://code.google.com/android/.2008.

[2] D.-H. Shih, B. Lin, H.-S. Chiang, and M.-H. Shih, “Security aspects of
mobile phone virus: a critical survey,” Proceeding USENIXATC’10
Proceedings of the 2010 USENIX conference on USENIX annual
technical conference, 2008.

[3] Rao, Leena. “McAfee: Nearly All New Mobile Malware in Q3 Targeted
at Android Phones”. 2011. TechCrunch.
http://techcrunch.com/2011/11/20/mcafee-nearly-all-new-mobile-
malware-in-q3-targeted-at-android-phones-up-37-percent/

[4] Huber, Eric. “AfoD Blog With Andrew Hoog on Mobile Device
Security and Forensics”. ViaForensics. 2011.
https://viaforensics.com/mobile-security-category/afod-blog-andrew-
hoog-mobile-device-security-forensics.html

[5] Geuss, Megan. “App Makers May Be Exposing Your Sensitive Data to
Hackers. PCWorld. 2011.
http://www.pcworld.com/article/237553/app_makers_may_be_exposing
_your_sensitive_data_to_hackers.html

[6] “7 Best Android Cache Cleaner Apps”. TechShout. 2012.
www.techshout.com/features/2012/08/best-android-cache-cleaner-apps/

[7] Emm, D. 2006. Mobile malware – new avenues. Network Security,
2006(11), 4-6.

[8] “Storage Options”. Android Dev Site. 2012.
http://developer.android.com/guide/topics/data/data-
storage.html#filesIntern

[9] Landman, Max. “Managing Smartphone Security Risks.” Information
Security Curriculum Conference. 2010.

[10] “Cache Cleaner – Android App Review.” AndroidAppdiction. 2011.
http://www.androidappdictions.com/archives/415

[11] Aggarwal, Mayank and Troy Vennon. “Study of MITM Attacks Against
Smartphone Devies .” SMobile Systems. 2009.
http://threatcenter.smobilesystems.com/wp-
content/uploads/2009/11/MIMT-Whitepaper031.pdf

[12] Enck W, Octeau D, McDaniel P and Chaudhuri S. “A Study of Adroid
Application Security”. Proceedings of the 20th USENIX Conference on
Security. 2011.

[13] Shabtai A, Fledel Y, Kanonov U, Elovici Y, Dolev S and Glezer C.
“Google Android: A Comprehensive Security Assessment”. IEEE
Security and Privacy. 2010.

[14] Becher, Michael et al. “Mobile Security Catching Up? Revealing the
Nuts and Bolts of the Security of Mobile Devices.” IEEE Symposium on
Security and Privacy. 2011.

