
Distributed System Design:

An Overview*

Jie Wu

Department of Computer and

Information Sciences

Temple University

Philadelphia, PA 19122

*Part of the materials come from Distributed System Design, CRC Press, 1999.

(Chinese Edition, China Machine Press, 2001.)

The Structure of Classnotes

 Focus

 Example

 Exercise

 Project

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Development of Computer Technology

 1950s: serial processors

 1960s: batch processing

 1970s: time-sharing

 1980s: personal computing

 1990s: parallel, network, and distributed processing

 2000s: wireless networks

 2010s: mobile and cloud computing

 A distributed system is a collection of independent

computers that appear to the users of the system as a single

computer.

 Distributed systems are "seamless": the interfaces among

functional units on the network are for the most part invisible

to the user.

System structure from the physical (a) or logical point of view (b).

A Simple Definition

Motivation

 People are distributed, information is distributed (Internet and

Intranet)

 Performance/cost

 Information exchange and resource sharing (WWW and

CSCW)

 Flexibility and extensibility

 Dependability

Two Main Stimuli

 Technological change

 User needs

Goals

 Transparency: hide the fact that its processes and resources
are physically distributed across multiple computers.

 Access

 Location

 Migration

 Replication

 Concurrency

 Failure

 Persistence

 Scalability: in three dimensions

 Size

 Geographical distance

 Administrative structure

Goals (Cont’d.)

 Heterogeneity (mobile code and mobile agent)

 Networks

 Hardware

 Operating systems and middleware

 Program languages

 Openness

 Security

 Fault Tolerance

 Concurrency

Scaling Techniques

 Latency hiding (pipelining and interleaving execution)

 Distribution (spreading parts across the system)

 Replication (caching)

Example 1: (Scaling Through Distribution)

URL searching based on hierarchical DNS name space
(partitioned into zones).

DNS name space.

Design Requirements

 Performance Issues
 Responsiveness

 Throughput

 Load Balancing

 Quality of Service
 Reliability

 Security

 Performance

 Dependability
 Correctness

 Security

 Fault tolerance

Similar and Related Concepts

 Distributed

 Network

 Parallel

 Concurrent

 Decentralized

Schroeder's Definition

 A list of symptoms of a distributed system
 Multiple processing elements (PEs)

 Interconnection hardware

 PEs fail independently

 Shared states

Focus 1: Enslow's Definition

 Distributed system = distributed hardware + distributed control +

distributed data

 A system could be classified as a distributed system if all three

categories (hardware, control, data) reach a certain degree of

decentralization.

Focus 1 (Cont’d.)

Enslow's model of distributed systems.

Hardware

 A single CPU with one control unit.

 A single CPU with multiple ALUs (arithmetic and logic

units).There is only one control unit.

 Separate specialized functional units, such as one CPU with

one floating-point co-processor.

 Multiprocessors with multiple CPUs but only one single I/O

system and one global memory.

 Multicomputers with multiple CPUs, multiple I/O systems

and local memories.

Control

 Single fixed control point. Note that physically the system
may or may not have multiple CPUs.

 Single dynamic control point. In multiple CPU cases the
controller changes from time to time among CPUs.

 A fixed master/slave structure. For example, in a system with
one CPU and one co-processor, the CPU is a fixed master and
the co-processor is a fixed slave.

 A dynamic master/slave structure. The role of master/slave is
modifiable by software.

 Multiple homogeneous control points where copies of the
same controller are used.

 Multiple heterogeneous control points where different
controllers are used.

Data

 Centralized databases with a single copy of both files and
directory.

 Distributed files with a single centralized directory and no
local directory.

 Replicated database with a copy of files and a directory at
each site.

 Partitioned database with a master that keeps a complete
duplicate copy of all files.

 Partitioned database with a master that keeps only a complete
directory.

 Partitioned database with no master file or directory.

Network Systems

 Performance scales on throughput (transaction response time

or number of transactions per second) versus load.

 Work on burst mode.

 Suitable for small transaction-oriented programs (collections

of small, quick, distributed applets).

 Handle uncoordinated processes.

Parallel Systems

 Performance scales on elapsed execution times versus

number of processors (subject to either Amdahl or Gustafson

law).

 Works on bulk mode.

 Suitable for numerical applications (such as SIMD or SPMD

vector and matrix problems).

 Deal with one single application divided into a set of

coordinated processes.

Distributed Systems

A compromise of network and parallel

systems.

Comparison

Comparison of three different systems.

Item Network sys. Distributed sys. Multiprocessors

Like a virtual

uniprocessor

No Yes Yes

Run the same operating

system

No Yes Yes

Copies of the operating

system

N copies N copies 1 copy

Means of

communication

Shared files Messages Shared files

Agreed up network

protocols?

Yes Yes No

A single run queue No Yes Yes

Well defined file

sharing

Usually no Yes Yes

Focus 2: Different Viewpoints

 Architecture viewpoint

 Interconnection network viewpoint

 Memory viewpoint

 Software viewpoint

 System viewpoint

Architecture Viewpoint

 Multiprocessor: physically shared memory structure

 Multicomputer: physically distributed memory structure.

Interconnection Network Viewpoint

 static (point-to-point) vs. dynamics (ones with switches).

 bus-based (Fast Ethernet) vs. switch-based (routed instead of

broadcast).

Interconnection Network Viewpoint (Cont’d.)

Examples of dynamic interconnection

networks: (a) shuffle-exchange, (b)

crossbar, (c) baseline, and (d) Benes.

Interconnection Network Viewpoint (Cont’d.)

Examples of static interconnection
networks: (a) linear array, (b) ring, (c)
binary tree, (d) star, (e) 2-d torus, (f) 2-d
mesh, (g) completely connected, and (h)
3-cube.

Measurements for Interconnection Networks

 Node degree. The number of edges incident on a node.

 Diameter. The maximum shortest path between any two

nodes.

 Bisection width. The minimum number of edges along a cut

which divides a given network into equal halves.

What's the Best Choice? (Siegel 1994)

 A compiler-writer prefers a network where the transfer time

from any source to any destination is the same to simplify the

data distribution.

 A fault-tolerant researcher does not care about the type of

network as long as there are three copies for redundancy.

 A European researcher prefers a network with a node

degree no more than four to connect Transputers.

What's the Best Choice? (Cont’d.)

 A college professor prefers hypercubes and
multistage networks because they are theoretically
wonderful.

 A university computing center official prefers
whatever network is least expensive.

 A NSF director wants a network which can best
help deliver health care in an environmentally safe
way.

 A Farmer prefers a wormhole-routed network
because the worms can break up the soil and help the
crops!

Memory Viewpoint

Physically versus logically shared/distributed

memory.

Software Viewpoint

 Distributed systems as resource managers like traditional

operating systems.

 Multiprocessor/Multicomputer OS

 Network OS

 Middleware (on top of network OS)

Service Common to Many Middleware Systems

 High level communication facilities (access

transparency)

 Naming

 Special facilities for storage (integrated database)

Middleware

System Viewpoint

 The division of responsibilities between system components

and placement of the components.

Client-Server Model

 multiple servers

 proxy servers and caches

(a) Client and server and (b) proxy server.

Peer Processes

Peer processes.

Mobile Code and Mobile Agents

Mobile code (web applets).

Prototype Implementations

 Mach (Carnegie Mellon University)

 V-kernel (Stanford University)

 Sprite (University of California, Berkeley)

 Amoeba (Vrije University in Amsterdam)

 Systems R (IBM)

 Locus (University of California, Los Angeles)

 VAX-Cluster (Digital Equipment Corporation)

 Spring (University of Massachusetts, Amherst)

 I-WAY (Information Wide Area Year): High-performance
computing centers interconnected through the Internet.

 Theoretical foundations

 Reliability

 Privacy and security

 Design tools and methodology

 Distribution and sharing

 Accessing resources and services

 User environment

 Distributed databases

 Network research

Key Issues (Stankovic's list)

Wu's Book

 Distributed Programming Languages
 Basic structures

 Theoretical Foundations
 Global state and event ordering

 Clock synchronization

 Distributed Operating Systems
 Mutual exclusion and election

 Detection and resolution of deadlock

 self-stabilization

 Task scheduling and load balancing

 Distributed Communication
 One-to-one communication

 Collective communication

Wu's Book (Cont’d.)

 Reliability
 Agreement

 Error recovery

 Reliable communication

 Distributed Data Management
 Consistency of duplicated data

 Distributed concurrency control

 Applications
 Distributed operating systems

 Distributed file systems

 Distributed database systems

 Distributed shared memory

 Distributed heterogeneous systems

Wu's Book (Cont’d.)

 Part 1: Foundations and Distributed Algorithms

 Part 2: System infrastructure

 Part 3: Applications

What is Distributed Algorithms

 Parallel Computing: efficiency

 Real-Time: On-time computing

 Distributed Computing: uncertainty

 Simplicity, elegance, and beauty are first-class citizens

 (Michel Raynal, 2013)

Distributed Message-Passing Algorithms

 Termination

 In a social network, each person exchanges his/her friend

list with friends. What is the stoppage condition?

 Global State

 How to design an observation algorithm by observing an

execution without modifying its behavior?

 Distributed Consensus

 How to reach distributed consensus (e.g., binary

decisions) in the presence of traitors?

Distributed Message-Passing Algorithms

 Logical Clock

 How to order events in different systems with

asynchronous clocks? How to discard obsolete data?

 Data

 How to replicate data and keep them consistent?

 Load

 How to distribute load in a load balanced way?

 Routing

 How to perform efficient routing that is deadlock-free

and fault-tolerant?

References

 IEEE Transactions on Parallel and Distributed Systems
(TPDS)

 Journal of Parallel and Distributed Computing (JPDC)

 Distributed Computing

 IEEE International Conference on Distributed Computing
Systems (ICDCS)

 IEEE International Conference on Reliable Distributed
Systems (SRDS)

 ACM Symposium on Principles of Distributed Computing
(PODC)

 IEEE Concurrency (formerly IEEE Parallel & Distributed
Technology: Systems & Applications)

Exercise 1

 1. In your opinion, what is the future of the computing and

the field of distributed systems?

 2. Use your own words to explain the differences between

distributed systems, multiprocessors, and network systems.

 3. Calculate (a) node degree, (b) diameter, (c) bisection width,

and (d) the number of links for an n x n 2-d mesh, an n x n 2-

d torus, and an n-dimensional hypercube.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

State Model

 A process executes three types of events: internal actions,

send actions, and receive actions.

 A global state: a collection of local states and the state of all

the communication channels.

System structure from logical point of view.

Thread

 lightweight process (maintain minimum information in its

context)

 multiple threads of control per process

 multithreaded servers (vs. single-threaded process)

A multithreaded server in a dispatcher/worker model.

Happened-Before Relation

The happened-before relation (denoted by) is

defined as follows:

 Rule 1 : If a and b are events in the same process and a was

executed before b, then a b.

 Rule 2 : If a is the event of sending a message by one process

and b is the event of receiving that message by another

process, then a b.

 Rule 3 : If a b and b c, then a c.

Relationship Between Two Events

 Two events a and b are causally related if a b or b a.

 Two distinct events a and b are said to be concurrent if a

b and b a (denoted as a || b).

Example 2

A time-space view of a distributed system.

Example 2 (Cont’d.)

