
This article was downloaded by:[Florida Atlantic University]
[Florida Atlantic University]

On: 23 July 2007
Access Details: [subscription number 769425829]
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

International Journal of Parallel,
Emergent and Distributed Systems
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713729127

A hybrid searching scheme in unstructured P2P
networks

Online Publication Date: 01 January 2007
To cite this Article: Li, Xiuqi and Wu, Jie , (2007) 'A hybrid searching scheme in
unstructured P2P networks', International Journal of Parallel, Emergent and
Distributed Systems, 22:1, 15 - 38
To link to this article: DOI: 10.1080/17445760601029412
URL: http://dx.doi.org/10.1080/17445760601029412

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

© Taylor and Francis 2007

http://www.informaworld.com/smpp/title~content=t713729127
http://dx.doi.org/10.1080/17445760601029412
http://www.informaworld.com/terms-and-conditions-of-access.pdf

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

A hybrid searching scheme in unstructured P2P networks

XIUQI LI* and JIE WU†

Department of Computer Science and Engineering, Florida Atlantic University, Boca Raton, FL 33431,
USA

(Received 9 June 2006; in final form 26 August 2006)

The existing searching schemes in peer-to-peer (P2P) networks are either forwarding-based or non-
forwarding based. In forwarding-based schemes, queries are forwarded from the querying source to the
query destination nodes. These schemes offer low state maintenance. However, querying sources do not
entirely have control over query processing. In non-forwarding based methods, queries are not forwarded
and the querying source directly probes its neighbors for the desired files. Non-forwarding searching
provides querying sources flexible control over the searching process at the cost of high state
maintenance. In this paper, we seek to combine the powers of both forwarding and non-forwarding
searching schemes. We propose an approach where the querying source directly probes its own extended
neighbors and forwards the query to a subset of its extended neighbors and guides these neighbors to
probe their own extended neighbors on its behalf. Our approach can adapt query processing to the
popularity of the sought files without having to maintain a large set of neighbors because its neighbors’
neighbors are also in the searching scope due to the 1-hop forwarding inherent in our approach. It
achieves a higher query efficiency than the forwarding scheme and a better success rate than the non-
forwarding approach. To the best of our knowledge, the work in this paper is the first one to combine
forwarding and non-forwarding P2P searching schemes. Experimental results demonstrate the
effectiveness of our approach.

Keywords: Hybrid; Peer-to-peer networks; Unstructured P2P; Searching scheme

1. Introduction

Peer-to-peer (P2P) networks have been widely used for information sharing. In such systems,

all nodes play equal roles and the need of expensive servers is eliminated. P2P networks are

overlay networks, where each overlay link is actually a sequence of links in the underlying

network. P2P networks are self-organized, distributed and decentralized. In addition, they

can gather and harness the tremendous computation and storage resources on computers in

the entire network. P2P networks can be classified as unstructured, loosely structured and

highly structured based on the control over data location and network topology [1], as shown

in figure 1. In this paper, we are concerned with unstructured P2P networks because they are

The International Journal of Parallel, Emergent and Distributed Systems

ISSN 1744-5760 print/ISSN 1744-5779 online q 2007 Taylor & Francis

http://www.tandf.co.uk/journals

DOI: 10.1080/17445760601029412

*Corresponding author. Email: xli@cse.fau.edu
†Email: jie@cse.fau.edu

The International Journal of Parallel, Emergent and Distributed Systems,
Vol. 22, No. 1, February 2007, 15–38

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

the most widely used systems in practice. In such systems, no rule exists that defines where

data is stored and the network topology is arbitrary.

Searching is one of the most important operations in P2P networks. Figure 2 illustrates the

classification of existing P2P searching techniques. Most of them are based on forwarding

[1]. In such schemes, a query is forwarded on the overlay from the querying source toward

the querying destinations where the desired data items are located. The query forwarding

stops when the termination condition is satisfied. Forwarding schemes offer low state

maintenance. Each node only needs to keep a small number of neighbors. However, the

querying source has no control over query processing. Once the query is forwarded, the

querying source has no influence on the number of nodes that receive the query and in which

order these nodes receive the query. Too many nodes are searched for popular data items

while not enough nodes are examined for rare ones. Therefore, the forwarding-based

approach does not offer query flexibility and has low query efficiency.

Non-forwarding schemes were proposed in Refs. [2,3]. In these approaches, queries are

not forwarded. Instead, the querying source directly probes its neighbors for the data items it

desires. Thus the querying source has full control over query processing. The extent of a

search is determined by the querying source. For popular items, only a small number of nodes

need to be searched. For rare items, a large number of nodes are queried. No resource is

wasted to search for popular items. However, to find rare items, each node has to maintain

(dynamically recruit) a large number of living neighbors because it relies solely on its own

Figure 1. P2P network classification.

Figure 2. P2P search classification.

X. Li and J. Wu16

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

neighbors for finding a data item. The system has to either carry a large overhead to keep a

large number of neighbors alive or leaves queries unsatisfied with a low state maintenance

overhead because the number of living neighbors that a node is aware of is not enough for

finding rare items.

In this paper, we seek to combine these two schemes to get their advantages while

lowering their disadvantages. Our goals are to advocate the integration of both schemes, to

explore different methods for integration, and to evaluate the integrated schemes. We propose

an approach that is a unification of direct query probing and guided 1-hop forwarding. Given

a query, the querying source directly probes its own extended neighbors for the desired files

and forwards the query to a selected number of neighbors. These neighbors will probe their

own extended neighbors on behalf of and under the guidance of the querying source and will

not forward the query further. When the query termination condition is satisfied, the querying

source terminates its own probing and the probing of its neighbors.

