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Development of Computer Technology 

 1950s: serial processors  

 1960s: batch processing  

 1970s: time-sharing  

 1980s: personal computing 

 1990s: parallel, network, and distributed processing 

 2000s: wireless networks  

 2010s: mobile and cloud computing 

 



 A distributed system is a collection of independent 

computers that appear to the users of the system as a single 

computer. 

 Distributed systems are "seamless": the interfaces among 

functional units on the network are for the most part invisible 

to the user. 

System structure from the physical (a) or logical point of view (b). 

A Simple Definition 



Motivation 

 People are distributed, information is distributed (Internet and 

Intranet) 

 Performance/cost  

 Information exchange and resource sharing (WWW and 

CSCW) 

 Flexibility and extensibility 

 Dependability 

 



Two Main Stimuli 

 Technological change  

 User needs 

 

 



Goals 

 Transparency: hide the fact that its processes and resources 
are physically distributed across multiple computers. 

 Access  

 Location 

 Migration 

 Replication  

 Concurrency  

 Failure  

 Persistence 

 Scalability: in three dimensions 

 Size  

 Geographical distance 

 Administrative structure 



Goals (Cont’d.) 

 Heterogeneity (mobile code and mobile agent) 

 Networks  

 Hardware  

 Operating systems and middleware  

 Program languages 

 Openness 

 Security 

 Fault Tolerance 

 Concurrency 



Scaling Techniques 

 Latency hiding (pipelining and interleaving execution)  

 Distribution (spreading parts across the system)  

 Replication (caching) 



Example 1: (Scaling Through Distribution)  

URL searching based on hierarchical DNS name space 
(partitioned into zones). 

DNS name space. 



Design Requirements 

 Performance Issues 
 Responsiveness 

 Throughput 

  Load Balancing 

 Quality of Service 
 Reliability 

 Security 

 Performance 

 Dependability 
 Correctness  

 Security  

 Fault tolerance 



Similar and Related Concepts 

 Distributed 

 Network 

 Parallel 

 Concurrent  

 Decentralized 



Schroeder's Definition 

 A list of symptoms of a distributed system  
 Multiple processing elements (PEs)  

 Interconnection hardware  

 PEs fail independently  

 Shared states 

 



Focus 1: Enslow's Definition 

  Distributed system = distributed hardware + distributed control + 

distributed data 

 

  A system could be classified as a distributed system if all three 

categories (hardware, control, data) reach a certain degree of 

decentralization. 

 



Focus 1 (Cont’d.) 

Enslow's model of distributed systems. 



Hardware 

 A single CPU with one control unit. 

 A single CPU with multiple ALUs (arithmetic and logic 

units).There is only one control unit. 

 Separate specialized functional units, such as one CPU with 

one floating-point co-processor. 

 Multiprocessors with multiple CPUs but only one single I/O 

system and one global memory. 

 Multicomputers with multiple CPUs, multiple I/O systems 

and local memories. 



Control 

 Single fixed control point. Note that physically the system 
may or may not have multiple CPUs. 

 Single dynamic control point. In multiple CPU cases the 
controller changes from time to time among CPUs. 

 A fixed master/slave structure. For example, in a system with 
one CPU and one co-processor, the CPU is a fixed master and 
the co-processor is a fixed slave. 

 A dynamic master/slave structure. The role of master/slave is 
modifiable by software. 

 Multiple homogeneous control points where copies of the 
same controller are used. 

 Multiple heterogeneous control points where different 
controllers are used. 



Data 

 Centralized databases with a single copy of both files and 
directory. 

 Distributed files with a single centralized directory and no 
local directory. 

 Replicated database with a copy of files and a directory at 
each site. 

 Partitioned database with a master that keeps a complete 
duplicate copy of all files. 

 Partitioned database with a master that keeps only a complete 
directory. 

 Partitioned database with no master file or directory. 

 



Network Systems 

 Performance scales on throughput (transaction response time 

or number of transactions per second) versus load. 

 Work on burst mode. 

 Suitable for small transaction-oriented programs (collections 

of small, quick, distributed applets). 

 Handle uncoordinated processes. 



Parallel Systems 

 Performance scales on elapsed execution times versus 

number of processors (subject to either Amdahl or Gustafson 

law). 

 Works on bulk mode.  

 Suitable for numerical applications (such as SIMD or SPMD 

vector and matrix problems). 

 Deal with one single application divided into a set of 

coordinated processes. 



Distributed Systems 

A compromise of network and parallel 

systems. 

 



Comparison 

 

 

 

 

Comparison of three different systems. 

Item Network sys. Distributed sys. Multiprocessors 

Like a virtual 

uniprocessor 

No Yes Yes 

Run the same operating 

system 

No Yes  Yes 

 

Copies of the operating 

system 

N copies N copies 1 copy 

Means of 

communication  

Shared files Messages  Shared files 

Agreed up network 

protocols? 