 Rule 1:
 a0 a1 a2 a3

 b0 b1 b2 b3

 c0 c1 c2 c3

 Rule 2:
 a0 b3

 b1 a3, b2 c1, b0 c2

Example 3

An example of a network of a bank system.

Example 3 (Cont’d.)

A sequence of global states.

Consistent Global State

Four types of cut that cross

a message transmission line.

Consistent Global State (Cont’d.)

A cut is consistent iff no two cut events are causally

related.

 Strongly consistent: no (c) and (d).

 Consistent: no (d) (orphan message).

 Inconsistent: with (d).

Focus 3: Snapshot of Global States

 A simple distribute algorithm to capture a consistent global

state.

A system with three processes Pi, Pj , and Pk.

Chandy and Lamport's Solution

 Rule for sender P :

[P records its local state

||P sends a marker along all the channels on which a marker has not been

sent.

]

Chandy and Lamport's Solution (Cont’d.)

 Rule for receiver Q:

/* on receipt of a marker along a channel chan */

[Q has not recorded its state

 [record the state of chan as an empty sequence and

 follow the "Rule for sender"

]

 Q has recorded its state

[record the state of chan as the sequence of messages received
along chan after the latest state recording but before receiving the
marker

]

]

Chandy and Lamport's Solution (Cont’d.)

 It can be applied in any system with FIFO channels (but with

variable communication delays).

 The initiator for each process becomes the parent of the

process, forming a spanning tree for result collection.

 It can be applied when more than one process initiates the

process at the same time.

Focus 4: Lamport's Logical Clocks

 Based on a “happen-before” relation that defines a
partial order on events

 Rule1. Before producing an event (an external send
or internal event), we update LC :

 LCi = LCi + d (d > 0)

 (d can have a different value at each application of
Rule1)

 Rule2. When it receives the time-stamped message
(m, LCj , j), Pi executes the update

 LCi = max{Lci, LCj} + d (d > 0)

Focus 4 (Cont’d.)

 A total order based on the partial order derived
from the happen-before relation

 a (in Pi) b (in Pj)

 iff

 (1) LC(a) < LC(b) or (2) LC(a) = LC(b) and Pi < Pj

 where < is an arbitrary total ordering of the process
set, e.g., <can be defined as Pi < Pj iff i < j.

 A total order of events in the table for Example 2:

 a0 b0 c0 a1 b1 a2 b2 a3 b3 c1 c2 c3

Example 4: Totally-Ordered Multicasting

 Two copies of the account at A and B (with balance of

$10,000).

 Update 1: add $1,000 at A.

 Update 2: add interests (based on 1% interest rate) at B.

 Update 1 followed by Update 2: $11,110.

 Update 2 followed by Update 1: $11,100.

Vector and Matrix Logical Clock

 Linear clock: if a b then LCa < LCb

 Vector clock: a b iff LCa < LCb

 Each Pi is associated with a vector LCi[1..n], where

 LCi[i] describes the progress of Pi, i.e., its own process.

 LCi [j] represents Pi’s knowledge of Pj's progress.

 The LCi[1..n] constitutes Pi’s local view of the logical global time.

Vector and Matrix Logical Clock (Cont’d.)

 When d = 1 and init = 0

 LCi[i] counts the number of internal events

 LCi[j] corresponds to the number of events produced by Pj

that causally precede the current event at Pi.

Vector and Matrix Logical Clock (Cont’d.)

 Rule1. Before producing an event (an external send or internal
event), we update LCi[i]:

 LCi[i] := LCi[i] + d (d > 0)

 Rule2. Each message piggybacks the vector clock of the
sender at sending time. When receiving a message (m, LCj ,
j), Pi executes the update.

 LCi[k] := max (LCi[k]; LCj[k]), 1 k n

 LCi[i] := LCi[i] + d

Example 5

An example of vector clocks.

Example 6: Application of Vector Clock

 Internet electronic bulletin board service

 When receiving m with vector clock LCj from process j, Pi
inspects timestamp LCj and will postpone delivery until all
messages that causally precede m have been received.

Network News.

Matrix Logical Clock

 Each Pi is associated with a matrix LCi[1..n, 1..n]
where

 LCi[i, i] is the local logical clock.

 LCi[k, l] represents the view (or knowledge) Pi has about
Pk's knowledge about the local logical clock of Pl.

 If

 min(LCi[k, i]) t

 then Pi knows that every other process knows its
progress until its local time t.

Physical Clock

 Correct rate condition:

 i |dPCi(t)/ dt - 1 | <

 Clock synchronization condition:

 i j |PCi(t) - PCj(t)| <

Lamport's Logical Clock Rules for

Physical Clock

 For each i, if Pi does not receive a message at physical time t,

then PCi is differentiable at t and dPC(t)/dt > 0.

 If Pi sends a message m at physical time t, then m contains

PCi(t).

 Upon receiving a message (m, PCj) at time t, process Pi sets

PCi to maximum (PCi(t - 0), PCj + m) where m is a

predetermined minimum delay to send message m from one

process to another process.

Focus 5: Clock Synchronization

 UNIX make program:

 Re-compile when file.c's time is large than file.o's.

 Problem occurs when source and object files are generated at different

machines with no global agreement on time.

 Maximum drift rate : 1- dPC/dt 1+

 Two clocks (with opposite drift rate) may be 2t apart at a time

after last synchronization.

 Clocks must be resynchronized at least every /2 seconds in order to

guarantee that they will be differ by no more than .

Cristian's Algorithm

 Each machine sends a request every /2 seconds.

 Time server returns its current time PCUTC (UTC: Universal

Coordinate Time).

 Each machines changes its clock (normally set forward or

slow down its rate).

 Delay estimation: (Tr - Ts - I)/2, where Tr is receive time, Ts

send time, and I interrupt handling time.

Cristian's Algorithm (Cont’d.)

Getting correct time from a time server.

Two Important Properties

 Safety: the system (program) never enters a bad state.

 Liveness: the system (program) eventually enters a good

state.

 Examples of safety property: partial correctness, mutual exclusion,

and absence of deadlock.

 Examples of liveness property: termination and eventual entry to a

critical section.

Three Ways to Demonstrate the Properties

 Testing and debugging (run the program and see what

happens)

 Operational reasoning (exhaustive case analysis)

 Assertional reasoning (abstract analysis)

Synchronous vs. Asynchronous Systems

Synchronous Distributed Systems:

 The time to each step of a process (program) has known

bounds.

 Each message will be received within a known bound.

 Each process has a local clock whose drift rate from real time

has a known bound.

Exercise 3

1.Consider a system where processes can be dynamically created or

terminated. A process can generate a new process. For example, P1

generates both P2 and P3. Modify the happened-before relation and the

linear logical clock scheme for events in such a dynamic set of processes.

2. For the distributed system shown in the figure below.

Exercise 3 (Cont’d)

 Provide all the pairs of events that are related.

 Provide logical time for all the events using

 linear time, and

 vector time

 Assume that each LCi is initialized to zero and d = 1.

3. Provide linear logical clocks for all the events in the system given in

Problem 2. Assume that all LC's are initialized to zero and the d's for Pa,

Pb, and Pc are 1, 2, 3, respectively. Does condition a b LC(a) <

LC(b) still hold? For any other set of d's? and why?

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Three Issues

 Use of multiple PEs

 Cooperation among the PEs

 Potential for survival to partial failure

Control Mechanisms

Four basic sequential control mechanisms with

 their parallel counterparts.

Statement type \

Control type

Sequential control Parallel Control

Sequential/parallel

statement

Begin S1, S2

end

Parbegin S1, S2

Parend

Fork/join

Alternative statement goto, case if C then

S1 else S2

Guarded commands:

G C

Repetitive statement for … do doall, for all

Subprogram procedure

Subroutine

procedure

subroutine

Focus 6: Expressing Parallelism

A precedence graph of eight statements.

parbegin/parend statement

 S1;[[S2;[S3||S4];S5;S6]||S7];S8

Focus 6 (Cont’d.)

fork/join statement

 s1;

 c1:= 2;

 fork L1;

 s2;

 c2:=2;

 fork L2;

 s4;

 go to L3;

 L1: s3;

 L2: join c1;

 s5;

 L3: join c2;

 s6;

A precedence graph.

Dijkstra's Semaphore + Parbegin/Parend

 S(i): A sequence of P operations; Si; a sequence of V
operations

 s: a binary semaphore initialized to 0.

 S(1): S1;V(s12);V(s13)

 S(2): P(s12);S2;V(s24);V(s25)

 S(3): P(s13);S3;V(s35)

 S(4): P(s24);S4;V(s46)

 S(5): P(s25);P(s35);S5;V(s56)

 S(6): P (s46); P (s56); S6

Focus 7: Concurrent Execution

 R(Si), the read set for Si, is the set of all variables whose

values are referenced in Si.

 W(Si), the write set for Si, is the set of all variables whose

values are changed in Si.

 Bernstein conditions:

 R(S1) W(S2) =

 W(S1) R(S2) =

 W(S1) W(S2) =

Example 7

S1 : a := x + y,

S2 : b := x z,

S3 : c := y - 1, and

S4 : x := y + z.

S1||S2, S1||S3, S2||S3, and S3||S4.

 Then, S1||S2||S3 forms a largest complete subgraph.

Example 7 (Cont’d.)

A graph model for Bernstein's conditions.

 Alternative statement in DCDL (CSP like distributed control

description language)

 [G1 C1 G2 C2 … Gn Cn].

Alternative Statement

Calculate m = max{x, y}:

 [x y m := x y x m := y]

Example 8

Repetitive Statement

*[G1 C1 G2 C2 … Gn Cn].

Example 9

meeting-time-scheduling ::= t := 0;

 *[t := a(t) t := b(t) t := c(t)]

Communication and Synchronization

 One-way communication: send and receive

 Two -way communication: RPC(Sun), RMI(Java and

CORBA), and rendezvous (Ada)

 Several design decisions:

 One-to one or one-to-many

 Synchronous or asynchronous

 One-way or two-way communication

 Direct or indirect communication

 Automatic or explicit buffering

 Implicit or explicit receiving

Primitives Example Languages

PARALLELISM

 Expressing parallelism

 Processes

 Objects

 Statements

 Expressions

 Clauses

 Mapping

 Static

 Dynamic

 Migration

Ada, Concurrent C, Lina, NIL Emerald,

Concurrent Smalltalk

Occam

Par Alfl, FX-87

Concurrent PROLOG, PARLOG

Occam, Star Mod

Concurrent PROLOG, ParAlfl

Emerald

COMMUNICATION

 Message Passing

 Point-to-point messages

 Rendezvous

 Remote procedure call

 One-to-many messages

 Data Sharing

 Distributed data Structures

 Shared logical variables

 Nondeterminism

 Select statement

 Guarded Horn clauses

CSP, Occam, NIL

Ada, Concurrent C

DP, Concurrent CLU, LYNX

BSP, StarMod

Lina, Orca

Concurrent PROLOG, PARLOG

CSP, Occam, Ada, Concurrent C, SR

Concurrent PROLOG, PARLOG

PARTIAL FILURES

 Failure detection

 Atomic transactions

 NIL

Ada, SR

Argus, Aeolus, Avalon

Message-Passing Library for Cluster

Machines (e.g., Beowulf clusters)

 Parallel Virtual Machine (PVM):

www.epm.ornl/pvm/pvm_home.html

 Message Passing Interface (MPI):

 www.mpi.nd.edu/lam/

 www-unix.mcs.anl.gov/mpi/mpich/

 Java multithread programming:

 www.mcs.drexel.edu/~shartley/ConcProjJava

 www.ora.com/catalog/jenut

 Beowulf clusters:

 www.beowulf.org

http://www.epm.ornl/pvm/pvm_home.html
http://www.mpi.nd.edu/lam/
www-unix.mcs.anl.gov/mpi/mpich/
www-unix.mcs.anl.gov/mpi/mpich/
www-unix.mcs.anl.gov/mpi/mpich/
http://www.mcs.drexel.edu/~shartley/ConcProjJava
http://www.ora.com/catalog/jenut
http://www.beowulf.org/

Message-Passing (Cont’d.)