The main contributions of this paper are the following:

. We identify the necessity to integrate both the forwarding schemes and non-forwarding

schemes into one approach.

. We devise a hybrid approach that combines both the forwarding and non-forwarding

schemes. This hybrid approach achieves query flexibility, query efficiency and query

satisfaction without a large state maintenance overhead. To the best of our knowledge, this

work is the first one to combine both schemes.

. We investigate different design tradeoffs in integrating the forwarding and non-

forwarding approaches. These choices include constant integration and adaptive

integration. We point out their pros and cons and offer some practical advice in applying

them to real world systems.

. We put forward two new policies for recruiting new neighbors, called Most Files Shared

in Neighborhood (MFSN) and Most Query Results in Neighborhood (MQRN). The nodes

with more files and more past query results in its neighborhood are recruited first.

. We evaluate our hybrid approach against both the forwarding schemes and non-

forwarding schemes and demonstrate the performance improvement in our hybrid

approach through simulations.

This paper is organized as follows. In Section 2, the forwarding and non-forwarding

searching schemes in unstructured P2P networks are reviewed. In Section 3, the proposed

hybrid approach is overviewed and contrasted with the forwarding and non-forwarding

schemes. In Section 4, the details about the hybrid approach, such as action queue (AQ)

computation, different integration design choices including constant integration and adaptive

integration, and state maintenance are discussed. In Section 5, the experimental setup and

results are described. At the end, our work is summarized and a future plan is identified.

2. Related work

Most searching schemes in unstructured P2P networks are forwarding-based and are

different variations of flooding. They can be classified as deterministic or probabilistic [1]. In

a deterministic approach, each node forwards a query to a deterministic number of neighbors

Hybrid P2P search 17

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

when it receives a query. The iterative deepening [4] and local indices [4] belong to this

category. In a probabilistic approach, each node that receives a query forwards that query to a

subset of its neighbors randomly, probabilistically, or based on ranking. This category

includes k-walker random walk [5], modified random BFS [6], directed BFS [4], adaptive

probabilistic search [7], dominating set based search [8], RNG-based search [9], GES [10],

scalable query routing (SQR) [11], DiCAS [12], the approaches in Refs. [13,14].

Forwarding schemes in unstructured P2Ps can also be classified as blind search or

informed search [1]. In blind searches, such as k-walker random walk and modified random

BFS, nodes do not keep any information about the data location. In informed searches, for

example, directed BFS and SQR, nodes store some hints that facilitate the search. The

directed BFS utilizes simple hints while SQR takes advantage of complicated hints.

Forwarding schemes can also be classified as regular-grained (e.g. SQR) or coarse-grained

(e.g. dominating set based search and RNG-based search) based on whether some nodes in

the network are shielded from the query forwarding.

In contrast, there are only two non-forwarding schemes for searching unstructured P2Ps in

the research literature. The non-forwarding concept was first proposed in GUESS [2]. In this

approach, each node fully controls the entire process of its own queries. Each node directly

probes its own neighbors in a sequential order until the query is satisfied or until all neighbors

have been probed. The query fails in the latter case. Each node uses a link cache to keep the

information about neighbors, which includes the IP, the time stamp, the number of files

shared, and the number of results from the most recent query. There is one entry for each

neighbor in the link cache. These link cache entries are refreshed through periodic pings. In

addition, to add new neighbors into the link cache, each node also requests that its neighbors

select a certain number of their own link cache entries and return them in the pongs during

the periodic pings.

Because of the overhead of link cache maintenance, the link cache size cannot be too large.

To accommodate this problem, when a neighbor is probed during the query processing, it

also returns some of its own link cache entries in a separate query pong message. These link

cache entries are stored in another cache, called query cache. Each entry in the query cache

has the similar content to that in the link cache. Some entries in the query cache may be

moved to the link cache. However, the entries in the query cache are not maintained.

The performance of GUESS is improved by in Ref. [3], which emphasizes the impacts of

different design choices called policies in non-forwarding schemes. The policies are

classified into five types: QueryProbe, QueryPong, PingProbe, PingPong and CacheR-

eplacement. The QueryProbe and PingProbe stipulate the order in which neighbors are

probed during the query processing and the periodic state maintenance respectively. The

QueryPong and PingPong specify the preference for selecting link cache entries in response

to a query and a periodic ping correspondingly. For each policy type, many specific policies

may be adopted. Five common policies, which include random (RAN), most recently used

(MRU), least recently used (LRU), most files shared (MFS) and most results (MR), are

proposed for these policy types. The parallel probing of k neighbors is also briefly mentioned.

It should be noted that the non-forwarding concept has been proposed for structured P2Ps

as well. In Ref. [15], a 1-hop lookup querying scheme is designed to remove the overhead of

query message forwarding in structured P2Ps. However, due to the basic topology differences

between unstructured P2Ps and structured P2Ps, the research issues related to the non-

forwarding searching for these two types of P2Ps vary dramatically.

X. Li and J. Wu18

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

3. Outline of the hybrid search

Figure 3 illustrates the differences between the three types of searching approaches,

forwarding based, non-forwarding based and hybrid. In the figure, a node’s children refer to

some or all its neighbors in the P2P overlay. Forwarding-based searching can be regarded as a

D-level tree rooted at the querying source as shown in figure 3(a). D refers to the maximum

TTL value. The querying source, denoted by a triangle, checks its local datastore and

forwards the query to its children nodes. These children, denoted by solid squares, look up

their local datastores and forward the query to their own children. This process continues

until the search terminates successfully at a leaf node that is not at Level-D or the search fails

at a leaf node that is at Level-D. It is observed that once the query is forwarded, the querying

source cannot control how the nodes on this tree process the query. Each node just needs to

maintain a small number of neighbors because nodes within D hops of the querying source

are potentially in the searching scope.