Yes Yes No 

A single run queue No Yes Yes 

Well defined file 

sharing 

Usually no Yes Yes 



Focus 2: Different Viewpoints 

 Architecture viewpoint 

 Interconnection network viewpoint 

 Memory viewpoint 

 Software viewpoint 

 System viewpoint 



Architecture Viewpoint 

 Multiprocessor: physically shared memory structure 

 Multicomputer: physically distributed memory structure. 



Interconnection Network Viewpoint 

 static (point-to-point) vs. dynamics (ones with switches). 

 bus-based (Fast Ethernet) vs. switch-based (routed instead of 

broadcast). 



Interconnection Network Viewpoint (Cont’d.) 

Examples of dynamic interconnection 

networks: (a) shuffle-exchange, (b) 

crossbar, (c) baseline, and (d) Benes. 



Interconnection Network Viewpoint (Cont’d.) 

Examples of static interconnection 
networks: (a) linear array, (b) ring, (c) 
binary tree, (d) star, (e) 2-d torus, (f ) 2-d 
mesh, (g) completely connected, and (h) 
3-cube. 



Measurements for Interconnection Networks 

 Node degree. The number of edges incident on a node. 

 Diameter. The maximum shortest path between any two 

nodes.  

 Bisection width. The minimum number of edges along a cut 

which divides a given network into equal halves. 

 



What's the Best Choice? (Siegel 1994) 

 A compiler-writer prefers a network where the transfer time 

from any source to any destination is the same to simplify the 

data distribution. 

 A fault-tolerant researcher does not care about the type of 

network as long as there are three copies for redundancy. 

 A European researcher prefers a network with a node 

degree no more than four to connect Transputers. 

 



What's the Best Choice? (Cont’d.) 

 A college professor prefers hypercubes and 
multistage networks because they are theoretically 
wonderful. 

 A university computing center official prefers 
whatever network is least expensive. 

 A NSF director wants a network which can best 
help deliver health care in an environmentally safe 
way. 

 A Farmer prefers a wormhole-routed network 
because the worms can break up the soil and help the 
crops! 

 



Memory Viewpoint 

Physically versus logically shared/distributed 

memory. 



Software Viewpoint 

 Distributed systems as resource managers like traditional 

operating systems. 

 Multiprocessor/Multicomputer OS  

 Network OS  

 Middleware (on top of network OS) 

 



Service Common to Many Middleware Systems 

 High level communication facilities (access 

transparency) 

 Naming  

 Special facilities for storage (integrated database) 

 

 

 

Middleware 



System Viewpoint 

 The division of responsibilities between system components 

and placement of the components. 



Client-Server Model 

 multiple servers 

 proxy servers and caches 

(a) Client and server and (b) proxy server. 
 



Peer Processes 

 

 

Peer processes. 



Mobile Code and Mobile Agents 

 

 

Mobile code (web applets). 



Prototype Implementations 

 Mach (Carnegie Mellon University) 

 V-kernel (Stanford University)  

 Sprite (University of California, Berkeley) 

 Amoeba (Vrije University in Amsterdam)  

 Systems R (IBM)  

 Locus (University of California, Los Angeles) 

 VAX-Cluster (Digital Equipment Corporation)  

 Spring (University of Massachusetts, Amherst)  

 I-WAY (Information Wide Area Year): High-performance 
computing centers interconnected through the Internet. 

 

 



 Theoretical foundations  

 Reliability  

 Privacy and security  

 Design tools and methodology  

 Distribution and sharing  

 Accessing resources and services  

 User environment  

 Distributed databases  

 Network research 

Key Issues (Stankovic's list) 



Wu's Book 

 Distributed Programming Languages 
 Basic structures 

 Theoretical Foundations 
 Global state and event ordering 

 Clock synchronization 

 Distributed Operating Systems 
 Mutual exclusion and election 

 Detection and resolution of deadlock  

 self-stabilization  

 Task scheduling and load balancing 

 Distributed Communication 
 One-to-one communication 

 Collective communication 



Wu's Book (Cont’d.) 

 Reliability 
 Agreement  

 Error recovery 

  Reliable communication 

 Distributed Data Management 
 Consistency of duplicated data 

  Distributed concurrency control 

 Applications 
 Distributed operating systems  

 Distributed file systems 

 Distributed database systems  

 Distributed shared memory  

 Distributed heterogeneous systems 

 



Wu's Book (Cont’d.) 

 Part 1: Foundations and Distributed Algorithms  

 Part 2: System infrastructure 

 Part 3: Applications 

 



What is Distributed Algorithms  

 Parallel Computing: efficiency 

 Real-Time: On-time computing 

 Distributed Computing: uncertainty 

 Simplicity, elegance, and beauty are first-class citizens 

   (Michel Raynal, 2013) 

 



Distributed Message-Passing Algorithms  

 Termination 

 In a social network, each person exchanges his/her friend 

list with friends. What is the stoppage condition? 

 Global State 

 How to design an observation algorithm by observing an 

execution without modifying its behavior? 

 Distributed Consensus 

 How to reach distributed consensus (e.g., binary 

decisions) in the presence of traitors? 