 Asynchronous point-to-point message passing:

 send message list to destination

 receive message list {from source}

 Synchronous point-to-point message passing:

 send message list to destination

 receive empty signal from destination

 receive message list from sender

 send empty signal to sender

Example 10

 The squash program replaces every pair of consecutive

asterisks "**" by an upward arrow “”.

input::= * [send c to squash]

output::= * [receive c from squash]

Example 10 (Cont’d.)

squash::=

 *[receive c from input

 [c * send c to output

 [c = * receive c from input;

 [c * send * to output;

 send c to output

 c = * send to output

]

]

]

]

Focus 8: Fibonacci Numbers

 F(i) = F(i-1) + F (i - 2) for i > 1, with initial values F(0) = 0

and F(1) = 1.

 F(i) = (i -’i)/(-’) ,where = (1+50.5)/2 (golden ratio)

and ’ = (1-50.5)/2.

Focus 8 (Cont’d.)

A solution for F (n).

Focus 8 (Cont’d.)

 f(0) ::=

send n to f(1);

receive p from f(2);

receive q from f(1);

ans := q

 f(-1) ::=

receive p from f(1)

Focus 8 (Cont’d.)

 f(i) ::=

receive n from f(i - 1);

[n > 1 [send n - 1 to f(i + 1);

 receive p from f(i + 2);

 receive q from f(i + 1);

 send p + q to f(i - 1);

 send p + q to f(i - 2)]

 n = 1 [send 1 to f(i - 1);

 send 1 to f(i - 2)]

 n = 0 [send 0 to f(i - 1);

 send 0 to f(i - 2)]

]

Another solution for F (n).

Focus 8 (Cont’d.)

 f(0)::=

[n > 1 [send n to f(1);

 receive p from f(1);

 receive q from f(1);

 ans := p

]

 n = 1 ans := 1

 n = 0 ans := 0

]

Focus 8 (Cont’d.)

 f(i)::=

receive n from f(i - 1);

[n > 1 [send n - 1 to f(i + 1);

 receive p from f(i + 1);

 receive q from f(i + 1);

 send p + q to f(i - 1);

 send p to f(i - 1)

]

 n = 1 [send 1 to f(i - 1);

 send 0 to f(i - 1)

]

]

Focus 8 (Cont’d.)

Focus 9: Message-Passing Primitives of MPI

 MPI_send: asynchronous communication

 MPI_send: receipt-based synchronous communication

 MPI_ssend: delivery-based synchronous communication

 MPI_sendrecv: response-based synchronous communication

Focus 9 (Cont’d.)

Message-passing primitives of MPI.

Focus 10: Interprocess Communication in UNIX

 Socket: int socket (int domain, int type, int protocol).

 domain: normally internet.

 type: datagram or stream.

 protocol: TCP (Transport Control Protocol) or UDP (User Datagram

Protocol)

 Socket address: an Internet address and a local port number.

Focus 10 (Cont’d.)

Sockets used for datagrams

High-Level (Middleware) Communication

Services

 Achieve access transparency in distributed systems

 Remote procedure call (RPC)

 Remote method invocation (RMI)

Remote Procedure Call (RPC)

 Allow programs to call procedures located on other machines.

 Traditional (synchronous) RPC and asynchronous RPC.

RPC.

Remove Method Invocation (RMI)

RMI.

Robustness

 Exception handling in high level languages (Ada and

PL/1)

 Four Types of Communication Faults

 A message transmitted from a node does not reach its

intended destinations

 Messages are not received in the same order as they were

sent

 A message gets corrupted during its transmission

 A message gets replicated during its transmission

 If a remote procedure call terminates abnormally

(the time out expires) there are four possibilities.

 The receiver did not receive the call message.

 The reply message did not reach the sender.

 The receiver crashed during the call execution and either

has remained crashed or is not resuming the execution

after crash recovery.

 The receiver is still executing the call, in which case the

execution could interfere with subsequent activities of the

client.

Failures in RPC

Exercise 2

1.(The Welfare Crook by W. Feijen) Suppose we have three

long magnetic tapes each containing a list of names in

alphabetical order. The first list contains the names of people

working at IBM Yorktown, the second the names of students

at Columbia University and the third the names of all people

on welfare in New York City. All three lists are endless so no

upper bounds are given. It is known that at least one person is

on all three lists. Write a program to locate the first such

person (the one with the alphabetically smallest name). Your

solution should use three processes, one for each tape.

Exercise 2 (Cont’d.)

2.Convert the following DCDL expression to a precedence
graph.

 [S1 || [[S2 || S3]; S4]]

 Use fork and join to express this expression.

3.Convert the following program to a precedence graph:

 S1;[[S2;S3||S4;S5||S6]||S7];S8

Exercise 2 (Cont’d.)

4.G is a sequence of integers defined by the recurrence Gi = Gi-1

+ Gi-3 for i > 1, with initial values G0 = 0, G1 = 1, and G2 = 1.

Provide a DCDL implementation of Gi and use one process

for each Gi.

5.Using DCDL to write a program that replaces a*b by a b

and a**b by a b, where a and b are any characters other

than *. For example, if a1a2*a3**a4***a5 is the input string

then a1a2 a3 a4***a5 will be the output string.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Distributed Operating Systems

 Operating Systems: provide problem-oriented abstractions of

the underlying physical resources.

 Files (rather than disk blocks) and sockets (rather than raw

network access).

Selected Issues

 Mutual exclusion and election
 Non-token-based vs. token-based

 Election and bidding

 Detection and resolution of deadlock
 Four conditions for deadlock: mutual exclusion, hold and wait, no

preemption, and circular wait.

 Graph-theoretic model: wait-for graph

 Two situations: AND model (process deadlock) and OR model
(communication deadlock)

 Task scheduling and load balancing
 Static scheduling vs. dynamic scheduling

Mutual Exclusion and Election

 Requirements:

 Freedom from deadlock.

 Freedom from starvation.

 Fairness.

 Measurements:

 Number of messages per request.

 Synchronization delay.

 Response time.

Non-Token-Based Solutions:

Lamport's Algorithm

 To request the resource process Pi sends its timestamped
message to all the processes (including itself).

 When a process receives the request resource message, it
places it on its local request queue and sends back a
timestamped acknowledgment.

 To release the resource, Pi sends a timestamped release
resource message to all the processes (including itself).

 When a process receives a release resource message from Pi,
it removes any requests from Pi from its local request queue.
A process Pj is granted the resource when

 Its request r is at the top of its request queue, and,

 It has received messages with timestamps larger than the timestamp of
r from all the other processes.

Example for Lamport’s Algorithm

Extension

 There is no need to send an acknowledgement when process

Pj receives a request from process Pi after it has sent its own

request with a timestamp larger than the one of Pi's request.

 An example for Extended Lamport’s Algorithm

Ricart and Agrawala's Algorithm

 It merges acknowledge and release messages into one

message reply.

An example using Ricart and Agrawala's algorithm.

Token-Based Solutions: Ricart and

Agrawala's Second Algorithm

 When token holder Pi exits CS, it searches other processes in

the order i + 1,i + 2,…,n,1,2,…,i - 1 for the first j such that

the timestamp of Pj 's last request for the token is larger than

the value recorded in the token for the timestamp of Pj 's last

holding of the token.

Token-based Solutions (Cont’d)

Ricart and Agrawala's second algorithm.

 P(i)::=*[request-resource

 consume

 release-resource

 treat-request-message

 others

]

 distributed-mutual-exclusion ::= ||P(i:1..n)

clock: 0,1,…, (initialized to 0)

token-present: Boolean (F for all except one process)

token-held: Boolean (F)

token: array (1..n) of clock (initialized 0)

request: array (1..n) of clock (initialized 0)

Pseudo Code

 others::= all the other actions that do not request to enter the
critical section.

 consume::= consumes the resource after entering the critical
section

 request-resource::=

 [token present = F

 [send (request-signal, clock, i) to all;

 receive (access-signal, token);
 token-present:= T;

 token-held:= T

]

]

Pseudo Code (Cont’d)

release-resource::=

 [token (i):=clock;

 token-held:= F;

 min j in the order [i + 1,… n,1,2,…,i – 2, i – 1]

 (request(j) > token(j))

 [token-present:= F;

 send (access-signal, token) to Pj

]

]

Pseudo Code (Cont’d)

treat-request-message::=

 [receive (request-signal, clock; j)

 [request(j):=max(request(j),clock);

 token-present token-held release-resource

]

]

Pseudo Code (Cont’d)

Ring-Based Algorithm

P(i:0..n-1)::=

 [receive token from P((i-1) mod n);

 consume the resource if needed;

 send token to P ((i + 1) mod n)

]

distributed-mutual-exclusion::= ||P(i:0..n-1)

Ring-Based Algorithm (Cont’d)

The simple token-ring-based algorithm (a) and the

 fault-tolerant token-ring-based algorithm (b).

Tree-Based Algorithm

A tree-based mutual exclusion algorithm.

Maekawa's Algorithm

 Permission from every other process but only from a

subset of processes.

 If Ri and Rj are the request sets for processes Pi and

Pj , then Ri Rj .

Example 11

R1 : {P1; P3; P4}

R2 : {P2; P4; P5}

R3 : {P3; P5; P6}

R4 : {P4; P6; P7}

R5 : {P5; P7; P1}

R6 : {P6; P1; P2}

R7 : {P7; P2; P3}

Related Issues

 Election: After a failure occurs in a distributed system, it is

often necessary to reorganize the active nodes so that they can

continue to perform a useful task.

 Bidding: Each competitor selects a bid value out of a given set

and sends its bid to every other competitor in the system. Every

competitor recognizes the same winner.

 Self-stabilization: A system is self-stabilizing if, regardless of

its initial state, it is guaranteed to arrive at a legitimate state in a

finite number of steps.

Focus 11: Garcia-Molina's Bully

Algorithm for Election

 When P detects the failure of the coordinator or receives an

ELECTION packet, it sends an ELECTION packet to all

processes with higher priorities.

 If no one responds (with packet ACK), P wins the election

and broadcast the ELECTED packet to all.

 If one of the higher processes responds, it takes over. P's job

is done.

Focus 11 (Cont’d)

Bully algorithm.

Lynch's Non-Comparison-Based Election

Algorithms

 Process id is tied to time in terms of rounds.

 Time-slice algorithm: (n, the total number of

processes, is known)
 Process Pi (with its id(i)) sends its id in round id(i)2n, i.e., at most one

process sends its id in every 2n consecutive rounds.