Non-forwarding based searching is shown in figure 3(b). It is a 1-level tree rooted at the

querying source. The querying source directly probes its child nodes for the desired files.

These children only search their local datastores and do not send the query further. The

querying source terminates the search when the query is satisfied or when all its neighbors

are probed. Only the querying source and its direct neighbors are involved in the processing

of a particular query. Therefore, each node must maintain a sufficient number of live

neighbors. These neighbors are dynamically recruited and updated via periodical

ping-probes and ping-pongs.

The hybrid searching is illustrated in figure 3(c). It is a 2-level tree rooted at the querying

source. The querying source directly probes the nodes at Level-1 of the tree. In the mean

time, it also forwards the query to the internal nodes at Level-1 and guides these nodes to

probe the nodes at Level-2 on its behalf. The querying source terminates the search when the

Figure 3. The three types of P2P searches: (a) forwarding based; (b) non-forwarding based; (c) hybrid.

Hybrid P2P search 19

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

query is satisfied or when all its neighbors and its neighbors’ neighbors are probed. The

maximum searching scope for a query in this approach is the 2-hop neighborhood of the

querying source.

Like the non-forwarding approach, a node in the hybrid approach maintains an extended

neighbor set and dynamically recruits and updates this neighbor set via periodic ping-probes

and ping-pongs. However, the hybrid approach can achieve the same or higher query

satisfaction with less neighbors per node. Compared to the forwarding-based approach, the

querying source in the hybrid approach can control the extent of the searching.

To combine the forwarding and non-forwarding smoothly, the hybrid search is

implemented as follows. It considers three types of actions, probing only, forwarding only,

probing and forwarding. Probing only means that the querying source probes its neighbors

and these neighbors look up their local datastores. Forwarding only means that the querying

source does not probe its neighbors but guides its neighbors to probe their own neighbors on

its behalf. Probing and forwarding means the combination of the first two actions.

When processing a query, the querying source first ranks these three types of actions if

performed on all its neighbors and organizes these actions into an action queue. Two

examples of AQs are shown in figure 4(b). The final AQ contains six actions listed in the

descending order of their ranks, probe node B1, probe node B4, probe and forward to node B3,

forward to node B4, probe and forward to node B2, and forward to node B1. The querying

source then takes actions in this queue in order. It can take actions at a constant rate of k1
actions at once, which is called constant integration. It can also take actions at a variable rate

depending on the rareness of the sought files, which is referred to as adaptive integration.

The querying source terminates the entire searching process when the query is satisfied or

when all actions in the queue have been taken.

Figure 4. An example of AQ computation: (a) the querying source A and its 2-hop neighborhood, and the file
distribution; (b) the computed AQ (the intermediate and final results).

X. Li and J. Wu20

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

The action ranking considers both the costs and gains of actions. The cost of an action is

the time (in terms of the number of overlay hops) it takes for that action to be completed. The

gain of an action is the estimated probability of that action for returning query results, which

are determined by the system policies. These policies can also be used by the neighbors of the

querying source for probing their own neighbors on behalf of the querying source .

To keep information about neighbors, each node actively maintains a link cache. There is

one entry per neighbor. These entries are periodically updated (deleting dead entries,

replacing existing entries using new entries) according to system policies. We propose two

new policies, Most Files Shared On Neighborhood (MFSN) and Most Query Results on

Neighborhood (MQRN).

4. The hybrid search

The hybrid search involves the querying source and its neighbors. The processing at these

nodes is shown in Algorithms 1 and 2. Given a query q, the querying source s first computes

the AQ based on the discussion in Section 4.1. If constant integration is adopted, s takes the

first k1 actions in AQ at the same time. k1 is a system parameter. P, F, or PF messsages are

sent to the intended neighbors according to the action types. When v receives P or PF

messages, it looks up its datastore and returns the query results if there are any. When v

receives F or PF messages, it probes its own neighbors on behalf of s with k2 neighbors per

Algorithm 1 The hybrid search at the querying source s

1: Compute the action queue AQ for the query q based on the description in Section 4.1;
2: if the integration design is constant then
3: while q is not satisfied AND AQ is not empty do
4: remove the first k1 actions from AQ and store them in the array ACTk;
5: for i ¼ 0 to k1 2 1 do
6: if ACTk½i� is ProbeOnly then
7: send P message to the intended node;
8: else if ACTk½i� is ForwardOnly then
9: send F message to the intended node;
10: add this node to the set: FWDed;
11: else
12: send PF message to the intended node;
13: add this node to the set: FWDed;
14: end if
15: end for
16: if s receives query results from a neighbor v then
17: store the query results in the array QRes;
18: if v has probed all its neighbors then
19: remove v from the set FWDed;
20: end if
21: end if
22: end while
23: else
24: call the algorithm adaptive_integration_search in Section 4.2;
25: end if
26: if q is satisfied then
27: Order each node in FWDed to stop probing on behalf of s;
28: end if

Hybrid P2P search 21

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

probe. k2 is also a system parameter. If s receives any query result from a neighbor v, s stores

that result. If adaptive integration is employed, follow the detailed algorithm in Section 4.2.

When q is satisfied, s stops its own probing and the probing performed by its neighbors on its

behalf.

4.1 Action queue computation

The AQ is computed based on the gain/cost ratios of the actions if they are performed on the

querying source’s neighbors. We intend to use the number of query results per hop as the

gain/cost ratio. The cost of an action is the time (in terms of the number of overlay hops)

taken for that action to be completed. The gain of an action is the estimated probability of that

action for returning query results. This probability is computed based on the system policy on

estimating nodes’ query-answering ability. Possible policies are RAN, MRU, most files (MF)

and most query results (MR). The AQ computation algorithm varies according to the chosen

system policy.