 

 

 



Distributed Message-Passing Algorithms  

 Logical Clock 

 How to order events in different systems with 

asynchronous clocks? How to discard obsolete data? 

 Data 

 How to replicate data and keep them consistent? 

 Load 

 How to distribute load in a load balanced way? 

 Routing 

 How to perform efficient routing that is deadlock-free 

and fault-tolerant? 
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Exercise 1 

  1. In your opinion, what is the future of the computing and 

the field of distributed systems?  

 

 2. Use your own words to explain the differences between 

distributed systems, multiprocessors, and network systems. 

 

 3. Calculate (a) node degree, (b) diameter, (c) bisection width, 

and (d) the number of links for an n x n 2-d mesh, an n x n 2-

d torus, and an n-dimensional hypercube. 
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State Model 

 A process executes three types of events: internal actions, 

send actions, and receive actions. 

 A global state: a collection of local states and the state of all 

the communication channels. 

System structure from logical point of view. 



Thread 

 lightweight process (maintain minimum information in its 

context) 

 multiple threads of control per process  

 multithreaded servers (vs. single-threaded process) 

A multithreaded server in a dispatcher/worker model. 



Happened-Before Relation 

The happened-before relation (denoted by ) is 

defined as follows: 

 

 Rule 1 : If a and b are events in the same process and a was 

executed before b, then a   b. 

 Rule 2 : If a is the event of sending a message by one process 

and b is the event of receiving that message by another 

process, then a   b. 

 Rule 3 : If a   b and b   c, then a   c. 

 



Relationship Between Two Events 

 Two events a and b are causally related if a  b or b   a. 

 

 Two distinct events a and b are said to be concurrent if a   

b and b   a (denoted as a || b). 

 

 



Example 2 

A time-space view of a distributed system. 

 



Example 2 (Cont’d.) 

 Rule 1: 
 a0   a1   a2   a3  

 b0   b1   b2   b3  

 c0   c1   c2   c3  

 

 Rule 2:  
 a0   b3 

  b1   a3, b2   c1, b0  c2 



Example 3 

An example of a network of a bank system. 



Example 3 (Cont’d.) 

 

 

A sequence of global states. 



Consistent Global State 

Four types of cut that cross  

a message transmission line. 



Consistent Global State (Cont’d.) 

A cut is consistent iff no two cut events are causally 

related. 

 Strongly consistent: no (c) and (d).  

 Consistent: no (d) (orphan message).  

 Inconsistent: with (d). 

 

 



Focus 3: Snapshot of Global States 

 A simple distribute algorithm to capture a consistent global 

state. 

 

 

A system with three processes Pi, Pj , and Pk. 



Chandy and Lamport's Solution 

 Rule for sender P :  

[ P records its local state  

||P sends a marker along all the channels on which a marker has not been 

sent.  

]  

 



Chandy and Lamport's Solution (Cont’d.) 

 Rule for receiver Q:  

/* on receipt of a marker along a channel chan */  

[ Q has not recorded its state   

  [ record the state of chan as an empty sequence and  

    follow the "Rule for sender"  

 ]  

     Q has recorded its state  

[ record the state of chan as the sequence of messages received 
along chan after the latest state recording but before receiving the 
marker  

 ]  

] 

 

 



Chandy and Lamport's Solution (Cont’d.) 

 It can be applied in any system with FIFO channels (but with 

variable communication delays). 

 The initiator for each process becomes the parent of the 

process, forming a spanning tree for result collection. 

 It can be applied when more than one process initiates the 

process at the same time. 

 



Focus 4: Lamport's Logical Clocks 

 Based on a “happen-before” relation that defines a 
partial order on events 

 Rule1. Before producing an event (an external send 
or internal event), we update LC : 

  LCi = LCi + d    (d > 0)  

 (d can have a different value at each application of 
Rule1) 

 Rule2. When it receives the time-stamped message 
(m, LCj , j), Pi executes the update 

  LCi = max{Lci, LCj} + d  (d > 0) 

 

 



Focus 4 (Cont’d.) 

 A total order based on the partial order derived 
from the happen-before relation 

   a ( in Pi )  b ( in Pj ) 

 iff 

 (1) LC(a) < LC(b) or (2) LC(a) = LC(b) and Pi < Pj  

 where < is an arbitrary total ordering of the process 
set, e.g., <can be defined as Pi < Pj iff i < j. 

 

 A total order of events in the table for Example 2: 

  a0 b0 c0 a1 b1 a2 b2 a3 b3 c1 c2 c3 

 

 

  

 



Example 4: Totally-Ordered Multicasting 

 Two copies of the account at A and B (with balance of 

$10,000).  

 Update 1: add $1,000 at A. 

 Update 2: add interests (based on 1% interest rate) at B.  

 Update 1 followed by Update 2: $11,110.  

 Update 2 followed by Update 1: $11,100. 

 



Vector and Matrix Logical Clock 

 Linear clock: if a  b then LCa < LCb  

 

 Vector clock: a  b iff LCa < LCb  

 

 Each Pi is associated with a vector LCi[1..n], where 

 LCi[i] describes the progress of Pi, i.e., its own process. 