 Once an id returns to its original sender, that sender is elected. It sends

a signal around the ring to inform other processes of its winning

status.

 message complexity: O(n)

 time complexity: min{id(i)} n

 Variable-speed algorithm: (n is unknown)

 When a process Pi sends its id (id(i)), this id travels at

the rate of one transmission for every 2id(i) rounds.

 If an id returns to its original sender, that sender is

elected.

 message complexity: n + n/2 + n/22 + … + n/2(n-1)

< 2n = O(n)

 time complexity: 2 min{id(i)}n

Lynch's Algorithms (Cont’d)

Dijkstra's Self-Stabilization

 Legitimate state P : A system is in a legitimate state P if and

only if one process has a privilege.

 Convergence: Starting from an arbitrary global state, S is

guaranteed to reach a global state satisfying P within a finite

number of state transitions.

Example 12

 A ring of finite-state machines with three states. A privileged

process is the one that can perform state transition.

 For Pi, 0 < i n - 1,

 PiPi-1 Pi := Pi-1,

 P0=Pn-1 P0:=(P0+1) mod k

Table 1: Dijkstra’s self-stabilization algorithm.

P0 P1 P2 Privileged

processes

Process to make

move

2 1 2 P0,P1,P2 P0

3 1 2 P1,P2 P1

3 3 2 P2 P2

3 3 3 P0 P0

0 3 3 P1 P1

0 0 3 P2 P2

0 0 0 P0 P0

1 0 0 P1 P1

1 1 0 P2 P2

1 1 1 P0 P0

2 1 1 P1 P1

2 2 1 P2 P2

2 2 2 P0 P0

3 2 2 P1 P1

3 3 2 P2 P2

3 3 3 P0 P0

Extensions

 The role of demon (that selects one privileged process)

 The role of asymmetry.

 The role of topology.

 The role of the number of states

Detection and Resolution of Deadlock

 Mutual exclusion. No resource can be shared by more than

one process at a time.

 Hold and wait. There must exist a process that is holding at

least one resource and is waiting to acquire additional

resources that are currently being held by other processes.

 No preemption. A resource cannot be preempted.

 Circular wait. There is a cycle in the wait-for graph.

Detection and Resolution of Deadlock (Cont’d)

Two cities connected by (a) one bridge and by (b) two bridges.

Strategies for Handling Deadlocks

 Deadlock prevention

 Deadlock avoidance (based on "safe state")

 Deadlock detection and recovery

 Different Models

 AND condition

 OR condition

Types of Deadlock

 Resource deadlock

 Communication deadlock

An example of communication deadlock

Conditions for Deadlock

 AND model: a cycle in the wait-for graph.

 OR model: a knot in the wait-for graph.

Conditions for Deadlock (Cont’d)

 A knot (K) consists of a set of nodes such that for every node

a in K , all nodes in K and only the nodes in K are reachable

from node a.

Two systems under the OR condition with

(a) no deadlock and without (b) deadlock.

Focus 12: Rosenkrantz' Dynamic Priority

Scheme (using timestamps)

 T1:
 lock A;
 lock B;
 transaction starts;
 unlock A;
 unlock B;

wait-die (non-preemptive method)
 [LCi < LCj halt Pi (wait)
 LCi LCj kill Pi (die)
]

wound-wait (preemptive method)
 [LCi < LCj kill Pj (wound)
 LCi LCj halt Pi (wait)
]

Example 13

A system consisting of five processes.

Process id Priority 1st request time Length Retry interval

P1 2 1 1 1

P2 1 1.5 2 1

P3 4 2.1 2 2

P4 5 3.3 1 1

P5 3 4.0 2 3

Example 13 (Cont’d)

wound-wait:

wait-die:

Load Distribution

A taxonomy of load distribution algorithms.

Static Load Distribution (task scheduling)

 Processor interconnections

 Task partition

 Horizontal or vertical partitioning.

 Communication delay minimization partition.

 Task duplication.

 Task allocation

Models

 Task precedence graph: each link defines the precedence

order among tasks.

 Task interaction graph: each link defines task interactions

between two tasks.

(a) Task precedence graph and (b) task interaction graph.

Example 14

Mapping a task interaction graph (a)
to a processor graph (b).

Example 14 (Cont’d)

 The dilation of an edge of Gt is defined as the length
of the path in Gp onto which an edge of Gt is
mapped. The dilation of the embedding is the
maximum edge dilation of Gt.

 The expansion of the embedding is the ratio of the
number of nodes in Gt to the number of nodes in Gp.

 The congestion of the embedding is the maximum
number of paths containing an edge in Gp where
every path represents an edge in Gt.

 The load of an embedding is the maximum number
of processes of Gt assigned to any processor of Gt.

Periodic Tasks With Real-time Constraints

 Task Ti has request period ti and run time ci.

 Each task has to be completed before its next request.

 All tasks are independent without communication.

Liu and Layland's Solutions (priority-driven

and preemptive)

 Rate monotonic scheduling (fixed priority

assignment). Tasks with higher request rates will

have higher priorities.

 Deadline driven scheduling (dynamic priority

assignment). A task will be assigned the highest

priority if the deadline of its current request is the

nearest.

Schedulability

 Deadline driven schedule: iff
n

 ci/ti 1
i=0

 Rate monotonic schedule: if
n

 ci/ti n(21/n - 1);
i=0

 may or may be not when
 n

 n(21/n - 1) < ci/ti 1
 i=0

Example 15 (schedulable)

 T1: c1 = 3, t1 = 5 and T2: c2 = 2, t2 = 7 (with the same initial

request time).

 The overall utilization is 0:887 > 0:828 (bound for n = 2).

Example 16 (un-schedulable under rate

monotonic scheduling)

 T1: c1 = 3, t1 = 5 and T2: c2 = 3, t2 = 8 (with the same initial

request time).

 The overall utilization is 0:975 > 0:828

An example of periodic tasks that is not schedulable.

Example 16 (Cont’d)

 If each task meets its first deadline when all tasks are started

at the same time then the deadlines for all tasks will always

be met for any combination of starting times.

 scheduling points for task T : T 's first deadline and the ends

of periods of higher priority tasks prior to T 's first deadline.

 If the task set is schedulable for one of scheduling points of

the lowest priority task, the task set is schedulable; otherwise,

the task set is not schedulable.

Example 17 (schedulable under rate

monotonic schedule)

 c1 = 40, t1 = 100, c2 = 50, t2 = 150, and c3 = 80, t3 = 350.

 The overall utilization is 0:2 + 0:333 + 0:229 = 0:762 < 0:779

(the bound for n > 3).

 c1 is doubled to 40. The overall utilization is

0:4+0:333+0:229 = 0:962 > 0:779.

 The scheduling points for T3: 350 (for T3), 300 (for T1 and

T2), 200 (for T1), 150 (for T2), 100 (for T1).

Example 17 (Cont’d)

c1 + c2 + c3 t1,

40 + 50 + 80 > 100;

2c1 + c2 + c3 t2,

80 + 50 + 80 > 150;

2c1 + 2c2 + c3 2t2,

80 + 100 + 80 > 200;

3c1 + 2c2 + c3 2t3,

120 + 100 + 80 = 300;

4c1 + 3c2 + c3 t1,

160 + 150 + 80 > 350.

Example 17 (Cont’d)

A schedulable periodic task.

Dynamic Load Distribution (load balancing)

A state-space traversal example.

Dynamic Load Distribution (Cont’d)

A dynamic load distribution algorithm has six policies:

 Initiation

 Transfer

 Selection

 Profitability

 Location

 Information

Focus 13: Initiation

Sender-initiated approach:

Sender-initiated load balancing.

Focus 13 (Cont’d)

/* a new task arrives */

 queue length HWM

* [poll_set := ;

 [| poll_set | < poll_limit

 [select a new node u randomly;

 poll_set := poll_set node u;

 queue_length at u < HWM

 transfer a task to node u and stop

]

]

]

Receiver-Initiated Approach

Receiver-initiated load balancing.

Receiver-Initiated Approach (Cont’d)

/* a task departs */

queue length < LWM

[poll limit:= ;

 * [| poll_set | < poll limit

 [select a new node u randomly;

 poll_set := poll set node u;

 queue_length at u > HWM

 transfer a task from node u and stop

]

]

]

Bidding Approach

Bidding algorithm.

Focus 14: Sample Nearest Neighbor Algorithms

Diffusion

 At round t + 1 each node u exchanges its load Lu(t) with its neighbors'
Lv(t).

 Lu(t + 1) should also include new incoming load u(t) between rounds
t and t + 1.

 Load at time t + 1:

 Lu(t + 1) = Lu(t) + u,v(Lv(t)- Lu(t)) + u(t)
 v A(u)

 where 0 u,v 1 is called the diffusion parameter of nodes u and v.

Gradient

 Maintain a contour of the gradients formed by the differences

in load in the system.

 Load in high points (overloaded nodes) of the contour will

flow to the lower regions (underloaded nodes) following the

gradients.

 The propagated pressure of a processor u, p(u), is defined as

p(u) =

 0 (if u is lightly loaded)

 1 + min{p(v)|v A(u)} (otherwise)

Gradient (Cont’d)

 (a) A 4 x 4 mesh with loads. (b) The corresponding propagated

pressure of each node (a node is lightly loaded if its load is less than 3).

Dimension Exchange: Hypercubes

 A sweep of dimensions (rounds) in the n-cube is applied.

 In the ith round neighboring nodes along the ith dimension

compare and exchange their loads.

Dimension Exchange: Hypercubes (Cont’d)

Load balancing on a healthy 3-cube.

Extended Dimension Exchange:

Edge-Coloring

Extended dimension exchange model through edge-coloring.

Exercise 4

1. Provide a revised Misra's ping-pong algorithm in which the ping and the

pong are circulated in opposite directions. Compare the performance and

other related issues of these two algorithms.

2. Show the state transition sequence for the following system with n = 3 and

k = 5 using Dijkstra's self-stabilizing algorithm. Assume that P0 = 3, P1 =

1, and P2 = 4.

3. Determine if there is a deadlock in each of the following wait-for graphs

assuming the OR model is used.

Exercise 4 (Cont’d)

Table 2: A system consisting of four processes.

Process id Priority 1st request time Length Retry

interval

Resource(s)

P1 3 1 1 1 A

P2 4 1.5 2 1 B

P3 1 2.5 2 2 A,B

P4 2 3 1 1 B,A

4. Consider the following two periodic tasks (with the same request time)

 Task T1: c1 = 4, t1 = 9

 Task T2: c2 = 6, t2 = 14

(a) Determine the total utilization of these two tasks and compare it with Liu

and Layland's least upper bound for the fixed priority schedule. What

conclusion can you derive?

Exercise 4 (Cont’d)

(b) Show that these two tasks are schedulable using the rate-monotonic

priority assignment. You are required to provide such a schedule.

(c) Determine the schedulability of these two tasks if task T2 has a higher

priority than task T1 in the fixed priority schedule.

(d) Split task T2 into two parts of 3 units computation each and show that

these two tasks are schedulable using the rate-monotonic priority

assignment.

(e) Provide a schedule (from time unit 0 to time unit 30) based on deadline

driven scheduling algorithm. Assume that the smallest preemptive

element is one unit.