If the system policy is random, the AQ is a random sequence of ProbeOnly actions on all

neighbors of the querying source s followed by a random sequence of ForwardOnly actions

on those neighbors. If the system policy is MRU, the AQ is a sequence of ProbeOnly actions

on s’s neighbors, followed by a sequence of FowardOnly actions on those neighbors. Both

sequences are sorted in the descending order of the timestamp when s interacted with these

neighbors regardless of which party initiated the interation. No Probe&Forward action is

involved in these two policies to reduce the query traffic.

If the system policy is MF, the AQ is computed according to Algorithm 3. The gain/cost

ratio of a ProbeOnly action on a neighbor v, denoted by PGCRv, is computed using the

following formula. NumFv represents the gain of the action. It is the number of files on

Algorithm 2 The hybrid search at the querying source s’s neighbor v

1: if v receives a P message then
2: v checks its local datastore and returns a query result to s if the result is found;
3: else if v receives a F message then
4: v probes its own neighbors on behalf of s at the rate of k2 nodes per probe;
5: else
6: v checks its local datastore and returns a query result to s if the result is found;
7: v probes its own neighbors on behalf of s at the rate of k2 nodes per probe;
8: end if

Algorithm 3 The AQ computation at the querying source s for policies MF and MR

1: compute the gain/cost ratios of the actions ProbeOnly and ForwardOnly if performed on each neighbor v;
2: sort these actions in the descending order of their gain/cost ratios and store the result in the linked list AQ.
3: if a node v exists such that the action ForwardOnly to v precedes action Probe v Only in AQ then
4: replace the action FowardOnly to v by Probe v and Forward to v;
5: remove the action Probe v Only from AQ;
6: end if

X. Li and J. Wu22

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

node v. 2 is the cost of this action, two overlay hops.

PGCRv ¼
NumFv

2

The gain/cost ratio of a ForwardOnly action on a neighbor v, denoted by FGCRv, is

calculated according to the following formula. NBv refers to the set of neighbors of node v.

NumFu refers to the number of files on u. dv represents the degree of node v. k2 is the system

parameter mentioned earlier. The gain of this action is the total number of files on v’s

neighbors. The cost of this action is the denominator where 1 means that it takes one hop for

the querying source s to send a F message to v, 2dv=k2 represents the time taken for v to

finish probing all its neighbors at the rate of k2 nodes per probe, dv=k2 denotes the time taken

for v to return all query results found on its neighbors to s, and g refers to the penalty

weighting factor because probing and forwarding are considered together in action ranking.

FGCRv ¼

P
u[NBv

Num Fu

gð1þ 2dv=k2 þ dv=k2Þ

If the system policy is most query results, the AQ computation is similar to that of MF. The

only difference is that the number of files on node u and v are replaced by the number of

query results for the most recent query on u and v, respectively.

An example of AQ computation is shown in figure 4 and table 1. Suppose that the querying

source A, its neighbors B1, B2, B3, B4, and its neighbors’ neighbors are the same as that in

figure 4(a). The numbers next to each node refers to the number of files on that node. Assume

that the system policy for estimating nodes’ query-answering ability is MF, k2 ¼ 2, and

g ¼ 2. We first consider the ProbeOnly and ForwardOnly actions if performed on each

neighbor of A. The gain/cost ratios of these actions are illustrated in table 1. Take node B4 as

an example. The gain/cost ratio of the action Probe B4 only is 80=2 ¼ 40. The gain/cost ratio

of the action Forward to B4 only is

60 þ 100 þ 80 þ 80

2 1 þ 2£ 4
2

þ 4
2

� � 8 23:

Then we sort these actions in the descending order of their gain/cost ratios and get the

intermediate AQ as shown in figure 4(b). Because Forward to B3 only (F_B3) action appears

before Probe B3 only (P_B3) action in the intermediate AQ, they are combined into one

action Probe B3 and Forward to B3 (PF_B3). Similarly the actions F_B2 and P_B2 are

combined into the action PF_B2. The final AQ is shown in figure 4(b).

Table 1. The gain/cost ratios of ProbeOnly and ForwardOnly actions if performed on A’s neighbors.

Node ProbeOnly ForwardOnly

B1 50 8.5
B2 5 23
B3 15 40
B4 40 23

Hybrid P2P search 23

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

4.2 Integration design

We consider two ways to integrate forwarding and probing, constant integration and

adaptive integration. In constant integration, the querying source s takes actions in the AQ at

a constant speed (k1 actions each time where k1 is determined experimentally). In adaptive

integration, s adjusts its action-taking progress according to the rareness of the sought files.

The rarer, the more progressive. There are many options for adaptive integration. One simple

example is to adjust the progress according to the following formula. a denotes the number

of actions taken by s each time. a is initialized to a0 and is increased by b actions for every

NumN nodes that have been searched since last update. NumN serves as an update interval.