 LCi [j] represents Pi’s knowledge of Pj's progress.  

 The LCi[1..n] constitutes Pi’s local view of the logical global time. 

 

  



Vector and Matrix Logical Clock (Cont’d.) 

 When d = 1 and init = 0 

 

 LCi[i] counts the number of internal events  

 LCi[j] corresponds to the number of events produced by Pj 

that causally precede the current event at Pi. 

 

 



Vector and Matrix Logical Clock (Cont’d.) 

 Rule1. Before producing an event (an external send or internal 
event ), we update LCi[i]: 

 

   LCi[i] := LCi[i] + d  (d > 0) 

 

 Rule2. Each message piggybacks the vector clock of the 
sender at sending time. When receiving a message (m, LCj , 
j), Pi executes the update. 

 

  LCi[k] := max (LCi[k]; LCj[k]), 1 k n   

  LCi[i] := LCi[i] + d 

 

 



Example 5 

 

 
 

 

 

An example of vector clocks. 



Example 6: Application of Vector Clock 

 Internet electronic bulletin board service 

 

 

 

 

 

 

 

    When receiving m with vector clock LCj from process j, Pi 
inspects timestamp LCj and will postpone delivery until all 
messages that causally precede m have been received. 

 

 

Network News. 



Matrix Logical Clock 

 Each Pi is associated with a matrix LCi[1..n, 1..n] 
where 

 LCi[i, i] is the local logical clock. 

 LCi[k, l] represents the view (or knowledge) Pi has about 
Pk's knowledge about the local logical clock of Pl. 

 

 If 

  min(LCi[k, i])   t 

  then Pi knows that every other process knows its 
progress until its local time t. 

 

 



Physical Clock 

 Correct rate condition: 

 i |dPCi(t)/ dt - 1 | <   

 

 Clock synchronization condition: 

  i j |PCi(t) - PCj(t)| <   

 

 



Lamport's Logical Clock Rules for 

Physical Clock 

 For each i, if Pi does not receive a message at physical time t, 

then PCi is differentiable at t and dPC(t)/dt > 0. 

 If Pi sends a message m at physical time t, then m contains 

PCi(t). 

 Upon receiving a message (m, PCj) at time t, process Pi sets 

PCi to maximum (PCi(t - 0), PCj + m) where m is a 

predetermined minimum delay to send message m from one 

process to another process. 

 

 



Focus 5: Clock Synchronization 

 UNIX make program: 

 Re-compile when file.c's time is large than file.o's. 

 Problem occurs when source and object files are generated at different 

machines with no global agreement on time. 

 Maximum drift rate  : 1-   dPC/dt   1+ 

 Two clocks (with opposite drift rate  ) may be 2t  apart at a time  

after last synchronization. 

 Clocks must be resynchronized at least every /2 seconds in order to 

guarantee that they will be differ by no more than . 

 



Cristian's Algorithm 

 Each machine sends a request every /2 seconds.  

 Time server returns its current time PCUTC (UTC: Universal 

Coordinate Time). 

 Each machines changes its clock (normally set forward or 

slow down its rate). 

  Delay estimation: (Tr - Ts - I)/2, where Tr is receive time, Ts 

send time, and I interrupt handling time. 



Cristian's Algorithm (Cont’d.) 

Getting correct time from a time server.  



Two Important Properties 

 Safety: the system (program) never enters a bad state.  

 Liveness: the system (program) eventually enters a good 

state. 

 Examples of safety property: partial correctness, mutual exclusion, 

and absence of deadlock. 

 Examples of liveness property: termination and eventual entry to a 

critical section. 

 



Three Ways to Demonstrate the Properties 

 Testing and debugging (run the program and see what 

happens) 

 Operational reasoning (exhaustive case analysis)  

 Assertional reasoning (abstract analysis) 

 



Synchronous vs. Asynchronous Systems 

Synchronous Distributed Systems: 

 

 The time to each step of a process (program) has known 

bounds.  

 Each message will be received within a known bound.  

 Each process has a local clock whose drift rate from real time 

has a known bound. 

 



Exercise 3 

1.Consider a system where processes can be dynamically created or 

terminated. A process can generate a new process. For example, P1 

generates both P2 and P3. Modify the happened-before relation and the 

linear logical clock scheme for events in such a dynamic set of processes. 

2. For the distributed system shown in the figure below. 

 

 



Exercise 3 (Cont’d) 

 Provide all the pairs of events that are related.  

 Provide logical time for all the events using 

 linear time, and 

 vector time 

 Assume that each LCi is initialized to zero and d = 1. 

3. Provide linear logical clocks for all the events in the system given in 

Problem 2. Assume that all LC's are initialized to zero and the d's for Pa, 

Pb, and Pc are 1, 2, 3, respectively. Does condition a  b   LC(a) < 

LC(b) still hold? For any other set of d's? and why? 
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Three Issues 

 Use of multiple PEs  

 Cooperation among the PEs  

 Potential for survival to partial failure 



Control Mechanisms 

 

 

Four basic sequential control mechanisms with 

 their parallel counterparts. 