Exercise 4 (Cont’d)

5. For the following 4 x 4 mesh find the corresponding propagated pressure

of each node. Assume that a node is considered lightly loaded if its

load is less than 2.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Distributed Communication

 One-to-all (broadcast)

Different types of communication

One-to-one (unicast)

One-to-many (multicast)

Classification

 Special purpose vs. general purpose.

 Minimal vs. nonminimal.

 Deterministic vs. adaptive.

 Source routing vs. distributed routing.

 Fault-tolerant vs. non fault-tolerant.

 Redundant vs. non redundant.

 Deadlock-free vs. non deadlock-free.

A general PE with a separate router.

Router Architecture

 Topology. The topology of a network, typically
modeled as a graph, defines how PEs are connected.

 Routing. Routing determines the path selected to
forward a message to its destination(s).

 Flow control. A network consists of channels and
buffers. Flow control decides the allocation of these
resources as a message travels along a path.

 Switching. Switching is the actual mechanism that
decides how a message travels from an input channel
to an output channel: store-and-forward and cut-
through (wormhole routing).

Four Factors for Communication Delay

General-Purpose Routing

Source routing: link state (Dijkstra's algorithm)

A sample source routing

General-Purpose Routing (Cont’d)

Distributed routing: distance vector (Bellman-Ford algorithm)

A sample distributed routing

Distributed Bellman-Ford Routing Algorithm

 Initialization. With node d being the destination

node, set D(d) = 0 and label all other nodes (.,).

 Shortest-distance labeling of all nodes. For each

node v d do the following: Update D(v) using the

current value D(w) for each neighboring node w to

calculate D(w) + l(w, v) and perform the following

update:

 D(v) := min{D(v), D(w) + l(w; v)}

Distributed Bellman-Ford Algorithm
(Cont’d)

Example 18

A sample network.

Example 18 (Cont’d)

Bellman-Ford algorithm applied to the network with P5 being the destination.

Round P1 P2 P3 P4

Initial (.,) (.,) (.,) (.,)

1 (.,) (.,) (5,20) (5,2)

2 (3,25) (4,3) (4,4) (5,2)

3 (2,7) (4,3) (4,4) (5,2)

Looping Problem

Time next

node

0 1 2 3 K, 4<k<15 16 17 18 19 (20,)

P2 7 7 9 9 2n/2 +7 23 23 25 25 27

P3 9 9 11 11 2n/2+9 25 25 25 25 25*

Time next

node

0 1 2 3 K,

4<k<15

16 17 18 19 (20,

)

P1 11 11 13 13 2n/2 +9 25 27 27 29 29

P3 7 7 9 9 2n/2 +7 23 23 23 23 23

P3 3 5 5 7 2n/2+3 19 21 21 23* 23

(a) Network delay table of P1

(b) Network delay table of P2

Link (P4; P5) fails at the destination P5.

Time next

node

0 1 2 3 K, 4<k<15 16 17 18 19 (20,)

P1 12 12 12 14 2n/2 +10 26 28 28 30 30

P2 6 6 8 8 2n/2 +5 22 22 24 24 26

P4 4 6 6 8 2n/2 +4 20 22 22 24 24

P5 20 20 20 20 20 20 20* 20 20 20

Time next

node

0 1 2 3 K,

4<k<15

16 17 18 19 (20,)

P2 4 4 6 6 2n/2 +4 20 20 22 22 24

P3 6 6 8 8 2n/2 +5 22 22 22 22 22*

P5

(c) Network delay table of P3

(d) Network delay table of P4

Looping Problem (Cont’d)

Special-Purpose Routing

E-cube routing in n-cube: u w as a navigation vector.

A routing in a 3-cube with source 000 and destination 110:

(a)Single path. (b) Three node-disjoint paths.

Binomial-Tree-Based Broadcasting in

N-Cubes

The construction of binomial trees.

Hamiltonian-Cycle-Based

Broadcasting in N-Cubes

(a) A broadcasting initiated from 000.

(b) A Hamiltonian cycle in a 3-cube.

Parameterized Communication Model

Postal model:

 = l/s where s is the time it takes for a node to send the next

message and l is the communication latency.

 Under the one-port model the binomial tree is optimal when

 = 1.

Example 19: Broadcast Tree

Comparison with = 6: (a) binomial tree and (b) optimal spanning tree.

Focus 15: Fault-Tolerant Routing

Wu's safety level:

 The safety level associated with a node is an approximated measure of the

number of faulty nodes in the neighborhood.

 Let (S0,S1,S2,…,Sn-1), 0 Si n, be the non-descending safety status

sequence of node a's neighboring nodes in an n-cube such that 0 Si

Si+1 n-1.

 If (S0,S1,S2,…,Sn-1) (0,1,2,…,n-1) then S(a) = n

 else if (S0,S1,S2,…Sk-1) (0,1,2,…,k-1) ^ (Sk = k-1) then S(a) = k.

Focus 15: Fault-Tolerant Routing (Cont’d)

Localized algorithms:

Fault-Tolerant Routing (Cont’d)

 If the safety level of a node is k (0 < k n), there is at least

one Hamming distance path from this node to any node

within k-Hamming-distance.

A fault-tolerant routing using safety levels.

Fault-Tolerant Broadcasting

 If the source node is n-safe, there exists an n-level injured

spanning binomial tree in an n-cube.

Broadcasting in a faulty 4-cube.

Wu's Extended Safety Level in 2-D Meshes

A sample region of minimal paths.

Deadlock-Free Routing

Virtual channels and virtual networks:

(a) A ring with two virtual channels, (b) channel dependency

graph of (a), and (c) two virtual rings vr1 and vr0.

Focus 16: Deadlock-Free Routing Without

Virtual Channels

 XY-routing in 2-D meshes: X dimension followed by Y

dimension.

 Glass and Ni's Turn model: Certain turns are forbidden.

(a) Abstract cycles in 2-d meshes, (b) four turns (solid arrows) allowed in XY-

routing, (c) six turns allowed in positive-first routing, and (d) six turns allowed

in negative-first routing.

Basic Routing Strategies in Internet

Source routing: link state

Distributed routing: distance vector

Figure 1: A sample source routing

Figure 2: A sample distributed routing

Routing in Ad Hoc Wireless Networks

 The dynamic nature of ad hoc wireless networks

presents a challenge to current routing techniques.

Major Challenges

 Scalable design

 Low power design

 Mobility management

 Low latency

Classification

 Proactive vs. reactive

 proactive: continuously evaluate network connectivity

 reactive: invoke a route determination procedure on-

demand.

 Flat vs. cluster-based

DSR Routing (Johnson, CMU)

 There are no periodic routing advertisement messages (thereby reducing

network bandwidth overhead).

 Each host maintains a route cache: source routes that it has learned .

 If a route is not found from route cache, the source attempts to discover

one using route discovery.

 Route maintenance monitors the correct operation of a route in use.

Figure 3: A sample DSR routing

Zone-Based Routing (Hass, Cornell)

 Trade-offs: network capacity usage in proactive approaches and the long delay

in reactive approaches.

 A routing zone (for a host) includes the nodes within a given number of hops.

 Each host maintains routing information only to nodes within its routing zone.

 Information outside the routing zone is obtained through on demand.

Figure 4: Zone routing

Domination-Set-Based Routing (Wu and Li, FAU)

Figure 5: School bus route.

Desirable Features

 Simple and quick

 Connected dominating set

Figure 6: A simple ad hoc wireless

network of five wireless mobile hosts.

Existing Approaches

 Graph theory community:

 Bounds on the domination number (Haynes, Hedetniemi, and Slater,

1998).

 Special classes of graph for which the domination problem can be

solved in polynomial time.

 Ad hoc wireless network community:

 Global: MCDS (Sivakumar, Das, and Bharghavan, 1998).

 Quasi-global: spanning-tree-based (Wan, Alzoubi, and Frieder,

2002).

 Quasi-local: cluster-based (Lin and Gerla, 1999).

 Local: marking process (Wu and Li, 1999).

MCDS (Sivakumar, Das, and Bharghavan, UIUC)

 All nodes are initially colored white.

 The node with the maximum node degree is selected as the

root and colored black. All the neighbors of the root are

colored gray.

 Select a gray node that has the maximum white neighbors.

The gray node is colored black and its white neighbors are

marked gray.

 Repeat step (3) until there is no more white node.

MCDS (Cont’d.)

black nodes = CDS (connected dominating set)

Figure 7: MCDS as an approximation of CDS

Spanning-Tree-Based (Wan, Alzoubi, and

Frieder, IIT)

 A spanning tree rooted at v (selected through an election
process) is first constructed.

 Nodes are labeled according to a topological sorting order of
the tree.

 Nodes are marked based on their positions in the order
starting from root v.

 All nodes are white initially.

 V is marked black and all nodes are labeled black unless there is black
neighbor.

 Each black node (except root v) selects a neighbor with the
largest label but smaller than its own label and mark it gray.

Spanning-Tree-Based (Cont’d.)

black nodes = DS

black nodes + gray nodes = CDS

Figure 8: selecting CDS in a spanning tree

Cluster-Based (Lee and Gerla, UCLA)

 All nodes are initially white.

 When a white node finds itself having the lowest id among all

its white neighbors, it becomes a cluster head and colors itself

black.

 All its neighbors join in the cluster and change their colors to

gray.

 Repeat steps (1) and (2) until there is no white node left.

 Special gray nodes: gray nodes that have two neighbors in

different clusters.

Cluster-Based (Cont’d.)

black nodes = DS

black nodes + special gray nodes = CDS

Figure 9: sequential propagation in the cluster-based approach.

Localized Algorithms

 Processors (hosts) only interact with others in a

restricted vicinity.

 Each processor performs exceedingly simple tasks

(such as maintaining and propagating information

markers).

 Collectively these processors achieve a desired

global objective.

 There is no sequential propagation of information.

Focus 17: Wu and Li's Marking Process

 A node is marked true if it has two unconnected

neighbors.

 A set of marked nodes (gateways nodes) V’ form a

connected dominating set.

Example 20

Figure 10: A sample ad hoc wireless network

Properties

 Property 1: V’ is empty if and only if G is a complete graph;

otherwise, V’ forms a dominating set.

 Property 2: V’ includes all the intermediate vertices of any

shortest path.

 Property 3: The induced graph G’ = G[V’] is a connected

graph.

Dominating-set-based Routing

 If the source is not a gateway host, it forwards packets to a source

gateway neighbor.

 This source gateway acts as a new source to route packets in the induced

graph generated from the connected dominating set.

 Eventually, packets reach a destination gateway, which is either the

destination host itself or a gateway of the destination host.

Figure 11: Dominating-set-based routing

Other Results

 Dominating set reduction*

 (Wu and Li, Dial M 1999)

 Extended marking process (Rule-k)

 (Dai and Wu, Globecom 2002)

 Localized maintenance*

 (Wu and Dai, I-SPAN 2002)

 Networks with unidirectional links*

 (Wu, IEEE TPDS 2002)

Other Results (Continue)

 Scalable design: hierarchical routing*

 (Wu and Li, Telecomm. Sys. J. 2001)

 Mobility management*

 (Wu and Li, Telecomm. Sys. J. 2001)

 Power-aware routing and Power-aware broadcasting*

 (Wu, Dai, Gao, and Stojmenovic, J. Comm. and Networks,
2002 and Wu, Wu, and Stojmenovic, WOC'2002)

 Dominating-set- and GPS-based routing*

 (Datta, Stojmenovic, and Wu, IPDPS workshop, 2001 and
Wu, IEEE TPDS 2002)

Dominating Set Reduction

 Reduce the size of the dominating set.