NumNSoFar is the total number of nodes that have been searched since the beginning

of the query processing. a0 and b will be determined experimentally. The neighbors of

the querying source s must report their probing progress to s. The hybrid search in the case

of adaptive integration is shown in Algorithm 4. The main difference is that s must initialize

a before processing a query q and update a while processing q.

a ¼ a0 þ b
NumNSoFar

NumN
cb

4.3 Query probing

Both the querying source s and its neighbors perform probing during the processing of a

query. The probing performed by s is considered together with forwarding in the AQ

computation. This subsection discusses the probing performed by s’s neighbors on its behalf

as a result of query forwarding. This probing is at the rate of k2 nodes per probe. It is guided

Algorithm 4 The adaptive_integration_search at the querying source s (called by Algorithm 1)

1: Initialize a;
2: while q is not satisfied AND AQ is not empty do
3: remove the first a actions from AQ and store them in the array ACTk;
4: for i ¼ 0 to a2 1 do
5: if ACTk½i� is ProbeOnly then
6: send P message to the intended node;
7: else if ACTk½i� is ForwardOnly then
8: send F message to the intended node;
9: add this node to the set: FWDed;
10: else
11: send PF message to the intended node;
12: add this node to the set: FWDed;
13: end if
14: end for
15: if s receives query results from a neighbor v then
16: store the query results in the array QRes;
17: if v has probed all its neighbors then
18: remove v from the set FWDed;
19: end if
20: end if
21: if the interval for updating a arrives then
22: update a accordingly;
23: end if
24: end while

X. Li and J. Wu24

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

by the same system policy for estimating nodes’ query-answering ability that was chosen in

AQ computation.

Suppose that v is a neighbor of s. If the system policy is random, v randomly chooses k2 of

its own neighbors that have not been probed and probes these neighbors concurrently. If the

system policy is MRU, v selects k2 of its own neighbors that have not been probed and have

the latest timestamps among all of its unprobed neighbors. If the system policy is MF or MR,

v chooses k2 unprobed neighbors that have the top number of files or top number of query

results for the most recent query.

4.4 The state maintenance

Like the non-forwarding based searching, each node uses a link cache to maintain

information about neighbors. However, link cache entries in the hybrid approach have

different content because a node needs to know the information about a neighbor and this

neighbor’s neighbors. Table 2 shows the data structure of the link cache entry for neighbor B

at node A in the hybrid approach. It should be noted that the TS is updated no matter which

party, A or B, initiates the interaction and what type of interaction it is.

The link cache is refreshed and updated through periodic pings. Each node periodically

selects some of its neighbors and sends Ping messages to these neighbors. These

neighbors reply with Pong messages that include the latest information about themselves

and a selected number of entries in their own link caches. The ping interval is a system

parameter. There are three types of system policies that specify how the periodic pings are

conducted. They are PingProbe policy, PingPong policy and CacheReplacement policy.

The PingProbe policy specifies the neighbor selection rule for sending Pings. The

PingPong policy is used to select neighbors to be included in the Pong when responding

to a Ping. The CacheReplacement policy determines the rule for replacing existing entries

by the new entries.

For each policy type, one of the seven specific policies may be chosen, RAN, MRU,

LRU, MFS on neighbor, most query results on neighbor (MR), MFSN and MQRN. The

RAN, MRU, LRU, MFS and MR are similar to those in the non-forwarding approach.

The MFSN and MQRN are new policies proposed in this paper. The MFSN selects the

neighbor that has the most shared files in its 1-hop neighborhood including that neighbor

itself. The MQRN chooses the neighbor that returns the most query results for the last

query, which counts the results found on that neighbor and the results found on that

neighbor’s neighbors.

Table 2. The data structure of a link cache entry at node A for neighbor B.

Notation Definition

IP The IP address of B
TS The last time when A and B interacts with each other
NumFilesP The number of files on B
NumResP The number of query results for the last query found on B
NumFilesF The total number of files on B’s neighbors
NumResF The total number of query results for the last query found on B’s neighbors

Hybrid P2P search 25

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

5. Experimental results

In this section, we describe the simulation setup, investigate the system configuration of the

hybrid search, and evaluate the performance of the hybrid approach against existing searches

in unstructured P2P networks.

5.1 Simulation setup

We created a network of NumNodes nodes. Each node’s link cache is seeded with

CacheSeedSize ¼ 5% of LinkCacheSize neighbors. Then the neighbors are dynamically

extended/updated based on the PingProbePolicy, PingPongPolicy and CacheReplacement-

Policy. In the hybrid approach, the AQ is computed based on the QueryAnswerAbilityPolicy,

which is used to estimate the ability of a neighbor for returning query results. Both the

document replication distribution and the query distribution are zipfian distributions. As

suggested in Ref. [16], we let 10 percent of the documents have around 30 percent of the total

stored copies and receive around 30 percent of total query requests.

To simulate the dynamic network, we let PctNodesChanged nodes die periodically. It is

assumed that when a node dies, another new node is born and the dead node does not return to

the system. Therefore the number of living nodes in the system remains the same. We use the

random friend seeding policy [17] to initialize the link cache of the new node. The new node

introduces itself to nodes in its link cache at probability IntroProb ¼ 0.1. Each node pings

PingInterval number of neighbors in its link cache periodically. The pinged neighbor returns

PongSize number of its own neighbors in response.

The performance measures are the average query success rate (or query unsuccess rate)

and the average number of query messages per successful query. A query is a search for a

single document based on the document ID. A query is considered successful if at least

NumDesiredResults copies of the sought document are found. Table 3 lists the major system

parameters and their default values.

5.2 State maintenance

5.2.1 Varying link cache size. Figure 5 illustrates the impact of the different link cache sizes

in networks of different scales for the hybrid approach. The network sizes are 500, 1000 and

2000 nodes. To isolate the effect of the link cache, we did not implement the query cache. As

seen in figure 5(a), the average number of query messages per query increases as the link

Table 3. The major system parameters and their default values.

Parameter Default value

NumNodes 1000
NumDesiredResults 1
PctNodesChanged 5%
LinkCacheSize 15
PingInterval 5
PongSize 5
QueryAnswerAbilityPolicy Random
CacheReplacementPolicy Random
PingProbePolicy Random
PingPongPolicy Random

X. Li and J. Wu26

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 5. Varying link cache size.

H
yb
rid

P
2
P
sea

rch
2

7

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 6. Varying ping interval; Link cache size is 15; 1000 nodes with 5% and 20% of network dynamics.