Statement type \ 

Control type 

Sequential control Parallel Control 

Sequential/parallel 

statement 

Begin S1, S2  

end 

Parbegin S1, S2 

Parend 

Fork/join 

Alternative statement goto, case if C then 

S1 else S2 

Guarded commands: 

G C 

Repetitive statement for … do doall, for all 

Subprogram procedure 

Subroutine 

procedure 

subroutine 



Focus 6: Expressing Parallelism 

A precedence graph of eight statements. 

 

parbegin/parend statement 

 S1;[[S2;[S3||S4];S5;S6]||S7];S8 



Focus 6 (Cont’d.) 

fork/join statement 

  s1; 

  c1:= 2; 

  fork L1;  

  s2;  

  c2:=2;  

  fork L2; 

  s4;  

  go to L3;  

 L1: s3;  

 L2: join c1; 

  s5;  

 L3: join c2; 

  s6; 

 

 

 

 

A precedence graph. 



Dijkstra's Semaphore + Parbegin/Parend 

 S(i): A sequence of P operations; Si; a sequence of V 
operations  

 

 s: a binary semaphore initialized to 0. 

 

  S(1): S1;V(s12);V(s13)  

  S(2): P(s12);S2;V(s24);V(s25)  

  S(3): P(s13);S3;V(s35)  

  S(4): P(s24);S4;V(s46)  

  S(5): P(s25);P(s35);S5;V(s56)  

  S(6): P (s46); P (s56); S6 

 



Focus 7: Concurrent Execution 

 R(Si), the read set for Si, is the set of all variables whose 

values are referenced in Si. 

 W(Si), the write set for Si, is the set of all variables whose 

values are changed in Si. 

 Bernstein conditions: 

 R(S1)  W(S2) =   

 W(S1)  R(S2) =   

 W(S1)  W(S2) =   

 

 



Example 7 

S1 : a := x + y,  

S2 : b := x  z,  

S3 : c := y - 1, and  

S4 : x := y + z.  

S1||S2, S1||S3, S2||S3, and S3||S4. 

 

 Then, S1||S2||S3 forms a largest complete subgraph. 

 

 

 

 



Example 7 (Cont’d.) 

A graph model for Bernstein's conditions. 



 Alternative statement in DCDL (CSP like distributed control 

description language) 

 

 [ G1  C1    G2  C2     …    Gn  Cn ].  

 

  

Alternative Statement 



Calculate m = max{x, y}: 

  [x   y   m := x      y  x  m := y]  

 

Example 8 



Repetitive Statement 

 

*[ G1   C1     G2   C2    …    Gn   Cn ].  

 

 



Example 9 

meeting-time-scheduling ::= t := 0; 

 

  *[ t := a(t)     t := b(t)      t := c(t) ] 

 



Communication and Synchronization 

 One-way communication: send and receive  

 Two -way communication: RPC(Sun), RMI(Java and 

CORBA), and rendezvous (Ada) 

 Several design decisions: 

 One-to one or one-to-many  

 Synchronous or asynchronous  

 One-way or two-way communication  

 Direct or indirect communication 

  Automatic or explicit buffering 

  Implicit or explicit receiving 

 

 



Primitives Example Languages 

PARALLELISM 

    Expressing parallelism 

        Processes 

        Objects 

        Statements 

        Expressions 

        Clauses 

    Mapping 

        Static 

        Dynamic 

        Migration 

 

 

Ada, Concurrent C, Lina, NIL Emerald, 

Concurrent Smalltalk 

Occam 

Par Alfl, FX-87 

Concurrent PROLOG, PARLOG 

 

Occam, Star Mod 

Concurrent PROLOG, ParAlfl 

Emerald 

COMMUNICATION 

    Message Passing 

         Point-to-point messages 

         Rendezvous 

         Remote procedure call 

         One-to-many messages 

    Data Sharing 

         Distributed data Structures 

         Shared logical variables 

    Nondeterminism 

          Select statement 

          Guarded Horn clauses 

 

 

CSP, Occam, NIL 

Ada, Concurrent C 

DP, Concurrent CLU, LYNX 

BSP, StarMod 

 

Lina, Orca 

Concurrent PROLOG, PARLOG 

 

CSP, Occam, Ada, Concurrent C, SR 

Concurrent PROLOG, PARLOG 

PARTIAL FILURES 

    Failure detection 

    Atomic transactions 

    NIL 

 

Ada, SR 

Argus, Aeolus, Avalon 



Message-Passing Library for Cluster 

Machines (e.g., Beowulf clusters) 

 Parallel Virtual Machine (PVM): 

www.epm.ornl/pvm/pvm_home.html 

 Message Passing Interface (MPI): 

 www.mpi.nd.edu/lam/ 

 www-unix.mcs.anl.gov/mpi/mpich/ 

 Java multithread programming: 

 www.mcs.drexel.edu/~shartley/ConcProjJava  

 www.ora.com/catalog/jenut 

 Beowulf clusters: 

 www.beowulf.org 

 

http://www.epm.ornl/pvm/pvm_home.html
http://www.mpi.nd.edu/lam/
www-unix.mcs.anl.gov/mpi/mpich/
www-unix.mcs.anl.gov/mpi/mpich/
www-unix.mcs.anl.gov/mpi/mpich/
http://www.mcs.drexel.edu/~shartley/ConcProjJava
http://www.ora.com/catalog/jenut
http://www.beowulf.org/


Message-Passing (Cont’d.) 