 Role of gateway/non-gateway is rotated.

 N [v] = N (v) U {v} is a closed neighbor set of v

 Rule 1: If N [v] N [u] in G and id(v) < id(u), then unmark v.

 Rule 2: If N (v) N (u) U N (w) in G and id(v) = min{id(v), id(u),

id(w)}, then unmark v.

Figure 12: Two sample examples.

Example 21

Figure 13: (a) Dominating set from the marking process (b)

Dominating set after dominating set reduction.

Exercise 5

1. Provide an addressing scheme for the following extended mesh (EM)

which is a regular 2-D mesh with additional diagonal links.

2. Provide a general shortest routing algorithm for EMs.

3. Suppose the postal model is used for broadcasting and * = 8. What is the

maximum number of nodes that can be reached in time unit 10. Derive the

corresponding broadcast tree.

Exercise 5 (Cont’d)

4. Consider the following turn models:

 West-first routing. Route a message first west, if necessary, and then
adaptively south, east, and north.

 North-last routing. First adaptively route a message south, east, and west;
route the message north last.

 Negative-first routing. First adaptively route a message along the negative X
or Y axis; that is, south or west, then adaptively route the message along the
positive X or Y axis.

 Show all the turns allowed in each of the above three routings.

5. Show the corresponding routing paths using (1) positive-last, (2) west-first,
(3) north-last, and (4) negative-first routing for the following unicasting:

6. Wu and Fernandez (1992) gave the following safe and unsafe node
definition: A nonfaulty node is unsafe if and only if either of the following
conditions is true: (a) There are two faulty neighbors, or (b) there are at
least three unsafe or faulty neighbors. Consider a 4-cube with faulty nodes
0100, 0011, 0101, 1110, and 1111. Find out the safety status (safe or
unsafe) of each node.

Exercise 5 (Cont’d)

7. To support fault-tolerant routing in 2-D meshes, D. J. Wang (1999)

proposed the following new model of faulty block: Suppose the

destination is in the first quadrant of the source. Initially, label all faulty

nodes as faulty and all non-faulty nodes as fault-free. If node u is fault-

free, but its north neighbor and east neighbor are faulty or useless, u is

labeled useless. If node u is fault-free, but its south neighbor and west

neighbor are faulty or can't-reach, u is labeled can't-reach. The nodes are

recursively labeled until there are no new useless or can't-reach nodes.

 (a) Give an intuitive explanation of useless and can't-reach.

 (b) Re-write the definition when the destination is in the second quadrant of the

source.

Exercise 5 (Cont’d)

8. Chiu proposed an odd-even turn model, which is an extension to Glass and
Ni's turn model. The odd-even turn model tries to prevent the formation of
the rightmost column segment of a cycle. Two rules for turn are given in:

 Rule 1: Any packet is not allowed to take an EN (east-north) turn at
any nodes located in an even column, and it is not allowed to take an
NW turn at any nodes located in an odd column.

 Rule 2: Any packet is not allowed to take an ES turn at any nodes
located in an even column, and it is not allowed to take a SW turn at
any nodes located in an odd column.

(a) Use your own word to explain that the odd-even turn model is deadlock-
free.

(b) Show all the shortest paths (permissible under the extended odd-even turn
model) for

 (a) s1:(0, 0) and d1:(2,2) and (b) s2:(0,0) and d2:(3,2)
(c) Prove Properties 1, 2, and 3 of Wu and Li's marking process for ad hoc

wireless networks.

Exercise 5 (Cont’d)

9. Suppose we use the following two rules to reduce

the size of the dominating set derived from Wu and

Li's marking process.

 Rule 1: Consider two vertices v and u in G’. If N[v] N[u] in G and id(v) <
id(u), change the marker of v to F if node v is marked, i.e., G' is changed to
G'-{v},

 Rule 2: Assume that u and w are two marked neighbors of marked vertex v in
G'. If N(v) N(u) N(w) in G and id(v)= min{ id(v), id(u), id(w)}, then
change the marker of v to F.

(1) Why id is used in both rules?

(2) If N[v] N[u] in G can Rule 1 be changed without checking the id's of v
and u? (Consider two cases: (a) Rule 1 is used alone and (b) Rule 1 and
Rule 2 are used together.)

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Distributed Data Management

 Data objects
 Files

 Directories

 Data objects are dispersed and replicated
 Unreplicated

 Fully replicated

 Partially replicated

Serializability Theory

Atomic execution

 A transaction is an "all or nothing" operation.

 The concurrent execution of several transactions affects the

database as if executed serially in some order. The interleaved

order of the actions of a set of concurrent transactions is

called a schedule.

Example 22: Concurrent Transactions

T1 begin

 1 read A (obtaining A_balance)

 2 read B (obtaining B_balance)

 3 write A_balance-$10 to A

 4 write B_balance+$10 to B

 end

T2 begin

 1 read B (obtaining B balance)

 2 write B_balance-$5 to B

 end

 Three types of conflict: r-w (read-write), w-r (write-read),
and w-w (write-write).

 rj[x] reads from wi[x] iff

 wi[x] < rj[x].

 There is no wk[x] such that wi[x] < wk[x] < rj[x].

 Two schedules are equivalent iff

 Every read operation reads from the same write operation in both
schedules.

 Both schedules have the same final writes.

 When a non-serial schedule is equivalent to a serial schedule,
it is called serializable schedule.

Concepts

A nonserializable schedule (a) and serializable

 schedule (b) for Example 22.

Transaction (step) Action

T1(1) read A(obtaining

A_balance)

T1(2)

read B(obtaining

B_balance)

T1(3)

write A_balance-

$10 to A

T2(1)

read B(obtaining

B_balance)

T2(1)

write B_balance-

$5 to B

T2(4)

write

B_balance+$10

to B

(a)

Transaction (step) Action

T1(1) read A(obtaining

A_balance)

T2(1)

read B(obtaining

B_balance)

T2(1)

write B_balance-

$5 to B

T1(2)

read B(obtaining

B_balance)

T1(3)

write A_balance-

$10 to A

T1(4)

write

B_balance+$10

to B

(b)

Concurrency Control

 Locking scheme

 Timestamp-based scheme

 Optimistic concurrency control

Focus 18: Two-Phase Locking

 A transaction is well-formed if it

 locks an object before accessing it,

 does not lock an object that is already locked, and

 before it completes, unlocks each object it has locked.

 A schedule is two-phase if no object is unlocked before all

needed objects are locked.

Two-phase locking

Example 23: Well-Formed, Two-Phase

Transactions

T1: begin
 lock A
 read A (obtaining A balance)
 lock B
 read B (obtaining B balance)
 write A_balance-$10 to A
 unlock A
 write B_balance+$10 to B
 unlock B
 end

T2: begin
 lock B
 read B (obtaining B balance)
 write B_balance-$5 to B
 unlock B
 end

Different Looking Schemes

 Centralized locking algorithm: distributed

transactions, but centralized lock management.

 Primary-site locking algorithm: each object has a

single site designated as its primary site (as in

INGRES).

 Decentralized locking: The lock management duty is

shared by all the sites.

Focus 19: Timestamp-based Concurrency

Control

 Timer(x) (Timew(x)): the largest timestamp of any

read (write) processed thus far for object x.

 (Read) If ts < Timew(x) then the read request is rejected

and the corresponding transaction is aborted; otherwise, it

is executed and Timer(x) is set to max{Timer(x), ts}.

 (Write) If ts < Timew(x) or ts < Timer(x), then the write

request is rejected; otherwise, it is executed and Timew(x)

is set to ts.

Example 24

 Timer(x) = 4 and Timew(x) = 6 initially.

 Sample:

 read(x,5), write(x,7), read(x,9), read(x, 8), write(x,8)

 First and last are rejected and Timer(x) = 7, Timew(x)

= 9 when completed.

Conservative Timestamp Ordering

 Each site keeps a write queue (W-queue) and a read

queue (R-queue).

 A read (x, ts) request is executed if all W-queues are

nonempty and the first write on each queue has a

timestamp greater than ts; otherwise, the read request is

buffered in the R-queue.

 A write (x, ts) request is executed if all R-queues and W–

queues are nonempty and the first read (write) on each R-

queue (W-queue) has a timestamp greater than ts;

otherwise, the write request is buffered in the W-queue.

Strict Consistency

 Any read returns the result of the most recent write.

 Impossible to enforce, unless

 All writes are instantaneously visible to all processes.

 All reads get the then-current values, no matter how

quickly next writes are done.

 An absolute global time order is maintained.

Weak Consistency

 Sequential consistency: All processes see all shared

accesses in the same order.

 Causal consistency: All processes see causually-

related shared accesses in the same order.

 FIFO consistency: All process see writes from each

process in the order they were issued.

 Weak consistency: Enforces consistency on a group

of operations, not on individual reads and writes.

 Release consistency: Enforces consistency on a

group of operations enclosed by acquire and release

operations.

 Eventual consistency: All replicas will gradually

become consistent. (Web pages with dominated read

operations.)

Weak Consistency (Cont’d)

Example 25: Sample Consistent Models

causally-consistent

P1 W(x,a) W(x,c)

P2 R(x,a) W(x,b)

P3 R(x,a) R(x,c) R(x,b)

P4 R(x,a) R(x,b) R(x,c)

P1 W(x,a)

P2 R(x,a) W(x,b)

P3 R(x,b) R(x,a)

P4 R(x,a) R(x,b)

non-causally-consistent

Example 25 (Cont’d)

FIFO-consistent

P1 W(x,a)

P2 R(x,a) W(x,b) W(x,c)

P3 R(x,b) R(x,a) R(x,c)

P4 R(x,a) R(x,b) R(x,c)

Update Propagation

 State versus Operations

 Propagate a notification of an update (such as invalidate signal)

 Propagate data

 Propagate the update operation

 Pull versus Push

 Push-based approach (server-based)

 Pull-based approach (client-based)

 Lease-based approach (hybrid of push and pull)

 Consistency of duplicated data

 Write-invalidate vs. write-through

 Quorum-voting as an extension of single-write/multiple-read

Focus 20: Quorum-Voting

 w > v/2 and r + w > v

 where w and r are write and read quorum and v is the total

number of votes.

Hierarchical Quorum Voting

A 3-level tree in the hierarchical quorum voting with read quorum= 2 and

write quorum = 3.

Gray's Two-Phase Commitment Protocol

The finite state machine model for the

two-phase commit protocol.

Phase 1

At the coordinator:

 /*prec: initiate state (q) */
1. The coordinator sends a commit_request message to every participant
and waits for replies from all the participants.

 /*postc: waiting state (w) */

At participants:

 /*prec: initiate state (q)*/
1. On receiving the commit_request message, a participant takes the

following actions. If the transaction executing at the participant is
successful, it writes undo and redo log, and sends a yes message to the
coordinator; otherwise, it sends a no message.

 /*postc: wait state (w) if yes or abort state (a) if no*/

Phase 2

At the coordinator

 /*prec: wait state (w)*/

 1. If all the participants reply yes then the coordinator writes a commit record

into the log and then sends a commit message to all the participants.

Otherwise, the coordinator sends an abort message to all the participants.