X
.
L
i
a
n
d
J.
W
u

2
8

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

cache gets larger. The query unsuccess rate drops quickly when the link cache size increases

as shown in figure 5(b). When the link cache size is more than 30, the query unsuccess rate

does not change much. Figure 5(c) explains the reason. More messages are sent to dead

neighbors when the link cache size is larger. The networks at different scales show similar

trends as the link cache size changes. These figures suggest that the appropriate values for the

link cache are in the range of 15–30. The figures also imply that the hybrid approach can

achieve a fairly good query performance with link caches alone. Each node does not have to

maintain an extra query cache.

5.2.2 Varying ping interval. Each node pings PingInterval number of nodes in its link

cache periodically. Larger PingInterval values means higher pinging frequency. Ping

interval is another important factor in state maintenance. Figure 6 shows the impact of the

different ping intervals on the query performance of the hybrid approach. The system settings

are default except the ping interval (in the range of [1,15]) and the percentage of nodes that

join or leave (5% and 20%).

Figure 6(a) and (c) indicate that when the ping interval is small (#6), as PingInterval

increases, there is an apparent increase in the query success rate and the average number of

query messages per query, and a dramatic decrease in the average number of dead query

messages per query. The change can be explained by figure 7. In the small ping interval

setup, the number of live link cache entries increases as the nodes are pinged more

frequently. Therefore there are more live candidates to search for and more queries are

satisfied.

When the ping interval is large (.6) and the pinging frequency goes up, the query success

rate and the number of query messages does not increase dramatically; the average number of

dead query messages still drops slightly. This is caused by the fact, as shown in figure 7, that

further increase in ping interval values does not bring more live cache entries. Each pinged

node pongs back some of its own link cache entries. The P2P overlay is constantly changing.

Figure 7. The number of live link cache entries with varying ping intervals. Link cache size is 15. 1000 nodes with
5% and 20% of network dynamics.

Hybrid P2P search 29

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Even if all neighbors are pinged, there may still be some dead nodes ponged back. It is also

observed that the ping interval has a larger influence on the query performance of more

dynamic networks.

5.3 Varying system policies

In this subsection, we investigate how the query performance is affected by different system

policies. There are four types of policies: query answer ability policy, cache replacement

policy, ping probe policy, and ping pong policy. To find out the real influence of a policy type

alone, when we check one policy type, we leave all other policy types to be Random. All

other system settings are default values as listed in table 3.

5.3.1 Query answer ability policy. The query answer ability policy specifies how to

estimate the likelihood of a node for answering a query. The policy may be set to one of the

four values, RAN, MRU, MFS and MR. Their impacts on the average number of query

messages and dead query messages per query, and query success rate, are shown in figure 8.

The first subfigure indicates thatMFS leads to the smallest query cost andMR has the second

smallest query cost. RAN and MRU cause about the same query cost. The last subfigure

shows that the query success rate is not heavily affected by different query answer ability

policies thoughMFS satisfies the largest number of queries. Therefore,MFS is the best value

for this policy type. MR is the second best choice.

5.3.2 Cache replacement policy. Cache replacement policy is used to decide the order in

which cache entries are replaced by new entries. It can take one of the six values, RAN, LFS,

LR, LRU, LFSN and LQRN. Figure 9 contrasts their impacts on the query performance. The

first subfigure clearly indicates that the average query cost (number of query messages per

successful query) is dramatically influenced by different cache replacement policy values.

LFS incurs the fewest average number of query messages, which is half of the costs if the

policy is RAN, LRU, and LQRN. LFSN and LR cause the second, and the third smallest

average query costs respectively. The second subfigure shows that RAN causes the most dead

messages while LRU causes the least. In the third subfigure, LR takes the first lead in query

success rate. LR, LRU and RAN satisfy the similar number of queries. LFS and LFSN have

approximately the same query success rate with LFSN’s rate being the lowest but still

practically acceptable. In conclusion, considering both the average query cost and the query

success rate, LFS is the best choice for cache replacement policy. LR is the second best

choice. These observations are consistent with the results for the query answer ability policy.

5.3.3 Ping probe policy. Ping probe policy is used for a node to determine which neighbors

in its link cache should be probed first in order to recruit new neighbors. There are six

possible policy values, RAN, MFS, MR, MRU, MQRN and MFSN. Their performances are

shown in figure 10. The first subfigure clearly shows that MFSN has the smallest average

query cost and the difference from the costs of other policy values are not trivial.MFS has the

second smallest query cost, just slightly smaller than that of MR, MRU, or MQRN. RAN

causes the highest query cost. In the third subfigure MFS has the lowest query success rate

X. Li and J. Wu30

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 8. Varying answer query ability policies (link cache size ¼ 15); 1000 nodes.

H
yb
rid

P
2
P
sea

rch
3

1

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 9. Varying cache replacement policies (link cache size ¼ 15); 1000 nodes.

X
.
L
i
a
n
d
J.
W
u

3
2

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 10. Varying ping probe policies (LC ¼ 15); 1000 nodes.

H
yb
rid

P
2
P
sea

rch
3

3

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

(lower than 0.80). RAN has the highest query success rate. The other policies satisfy about the

same number of queries. Therefore,MFSN is the best choice for ping probe policy, andMFS

is the worst choice.

5.3.4 Ping pong policy. Ping pong policy is used for a node to determine which neighbors in

its link cache should be ponged back to the pinging node as new neighbors in response to a

ping probe message. There are six possible policy values, RAN,MFS,MR,MRU,MQRN and

MFSN. Their performances are shown in figure 11. The first subfigure clearly shows that

MFS has the smallest average query cost and the difference from the costs of other policy

values are non-trivial. The second and third smallest average query cost are obtained by

choosing MFSN and MR. This result corresponds to that in the query answer ability policy.