 Asynchronous point-to-point message passing: 

 send message list to destination   

 receive message list {from source} 

 Synchronous point-to-point message passing: 

 send message list to destination 

 receive empty signal from destination 

 receive message list from sender 

 send empty signal to sender 



Example 10 

 The squash program replaces every pair of consecutive 

asterisks "**" by an upward arrow “”. 

 

input::= * [ send c to squash ] 

output::= * [ receive c from squash ] 

 

 



Example 10 (Cont’d.) 

squash::= 

 *[ receive c from input   

    [ c  * send c to output  

         [ c = * receive c from input; 

    [ c  * send * to output; 

         send c to output 

           c = * send   to output  

    ]  

         ]  

     ] 

   ]  



Focus 8: Fibonacci Numbers 

 F(i) = F(i-1) + F (i - 2) for i > 1, with initial values F(0) = 0 

and F(1) = 1. 

 F(i) = (  i -’i )/( -’) ,where  = (1+50.5)/2 (golden ratio) 

and ’ = (1-50.5)/2.  

 

 



Focus 8 (Cont’d.) 

 

 

 

  

A solution for F (n). 



Focus 8 (Cont’d.) 

 f(0) ::=  

send n to f(1); 

receive p from f(2);  

receive q from f(1);  

ans := q 

 f(-1) ::=  

receive p from f(1) 

 

 



Focus 8 (Cont’d.) 

 f(i) ::=  

receive n from f(i - 1); 

[ n > 1  [ send n - 1 to f(i + 1); 

    receive p from f(i + 2); 

    receive q from f(i + 1); 

    send p + q to f(i - 1); 

    send p + q to f(i - 2) ] 

     n = 1  [ send 1 to f(i - 1); 

     send 1 to f(i - 2) ]  

    n = 0  [ send 0 to f(i - 1); 

     send 0 to f(i - 2) ] 

 ] 



Another solution for F (n). 

Focus 8 (Cont’d.) 



 f(0)::=  

[ n > 1  [ send n to f(1); 

   receive p from f(1);     

  receive q from f(1);  

   ans := p 

    ] 

     n = 1  ans := 1  

     n = 0  ans := 0  

]  

Focus 8 (Cont’d.) 



 f(i)::=  

receive n from f(i - 1); 

[ n > 1  [ send n - 1 to f(i + 1); 

    receive p from f(i + 1); 

    receive q from f(i + 1); 

    send p + q to f(i - 1); 

    send p to f(i - 1) 

    ] 

       n = 1  [ send 1 to f(i - 1); 

        send 0 to f(i - 1) 

    ]  

] 

Focus 8 (Cont’d.) 



Focus 9: Message-Passing Primitives of MPI 

 MPI_send: asynchronous communication  

 MPI_send: receipt-based synchronous communication 

 MPI_ssend: delivery-based synchronous communication 

 MPI_sendrecv: response-based synchronous communication 

 

 

 

 



Focus 9 (Cont’d.) 

Message-passing primitives of MPI. 



Focus 10: Interprocess Communication in UNIX 

 Socket: int socket (int domain, int type, int protocol). 

 domain: normally internet. 

 type: datagram or stream. 

 protocol: TCP (Transport Control Protocol) or UDP (User Datagram 

Protocol) 

 Socket address: an Internet address and a local port number. 

 

 

 



Focus 10 (Cont’d.) 

Sockets used for datagrams 



High-Level (Middleware) Communication 

Services 

 Achieve access transparency in distributed systems  

 Remote procedure call (RPC) 

 Remote method invocation (RMI) 



Remote Procedure Call (RPC) 

 Allow programs to call procedures located on other machines. 

 Traditional (synchronous) RPC and asynchronous RPC. 

RPC. 



Remove Method Invocation (RMI) 

 

 

 

RMI. 



Robustness 

 Exception handling in high level languages (Ada and 

PL/1) 

 Four Types of Communication Faults 

 A message transmitted from a node does not reach its 

intended destinations 

 Messages are not received in the same order as they were 

sent  

 A message gets corrupted during its transmission  

 A message gets replicated during its transmission 

 



 If a remote procedure call terminates abnormally 

(the time out expires) there are four possibilities. 

 The receiver did not receive the call message.  

 The reply message did not reach the sender.  

 The receiver crashed during the call execution and either 

has remained crashed or is not resuming the execution 

after crash recovery. 