 /*postc: commit state (c) if commit or abort state (a) if abort */

2. If all the acknowledgments are received within a timeout period, the

coordinator writes a complete record to the log; otherwise, it resends the

commit/abort message to those participants from which no

acknowledgments were received.

Phase 2 (Cont’d)

At the participants

/*prec: wait state (w) */
1. On receiving a commit message, a participant releases all the resources and

locks held for executing the transaction and sends an acknowledgment.

/*postc: commit state (c) */
 /*prec: abort state (a) or wait state (w) */

2. On receiving an abort message, a participant undoes the transaction using

the undo log record, releases all the resources and locks held by it, and
sends an acknowledgment.

/*postc: abort state (a) */

Site Failures and Recovery Actions

Location Time of failure Actions at coordi. Actions at parti.

Coordi. Before commit Broadcasts abort on

recovery

Committed parti.

Undo the trans.

Coordi. Before complete

after commit

Broadcasts commit

on recovery

__

Coordi. After complete -- --

Parti. In Phase 1 Coordi. aborts the

transaction

__

Parti. In Phase 2 __ Commit/abort on

recovery

Two Types of Logs

 undo log allows an uncommitted transaction to record in

stable storage values it wrote.

 redo log allows a transaction to commit before all the values

written have been recorded in stable storage.

A recovery example.

 A protocol is synchronous within one state transition if one

site never leads another site by more than one state transition.

 concurrent set C(s): the set of all states of every site that may

be concurrent with state s.

 In two-phase commitment: C (w(c)) = {c(p), a(p), w(p)} and

C (q(p)) = {q(c), w(c)} (w(c) is the w state of coordinator and

q(p) is the q state of participant).

 In three-phase commitment: C (w(c)) = {q(p), w(p), a(p)} and

C (w(p)) = {a(c), p(c), w(c)}.

Concepts

Skeen's Three-Phase Commitment Protocol

Exercise 6

1. For the following two transactions:
 T1 begin
 1 read A (obtaining A balance)
 2 write A balance\Gamma $10 to A
 3 read B (obtaining B balance)
 4 write A balance+$10 to B
 end

 T2 begin
 1 read A (obtaining A balance)
 2 write A balance+$5 to A
 end

 (a) Provide all the interleaved executions (or schedules).
 (b) Find all the serializable schedules among the schedules obtained in (a).

Exercise 6 (Cont’d)

2. Point out serializable schedules in the following

L1 = w2(y)w1(y)r3(y)r1(y)w2(x)r3(x)r3(z)r2(z)
L2 = r3(z)r3(x)w2(x)r2(z)w1(y)r3(y)w2(y)r1(y)
L3 = r3(z)w2(y)w2(x)r1(y)r3(y)r2(z)r3(x)w1(y)
L4 = r2(z)w2(y)w2(x)w1(y)r1(y)r3(y)r3(z)r3(x)

3. A voting method called voting-with-witness replaces some of the replicas

by witnesses. Witnesses are copies that contain only the version number
but no data. The witnesses are assigned votes and will cast them when
they receive voting requests. Although the witnesses do not maintain data,
they can testify to the validity of the value provided by some other replica.
How should a witness react when it receives a read quorum request? What
about a write quorum request? Discuss the pros and cons of this method.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Type of Faults

 Types of faults:

 Hardware faults

 Software faults

 Communication faults

 Timing faults

 Schneider’s classification:

 Omission failure

 Failstop failure (detectable)

 Crash failure (undetectable)

 Crash and link failure

 Byzantine failure

Redundancy

 Hardware redundancy: extra PE's, I/O's

 Software redundancy: extra version of software modules

 Information redundancy: error detecting code

 Time redundancy: additional time used to perform a

function

Fault Handling Methods

 Active replication

 Passive replication

 Semi-active replication

Building Blocks of Fault-Tolerant Design

 Stable storage is a logical abstraction for a special storage

that can survive system failure.

 Fail-stop processors do not perform any incorrect action and

simply cease to function.

 An atomic action is a set of operations which are executed

indivisibly by hardware. That is, either operations are

completed successfully and fully or the state of the system

remains unchanged (operations are not executed at all).

 Storage of checkpoints

 Checkpointing methods

An example of domino effect.

Domino Effect

Focus 21: Byzantine Faults

 Several divisions of the Byzantine army camp outside an

enemy city. Each division commanded by its own general.

Generals from different divisions communicate only through

messengers. Some of the generals may be traitors. After

observing the enemy, the generals must decide upon a

common battle plan.

Two Requirements

 All loyal generals decide upon the same plan of action

 A small number of traitors cannot cause the loyal generals to

adopt a wrong plan

Focus 21 (Cont’d)

 Theoretical result:

n 3m + 1

where n is the total number of generals and m is the number

of traitors.

Agreement Protocol

An algorithm for reaching agreement.

P1* P2 P3 P4

First round:

(-,v2,v3,v4)

(v1
2, -,v3, v4)

(v1
1,v2,- v4)

(v1
3,v2, v3,-)

Second round:

(v1
2, -, v3, v4)

(v1
1, v2, -, v4)

(v1
3, v2, v3, -)

(v1
1, v2, -, v4)

(v1
3, v2, v3, -)

(-, v2
4, v3

4, v4
4)

(v1
1, -, v3, v4)

(v1
3, v2, v3, -)

(-, v2
5, v3

5, v4
5)

(v1
2, -, v3, v4)

(v1
1, v2, -, v4)

(-, v2
6, v3

6, v4
6)

(d1, d2,d3, d4) (v1
7, v2, v3, v4) (v1

7, v2, v3, v4) (v1
7, v2, v3, v4)

No-Agreement Among Three Processes

Cases leading to failure of the Byzantine agreement.

Extended Agreement Protocols

 Boolean values or arbitrary real values for the decisions.

 Unauthenticated or authenticated messages.

 Synchronous or asynchronous.

 Completely connected network or partially connected
networks.

 Deterministic or randomized.

 Byzantine faults or fail-stop faults.

 Non-totally decentralized control system and, in particular,
hierarchical control systems.

Reliable Communication

 Acknowledgement: acknowledge the receipt of each packet.

 TCP: transport protocol for reliable point-to-point comm.

 Negative acknowledgement

 Signal for a missing packet.

 Pros: better scalability (without positive acknowledgement).

 Cons: sender is forced to keep each packet in the buffer forever.

Reliable Group Communication

 Feedback suppression: multicast or broadcast each positive

(or negative) acknowledge.

 Combination of positive and negative acknowledgements

Example 26: Combination of Positive and

Negative Acknowledgements in Broadcasting.

 Let A be a packet and a (a) the positive (negative)
acknowledgement for A.

A,Ba,Cb,Db,Ec,F cd,Cb,Gdef

 1.Message A is sent first, acknowledged by the sender of B, which is in
turn acknowledged by the senders of C and D.

2. The sender of E acknowledges C and the sender of F acknowledges
the receipt of D but a negative acknowledgment of C .

3. Some node (not necessarily the original sender) retransmits C .

 4. The sender of G acknowledges both E and F but sends a negative
acknowledgment of D (after receiving F).

Different Types of Reliable Multicasting

 Reliable multicast: no message ordering

 FIFO multicast: FIFO-ordered delivery

 Causal multicast: causal-ordered delivery

 Atomic multicast: reliable multicast + total-ordered delivery

 FIFO atomic multicast: FIFO multicast + total-ordered

delivery

 Causal atomic multicast: Causal multicast + total-ordered

delivery

Focus 22: Total-Ordered Multicasting

 Total-ordered multicasting

 Each transfer order (message) can be assigned a global sequence

number.

 There exists a global sequence.

 Sequencer

 The sender sends message to a sequencer

 The sequencer allocates a global sequence number to the message.

 The message is delivered by every destination based on the order.

Implementations of Sequencer

 Privilege-based (token circulated among the senders)

 Fixed sequencer (a fixed third party)

 Moving sequencer(token circulated among the third-party

nodes)

Multicast with Total Order

seq(m1) < seq(m2)

Neither seq(m1) < seq(m2) nor seq(m2) < seq(m1)

Multicast

with total

order

Multicast

without total

order

Focus 23: Birman’s Virtual Synchrony

 Virtual synchrony: reliable multicast with a special property.

 View: a multicast group.

 View change: (a) a new process joins, (b) a process leaves,
and
(c) a process crashes.

 Each view change is multicast to members in the group.

 Special property: each view change acts as a barrier across
which no multicast can pass. (Application: distributed
debugging.)

Focus 23 (Cont’d)

Virtual synchrony.

Implementing a Virtual Synchronous

Reliable Multicast

 Message received versus message delivered.

 If message m has been delivered to all members in the group,

m is called stable.

 Point-to-point communication is reliable (TCP).

 Sender may crash before completing the multicasting. (Some

members received the message but others did not.)

Message receipt versus message delivery.

 At group view Gi, a view changed is multicast.

 When a process receives the view-change message for Gi+1, it
multicasts to Gi+1 a copy of unstable messages for Gi
followed by a flush message.

 A process installs the new view Gi+1 when it has received a
flush message from everyone else.

Virtual synchrony.

Implementing a Virtual Synchronous

Reliable Multicast (Cont’d)

Reliable Process

Active model

Passive model

Exercise 7

 1. Use a practical example to illustrate the differences among faults,
errors, and failures.

 2. Illustrate the correctness of the agreement protocol for authenticated
messages using a system of four processes with two faulty processes. You
need to consider the following two cases:
 The sender is healthy and two receivers are faulty (the remaining receiver is healthy).

 The sender is faulty and one receiver is faulty (the remaining receivers are healthy).

 3. In Byzantine agreement protocol k + 1 rounds of message exchanges
are needed to tolerant k faults. The number of processes n is at least 3k +
1. Assume P1 and P2 are faulty in a system of n = 7 processes.

 (a) Show the messages P3 receives in first, second, and third round.

 (b) Demonstrate the correctness of the protocol by showing the final result
vector (after a majority voting) for P3.

 (c) Briefly show that result vectors for other non-faulty processes are the
same.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

Distributed Operating Systems

 Key issues
 Communication primitives

 Naming and protection

 Resource management

 Fault tolerance

 Services: file service, print service, process service, terminal service,
file service, mail service, boot service, gateway service

 Distributed operating systems vs. network operating
systems

 Commercial and research prototypes

 Wiselow, Galaxy, Amoeba, Clouds, and Mach

Distributed File Systems

 A file system is a subsystem of an operating system whose
purpose is to provide long-term storage.

 Main issues:

 Merge of file systems

 Protection

 Naming and name service

 Caching

 Writing policy

 Some research prototypes:

 UNIX United, Coda, Andrew (AFS), Frangipani, Sprite, Plan 9,
DCE/DFS, XFS, and Farsite (Microsoft Research).

Distributed Shared Memory

 A distributed shared memory is a shared memory

abstraction what is implemented on a loosely coupled system.

Distributed shared memory.

Focus 24: Stumm and Zhou's Classification

 Central-server algorithm (nonmigrating and

nonreplicated).

 (Client) Sends a data request to the central server.

 (Central server) Receives the request, performs data

access and

sends a response.

 (Client) Receives the response.

Focus 24 (Cont’d)

 Migration algorithm (migrating and non-
replicated).

 (Client) If the needed data object is not local, determines
the
location and then sends a request.

 (Remote host) Receives the request and then sends the
object.