MQRN and MRU lead to similar query costs. The average query cost for choosing RAN is

slightly higher than that ofMQRN andMRU. In the third figure, RAN earns the highest query

success rate, which is just slightly higher than the rates achieved by MFS, MR and MRU.

MFSN satisfies the least but an acceptable percentage of queries. The query success rate of

MQRN is slightly higher than MFSN and lower than MFS, MR and MRU. Taking into

consideration both the average query cost and the query success rate, the best choice for ping

pong policy is MFS, the second best is MR, and the third best is MFSN or RAN.

In summary, different choices about system policies do have a major influence on the

query performance of the entire system. Care must be taken when making these choices. The

wrong decision, such as selecting MFS as ping probe policy, can make the system perform

poorly. The simulation results show that MFS and MR is the best and the second best for

answer query ability policy and ping pong policy. LFS and LR is the best and the second best

for cache replacement policy. MFSN is the best ping probe policy.

5.4 Evaluation against existing approaches

The hybrid approach is evaluated against existing forwarding and non-forwarding schemes.

The forwarding approach is Gnutella-like flooding. All three approaches are simulated in the

network of 1000 nodes. The overlay for the forwarding approach is random graph with an

average node degree of 4. The percentage of nodes in the overlay that die/(or are born)is the

same as those in the hybrid and forwarding approach.

In the non-forwarding approach, a query source probes its neighbors according to the

QueryProbePolicy, which determines the order in which neighbors are probed. Each node’s

link cache is seeded with the same number of neighbors as the hybrid approach. Link caches

are managed based on PingProbePolicy, PingPongPolicy and CacheReplacementPolicy.

We simulated the base line non-forwarding approach, where all policies are Random.

The query cache is not implemented for the purpose of fair comparison because the hybrid

approach does not need query caches.

In the hybrid approach, the link cache size is 15, the ping interval is 5, and the pong size

is 5. Two configurations of the hybrid approach are used in the comparison, the base line

with all policies being Random, and the configuration in which the ping pong policy is MFS

and all other policies are Random.

In the non-forwarding scheme, the pong size is the same as the hybrid approach. We

simulated the base line non-forwarding with two settings of LinkCacheSize and PingInterval.

The first setting is LinkCacheSize ¼ 15 and PingInterval ¼ 5. It is for the non-forwarding to

X. Li and J. Wu34

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

Figure 11. Varying ping pong policies (LC ¼ 15); 1000 nodes.

Ping Pong Policy

N
um

be
r

of
 m

es
sa

ge
s

pe
r

su
cc

es
sf

ul
 q

ue
ry

RAN

MFS

MFSN

MQRN

MR

MRU

0

10

20

30

40

50

60

(a) Number of query messages.

Ping Pong PolicyN
um

be
r

of
 d

ea
d

m
es

sa
ge

s
pe

r
su

cc
es

sf
ul

 q
ue

ry

RAN
MFS

MFSN
MQRN

MR

MRU

0

2

4

6

8

10

12

14

16

18

(b) Number of dead query messages.

Ping Pong Policy

Q
ue

ry
 s

uc
ce

ss
 r

at
e

RAN MFS
MFSN

MQRN MR MRU

0

0.2

0.4

0.6

0.8

1

(c) Query success rate.

H
yb
rid

P
2
P
sea

rch
3

5

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

maintain the same state as the hybrid approach. The second setting is LinkCacheSize ¼ 200

and PingInterval ¼ 12. This setup is for the non-forwarding approach to achieve a

sufficiently high query success rate.

Figure 12 contrasts the performances of the forwarding, non-forwarding and the hybrid

approach. The X and Y axises are the average query cost (the average number of query

messages per successful query), and the query unsuccess rate respectively. The line for the

forwarding approach is generated by varying the maximum number of query messages per

query. The non-forwarding (base line, same state) and non-forwarding (base line, larger

state) refer to the first and second settings of link cache sizes and ping intervals.

The forwarding approach has a fixed searching extent; the query unsuccess rate increases

dramatically when the query cost is restricted. Both the hybrid approach and non-forwarding

approach have smaller unsuccess rates than the forwarding approach at the same query cost

due to query flexibility.

When the state maintenance overhead is the same (the same link cache size, ping interval

and pong size), the base line hybrid approach (represented by the circle) can achieve a

significantly higher query success rate than the base line non-forwarding approach (denoted

by the square). In fact, the percentage of unsuccessful queries in the non-forwarding scheme

is too large for practical usage. This performance difference is due to the 1-hop forwarding

inherent in the hybrid approach. With the absence of query caches, the non-forwarding

approach relies solely on nodes that are in the link cache of a query source and are alive. The

searching scope of the hybrid approach includes more living nodes: those that are in the link

caches of neighbors of a query source. It should be noted that the higher success rate of the

hybrid approach is achieved at a query cost higher than the non-forwarding approach but

lower than the forwarding approach.

The base line non-forwarding search can achieve the same query success rate as the base

line hybrid search. This scenario is illustrated in the figure as the left triangle. The average

query cost of the base line non-forwarding is even slightly smaller than the base line hybrid.

However, the improvement in the query success rate and the query cost comes with a

Figure 12. The query unsuccess rate in terms of the average query cost in three approaches.

X. Li and J. Wu36

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

dramatically higher state maintenance. Each node in this non-forwarding setting has to keep

a link cache that is thirteen times as large as that in the base line hybrid. In addition, each

node has to ping the link cache entries more than twice as frequently as a node in the base line

hybrid. In summary, the experimental results demonstrate that the hybrid approach combines

the advantages of both the forwarding and non-forwarding approaches.