 The receiver is still executing the call, in which case the 

execution could interfere with subsequent activities of the 

client. 

 

 

Failures in RPC 



Exercise 2 

1.(The Welfare Crook by W. Feijen) Suppose we have three 

long magnetic tapes each containing a list of names in 

alphabetical order. The first list contains the names of people 

working at IBM Yorktown, the second the names of students 

at Columbia University and the third the names of all people 

on welfare in New York City. All three lists are endless so no 

upper bounds are given. It is known that at least one person is 

on all three lists. Write a program to locate the first such 

person (the one with the alphabetically smallest name). Your 

solution should use three processes, one for each tape. 

 



Exercise 2 (Cont’d.) 

2.Convert the following DCDL expression to a precedence 
graph. 

 

  [ S1  || [ [ S2 || S3 ]; S4 ] ]  

 

 Use fork and join to express this expression.  

 

3.Convert the following program to a precedence graph: 

 

  S1;[[S2;S3||S4;S5||S6]||S7];S8 

 



Exercise 2 (Cont’d.) 

4.G is a sequence of integers defined by the recurrence Gi = Gi-1 

+ Gi-3 for i > 1, with initial values G0 = 0, G1 = 1, and G2 = 1. 

Provide a DCDL implementation of Gi and use one process 

for each Gi. 

 

5.Using DCDL to write a program that replaces a*b by a  b 

and a**b by a   b, where a and b are any characters other 

than *. For example, if a1a2*a3**a4***a5 is the input string 

then a1a2  a3  a4***a5 will be the output string. 
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Distributed Operating Systems 

 Operating Systems: provide problem-oriented abstractions of 

the underlying physical resources. 

 Files (rather than disk blocks) and sockets (rather than raw 

network access). 

 

 



Selected Issues 

 Mutual exclusion and election 
 Non-token-based vs. token-based 

 Election and bidding  

 Detection and resolution of deadlock 
 Four conditions for deadlock: mutual exclusion, hold and wait, no 

preemption, and circular wait. 

 Graph-theoretic model: wait-for graph  

 Two situations: AND model (process deadlock) and OR model 
(communication deadlock) 

 Task scheduling and load balancing 
 Static scheduling vs. dynamic scheduling 

 

 



Mutual Exclusion and Election 

 Requirements:  

 Freedom from deadlock.  

 Freedom from starvation. 

 Fairness. 

 Measurements:  

 Number of messages per request. 

 Synchronization delay. 

 Response time. 

 

 



Non-Token-Based Solutions: 

Lamport's Algorithm 

 To request the resource process Pi sends its timestamped 
message to all the processes (including itself ). 

 When a process receives the request resource message, it 
places it on its local request queue and sends back a 
timestamped acknowledgment. 

 To release the resource, Pi sends a timestamped release 
resource message to all the processes (including itself ). 

 When a process receives a release resource message from Pi, 
it removes any requests from Pi from its local request queue. 
A process Pj is granted the resource when 

 Its request r is at the top of its request queue, and,  

 It has received messages with timestamps larger than the timestamp of 
r from all the other processes. 



Example for Lamport’s Algorithm 



Extension 

 There is no need to send an acknowledgement when process 

Pj receives a request from process Pi after it has sent its own 

request with a timestamp larger than the one of Pi's request. 

 An example for Extended Lamport’s Algorithm 



Ricart and Agrawala's Algorithm 

 It merges acknowledge and release messages into one 

message reply. 

 

 

 

An example using Ricart and Agrawala's algorithm. 



Token-Based Solutions: Ricart and 

Agrawala's Second Algorithm 

 When token holder Pi exits CS, it searches other processes in 

the order i + 1,i + 2,…,n,1,2,…,i - 1 for the first j such that 

the timestamp of Pj 's last request for the token is larger than 

the value recorded in the token for the timestamp of Pj 's last 

holding of the token. 

 

 
 

 



Token-based Solutions (Cont’d) 

Ricart and Agrawala's second algorithm. 



 P(i)::=*[ request-resource 

            consume  

            release-resource  

            treat-request-message  

            others  

   ] 

  distributed-mutual-exclusion ::= ||P(i:1..n)  

  

clock: 0,1,…, (initialized to 0)  

token-present: Boolean (F for all except one process) 

token-held: Boolean (F)  

token: array (1..n) of clock (initialized 0)  

request: array (1..n) of clock (initialized 0) 

 

 

Pseudo Code 



 others::= all the other actions that do not request to enter the 
critical section. 

 consume::= consumes the resource after entering the critical 
section  

 request-resource::= 

  [ token present = F 

   [ send (request-signal, clock, i) to all; 

         receive (access-signal, token);    
        token-present:= T;  

         token-held:= T  

       ] 

  ] 

  

Pseudo Code (Cont’d) 



release-resource::= 

 [ token (i):=clock; 

  token-held:= F; 

   min j in the order [i + 1,… n,1,2,…,i – 2, i – 1] 

    (request(j) > token(j))  

           [ token-present:= F; 

            send (access-signal, token) to Pj  

                 ] 

 ] 

 

 

Pseudo Code (Cont’d) 



treat-request-message::= 

 [ receive (request-signal, clock; j) 

   [request(j):=max(request(j),clock); 

        token-present   token-held  release-resource  

    ]  

 ] 

 

Pseudo Code (Cont’d) 



Ring-Based Algorithm 

P(i:0..n-1)::= 

 [  receive token from P((i-1) mod n); 

    consume the resource if needed;  

  send token to P ((i + 1) mod n)  

 ] 

 

distributed-mutual-exclusion::= ||P(i:0..n-1) 

 



Ring-Based Algorithm (Cont’d) 

The simple token-ring-based algorithm (a) and the 

 fault-tolerant token-ring-based algorithm (b). 