 (Client) Receives the response and then accesses the data
object (read and /or write).

Focus 24 (Cont’d)

Read-replication algorithm (migrating and

replicated)

(Client) If the needed data object is not local,

determines the location and sends a request.

(Remote host) Receives the request and then sends the

object.

Focus 24 (Cont’d)

(Client) Receives the object and then multicasts by

sending either invalidate or update messages to all sites

that have a copy of the data object.

(Remote host) Receives an invalidation signal and then

invalidates its local copy, or receives an update signal

and then updates the local copy.

(Client) Accesses the data object (write).

Focus 24 (Cont’d)

 Full-replication algorithm (non-migrating and

replicated)

 (Client) If it is a write, sends the data object to the

sequencer.

 (Sequencer) Receives the data object and adds a sequence

number. Sends the client a signal with the sequence

number and multicasts the data object together with the

sequence number to all the other sites.

Focus 24 (Cont’d)

 (Client) Receives the acknowledgment and updates local

memory based on the sequence number of each data

object.

(Other sites) Receive the data object and update local

memory based on the sequence number of each data

object.

Focus 24 (Cont’d)

 Main Issues:

 Structure and granularity

 Coherence semantics

 Scalability

 Heterogeneity

 Several research prototypes:

 Dash, Ivy, Munin, and Clouds

 Alewife (MIT), Treadmarks (Rice), Coherent Virtual machine

(Maryland), and Millipede (Israel Inst. Tech.)

Distributed Database Systems

 A distributed database is a collection of multiple, logically
interrelated databases distributed over a computer network.

 Possible design alternatives:

 Autonomy

 Distribution

 Heterogeneity

Distributed Database Systems (Cont’d)

Alternative architectures.

Essentials of Distributed Database Systems

 Local autonomy

 No reliance on a central site

 Continuous operation

 Location independence

 Fragment independence

 Replication independence

 Distributed query processing

 Distributed transaction management

 Hardware independence

 Operating system independence

 Network independence

 Data independence

 Network scaling problem

 Distributed query processing

 Integration with distributed operating systems

 Heterogeneity

 Concurrency control

 Security

 Next-generation database systems:

 Object-oriented database management systems

 Knowledge base management systems

Open Research Problems

 ADDS (Amocha Distributed Database Systems)

 JDDBS (Japanese Distributed Database Systems)

 Ingres/star

 SWIFT (Society for Worldwide Interbank Financial Financial
Telecommunication)

 System R

 MYRIAD

 MULTIBASE

 MERMAID

Research Prototypes and Commercial

Products

Heterogeneous Processing

 Tuned use of diverse processing hardware to meet

distinct computational needs.

 Mixed-machine systems. Different execution modes by

inter-connecting several different machine models.

 Mixed-mode systems. Different execution modes by

reconfigurable parallel architecture obtained by

interconnecting the same processors.

Classifications

 Single Execution Mode/Single Machine Model
(SESM)

 Single Execution Mode/Multiple Machine Models
(SEMM)

 Multiple Execution Modes/Single Machine Model
(MESM)

 Multiple Execution Modes/Multiple Machine
Models (MEMM)

Focus 25: Optimization

An optimization problem that minimizes

 ti,j

such that

 cj C

where ti,j equals the time for machine i on code segment j, ci
equals the cost for machine i, C equals the specified overall
cost constraint.

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

"Killer" Applications

 Distributed Object-based Systems: CORBA

 Distributed Document-based Systems: WWW

 Distributed Coordination-based Systems: JINI

 Distributed Multimedia Systems: QoS requirements

Recent Applications: MapReduce

 A framework for processing highly distributable problems

across huge datasets on a file system or a database.

 Map: In a recursive way, the master node takes the input, divides it

into smaller sub-problems, and distributes them to worker nodes. A

multi-level tree structure is formed.

 Reduce: The master node then collects the answers to all the sub-

problems and combines them in some way to form the output – the

answer to the problem it was originally trying to solve.

 Apache Hadoop: a software framework that supports data-intensive

distributed applications under a free license. It was derived from Google’s

MapReduce and Google File System (GFS).

Recent Applications: PageRank

A link analysis algorithm

 PR(E): Rage Rank of E

 likelihood that a person

randomly clicking on links

will arrive at any particular

page

M(pi): set of pages link to pi,

L(pj): the number of outgoing

links on pj, d: dumping

factor, N: total number of

pages.

HITS (Jon Kleinberg): each node has

two values in a mutual recursion

• Authority: the sum of the Hub

Scores of each node that points to it.

• Hub: the sum of the Authority

Scores of each node that it points to.

Emerging Systems

 Wireless networks and mobile computing: mobile agents

 Move the computation to the data rather than the data to the

computations.

 Grid

 TeraGrid: 13.6 teraflops of Linux Cluster computing power

distributed at the four TeraGrid sites.

 Open Grid Services Architecture (OGSA): delivering tighter

integration between grid computing networks and Web services

technologies.

 Grid Computing (via OGSA) as the basis of evolution of Internet

computing in the future.

Distributed Grid

OptIPuter (UC San Diego and U. of Chicago)

 Parallel optical networks using IP

 Supernetworks: networks faster than the computers attached to them

 Parallelism takes the form of multiple wavelengths, or lambdas (1-10
Gbps)

 A new resource abstraction: distributed virtual computer

E-Science (UK Research Councils, 2001)

 Large-scale science carried out through distributed global
collaboration enabled by networks, requiring access to very large data
collaborations, very large-scale computing resources, and high-
performance visualization.

Cloud Computing

Sharing of resources to achieve
coherence and economies of scale
similar to utility (e.g. electricity
grid) over a network (e.g. Internet)

 Characteristics

• Agility, API, cost, device,
virtualization, multi-tenancy,
reliability, scalability,
performance, security,
maintenance

 Service
• Infrastructure as a Service (LaaS)

• Platform as a Service (PaaS)

• Software as a Service (SaaS)

Cyber infrastructure

Infrastructure composed of “cyber” elements

 Includes High-End Computing (Supercomputing), grid
computing, distributed computing, etc

Working definition

 An integrated system of interconnected computation,
communication, or information element that supports a range
of applications

Cyberinfrastructure (con’t)

 Cyberinfrastructure consists of

 Computational engines (supercomputers, clusters, workstations, small processors,

…)

 Mass storage (disk drives, tapes, …)

 Networking (including wireless, distributed, ubiquitous)

 Digital libraries/data bases

 Sensors/effectors

 Software (OS, middleware, domain specific tools)

 Services (education, training, consulting, user assistance)

Cyberinfrastructure (con’t)

 Characteristics
 Built on broadly accessible, highly capable network: 100’s of terabits

backbones down to intermittent, wireless connectivity at very low speeds;

 Contains significant and varied computing resources: 100’s of petaflops at

high ends, with capacity to support most scientific work;

 Contains significant storage capacity: exabyte collections common; high-

degree of DB confederation possible;

 Allows wide range of of sensors/effectors to be connected: sensor nets of

millions of elements attached;

 Contains a broad variety of intelligent visualization, search, database,

programming and other services that are fitted to specific disciplines.

Cyberinfrastructure (con’t)

 Technical Challenges

 Computer Science and Engineering broadly

 How to build the components

 Networks, processors, storage devices, sensors, software

 How to shape the technical architecture

 Pervasive, many cyberinfrastructures, constantly evolving/changing capabilities

 How to customize cyberinfrastructures to particular S&E domains

Vision of the Field

Convergence of Multiple Disciplines

 Parallel processing, distributed systems, and network computing

 Distributed computing as an important component in

Cyberinfrastructure

• Upper and middle layers in integrated cyberinfrastructure

 Ultimate Cyberinfrastructure

• Network-Centric

• Petascale computing, exabyte storage, and terabit networks

Vision of the Field (Con’t.)

Diverse aspects (ICDCS’04 areas)

• Agents and Mobile Code

• Distributed Algorithms

• Distributed Data Management

• Distributed Operating Systems

• Middleware

• Multimedia

• Network Protocols

• Peer-to-Peer Communication

• Real-time and Embedded Systems

• Security and Fault Tolerant Systems

• Ubiquitous Computing

• Wireless Communication and Networks

The Future of Distributed Computing

 Theoretical aspects, including global state, logical/physical clock,

synchronization, and algorithm verification.

 Fault tolerance and crash recovery through software fault tolerance.

 Tools (for CASE and performance measure) and languages are badly

needs.

 High-performance systems that connects 105 or more processors.

 Real-time distributed systems used for automated manufacturing,

remote sensing and control, and other time-critical missions.

 Actual distributed systems with significantly improved fault tolerance,

resource sharing, and communications. These systems will function as

single, coherent, powerful, virtual machines providing transparent user

access to network-wide resources.

Major “old” Challenges

 Transparency

 Scalability

 The need to meet various goals

• Real time constraints

• Fault tolerance

• Security

• Other quality/performance related objectives

 Cross-field interaction

Major “New” Challenges: Others

Supernetworks: networks are faster than the computers

attached to them

 Endpoints scale to bandwidth-match the network with multiple-

10Gbps lambdas

 Models that simplify distributed application programming

 Middleware for bandwidth-matching distributed resources

High-speed, parallel-access storage abstractions

Adaptive and peer-to-peer data access

Real-time object models enabling predictable performance

Fault tolerance and security protocols and models

Major “New” Challenges: Green

Computing

 Also green IT and ICT

Sustainability

 Article: Harnessing Green

IT: Principles and Practices

 Government

 EPA’s Energy Star program

 Industry

 Climate Savers Computing

Initiative

 The Green Grid

 Green500

 Green Comm Challenge

 Algorithmic efficiency

 Resource allocation

 Virtualization

 Terminal servers (thin client)

 Power management

 Data center power

 Operating system support

 Power supply

 Storage

 Video card

 Display

 Materials recycling

 Telecommuting

Table of Contents

 Introduction and Motivation

 Theoretical Foundations

 Distributed Programming Languages

 Distributed Operating Systems

 Distributed Communication

 Distributed Data Management

 Reliability

 Applications

 Conclusions

 Appendix

A List of Common Symbols in DCDL

 Alternate

* Repetition

|| Parallel

 Condition

; Sequence

Send Output

:= Assignment

Receive Input

:: Definition

[Begin

] End

 For all (universal quantifier)

 There exist (existential quantifier)

= Equal

 Unequal

 OR

 AND

 NOT

Ideas for Projects

 Scalability metric

 Amdahl's law and Gustafson law

 time-constrained

 efficiency-constrained

 memory-constrained scaling

 Parallel/distributed environment

 MPI

 PVM

 Parallel/distributed system model

 including criteria to access their suitability.

 Networks of workstations

 with applications

 Distributed simulation

 Petri nets and other related models

Ideas for Projects (Cont’d)

 Mobile computing

 Routing

 Checkpointing

 channel allocation

 Information model

 switch-based LANS

 internet

 Routing

 Optimal

 fault tolerant

 deadlock-free.

 Scheduling

 static and dynamic load distribution.

Ideas for Projects (Cont’d)

 Fault tolerance

 various applications

 Scalable design

 interconnection networks.

 Survey

 Database, file, DSM, heterogeneous computing, OS, etc.

 Collective communication

 multicast, broadcast, barrier sync., etc.

 RPC and remote message passing

 different approaches.

 Consistency models and applications

 different weak consistency models.