6. Conclusions

In this paper, we propose a hybrid searching scheme in unstructured P2P networks. It is a

combination of probing and guided 1-hop forwarding. Given a query, the querying source

probes its neighbors and forwards the query to its neighbors. These neighbors probe their

own neighbors on behalf of and under the guidance of the querying source as a result of query

forwarding. When the query is satisfied, the querying source terminates its own probing and

the probing performed by its neighbors. To integrate the probing and forwarding smoothly,

we compute an action queue that consists of ProbeOnly, ForwardOnly and Probe&Forward

actions sorted in the descending order of their gain/cost ratios. The querying source just takes

actions in this queue at a constant rate or a variable rate that is adapted to the rareness of the

sought data. We also propose two new policies for recruiting new neighbors, Most Files

Shared on Neighborhood (MFSN) and Most Query Results on Neighborhood (MQRN).

Compared to the forwarding-based scheme, hybrid searching is more flexible. It adapts the

query processing to the popularity of sought files and does not waste resources when

searching for popular files. Therefore hybrid searching has a higher query efficiency.

Compared to the non-forwarding scheme, hybrid searching accomplishes a better query

success rate without maintaining a larger state. To the best of our knowledge, this is the first

work to combine the forwarding and non-forwarding schemes in unstructured P2P networks.

The hybrid search in this paper is applied to flat P2P overlays. When the P2P network is

very large, this could lead to a scalability problem. One solution is to designate some peers as

superpeers, each of which processes queries for other regular peers that connect to this

superpeer. All superpeers form an unstructured P2P sub-overlay. Hybrid searching can be

applied to this P2P sub-overlay. We will evaluate this approach in the future.

Acknowledgement

This work was supported in part by NSF grants ANI 0073736, CCR 0329741, CNS 0422762,

CNS 0434533, EIA 0130806 and CNS 0531410.

References

[1] Li, X. and Wu, J., 2005, Searching techniques in peer-to-peer networks. In: J. Wu (Ed.) Handbook of
Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Wireless, and Peer-to-Peer Networks (Boca Raton, FL:
CRC Press).

[2] Guess protocol specification v0.1, http://groups.yahoo.com/group/the_gdf/files/Proposals/GUESS/
guess_o1.txt.

[3] Yang, B., Vinograd, P. and Garcia-Molina, H., 2004, Evaluating guess and non-forwarding peer-to-peer search.
Proceedings of the 24th IEEE International Conference on Distributed Computing Systems (IEEE ICDCS’04).

Hybrid P2P search 37

D
ow

nl
oa

de
d

B
y:

 [F
lo

rid
a

A
tla

nt
ic

 U
ni

ve
rs

ity
] A

t:
17

:2
3

23
 J

ul
y

20
07

[4] Yang, B. and Garcia-Molina, H., 2002, Improving search in peer-to-peer networks. Proceedings of the 22nd
IEEE International Conference on Distributed Computing Systems (IEEE ICDCS’02).

[5] Lv, Q., Cao, P., Cohen, E., Li, K. and Shenker, S., 2002, Search and replication in unstructured peer-to-peer
networks. Proceedings of the 16th ACM International Conference on Supercomputing (ACM ICS’02).

[6] Kalogeraki, V., Gunopulos, D. and Zeinalipour-yazti, D., 2002, A local search mechanism for peer-to-peer
networks. Proceedings of the ACM Conference on Information and Knowledge Management (ACM CIKM’02).

[7] Tsoumakos, D. and Roussopoulos, N., 2003, Adaptive probabilistic search in peer-to-peer networks.
Proceedings of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03).

[8] Yang, C., Li, X. and Wu, J., 2005, Dominating-set-based searching in peer-to-peer networks, International
Journal of High Performance Computing and Networking, 4(3), 205–210.

[9] Escalante, O., Perez, T., Solano, J. and Stojmenovic, I., 2005, RNG-based searching and broadcasting
algorithms over internet graphs and peer-to-peer computing systems. Proceedings of the 3rd ACS/IEEE
International Conference on Computer Systems and Applications (AICCSA’05).

[10] Zhu, Y., Yang, X. and Hu, Y., 2005, Making search efficient on gnutella-like p2p systems. Proceedings of the
19th International Parallel and Distributed Processing Symposium (IPDPS’05).

[11] Kumar, A., Xu, J. and Zegura, E., 2005, Efficient and scalable query routing for unstructured peer-to-peer
networks. Proceedings of IEEE INFOCOM’05.

[12] Wang, C., Xiao, L., Liu, Y. and Zheng, P., 2004, Distributed caching and adaptive search in multilayer P2P
networks. Proceedings of the 24th International Conference on Distributed Computing Systems (ICDCS’04).

[13] Liu, Y., Xiao, L., Liu, X., Ni, L.M. and Zhang, X., 2005, Location awareness in unstructured peer-to-peer
systems, IEEE Transactions on Parallel and Distributed Systems, 16(2), 163–174, Feb..

[14] Fei, T., Tao, S., Gao, L. and Guerin, R., 2006, How to select a good alternative path in large peer-to-peer
systems. Proceedings of IEEE INFOCOM’06.

[15] Rodruigues, R., Gupta, A. and Liskov, B., 2003, One-hop lookups for peer-to-peer overlays. Proceedings of the
11th Workshop on Hot Topics in Operating Systems (HotOS’03).

[16] Tsoumakos, D. and Roussopoulos, N., 2003, A comparison of peer-to-peer search methods. Proceedings of the
International Workshop on the Web and Databases (WebDB’03).

[17] Daswani, N. and Garcia-Molina, H., 2003, Pong cache poisoning in guess, Technical report, Stanford
University.

X. Li and J. Wu38