Tree-Based Algorithm 

 

 

 

 
 

 

A tree-based mutual exclusion algorithm. 



Maekawa's Algorithm 

 Permission from every other process but only from a 

subset of processes. 

 If Ri and Rj are the request sets for processes Pi and 

Pj , then Ri  Rj  . 

 



Example 11 

R1 : {P1; P3; P4}  

R2 : {P2; P4; P5}  

R3 : {P3; P5; P6}  

R4 : {P4; P6; P7}  

R5 : {P5; P7; P1}  

R6 : {P6; P1; P2}  

R7 : {P7; P2; P3}  

 



Related Issues 

 Election: After a failure occurs in a distributed system, it is 

often necessary to reorganize the active nodes so that they can 

continue to perform a useful task. 

 Bidding: Each competitor selects a bid value out of a given set 

and sends its bid to every other competitor in the system. Every 

competitor recognizes the same winner. 

 Self-stabilization: A system is self-stabilizing if, regardless of 

its initial state, it is guaranteed to arrive at a legitimate state in a 

finite number of steps. 



Focus 11: Garcia-Molina's Bully 

Algorithm for Election 

 When P detects the failure of the coordinator or receives an 

ELECTION packet, it sends an ELECTION packet to all 

processes with higher priorities. 

 If no one responds (with packet ACK), P wins the election 

and broadcast the ELECTED packet to all. 

 If one of the higher processes responds, it takes over. P's job 

is done. 



Focus 11 (Cont’d) 

Bully algorithm. 



Lynch's Non-Comparison-Based Election 

Algorithms  

 Process id is tied to time in terms of rounds. 

 Time-slice algorithm: (n, the total number of 

processes, is known) 
 Process Pi (with its id(i)) sends its id in round id(i)2n, i.e., at most one 

process sends its id in every 2n consecutive rounds.  

 Once an id returns to its original sender, that sender is elected. It sends 

a signal around the ring to inform other processes of its winning 

status. 

 message complexity: O(n)  

 time complexity: min{id(i)} n 

 

 

 



 Variable-speed algorithm: (n is unknown)  

 When a process Pi sends its id (id(i)), this id travels at 

the rate of one transmission for every 2id(i) rounds. 

 If an id returns to its original sender, that sender is 

elected. 

 message complexity: n + n/2 + n/22 + … + n/2(n-1) 

< 2n = O(n)  

 time complexity: 2 min{id(i)}n 

 

 

Lynch's Algorithms  (Cont’d) 



Dijkstra's Self-Stabilization 

 Legitimate state P : A system is in a legitimate state P if and 

only if one process has a privilege. 

 Convergence: Starting from an arbitrary global state, S is 

guaranteed to reach a global state satisfying P within a finite 

number of state transitions. 



Example 12 

 A ring of finite-state machines with three states. A privileged 

process is the one that can perform state transition. 

 For Pi, 0 < i  n - 1, 

 PiPi-1  Pi := Pi-1,   

 P0=Pn-1  P0:=(P0+1) mod k 



Table 1: Dijkstra’s self-stabilization algorithm. 

P0 P1 P2 Privileged 

processes 

Process to make 

move 

2 1 2 P0,P1,P2 P0 

3 1 2 P1,P2 P1 

3 3 2 P2 P2 

3 3 3 P0 P0 

0 3 3 P1 P1 

0 0 3 P2 P2 

0 0 0 P0 P0 

1 0 0 P1 P1 

1 1 0 P2 P2 

1 1 1 P0 P0 

2 1 1 P1 P1 

2 2 1 P2 P2 

2 2 2 P0 P0 

3 2 2 P1 P1 

3 3 2 P2 P2 

3 3 3 P0 P0 



Extensions 

 The role of demon (that selects one privileged process)  

 The role of asymmetry.  

 The role of topology. 

 The role of the number of states 

 

 



Detection and Resolution of Deadlock 

 Mutual exclusion. No resource can be shared by more than 

one process at a time. 

 Hold and wait. There must exist a process that is holding at 

least one resource and is waiting to acquire additional 

resources that are currently being held by other processes. 

 No preemption. A resource cannot be preempted.  

 Circular wait. There is a cycle in the wait-for graph. 

 

 

 

 



Detection and Resolution of Deadlock (Cont’d) 

Two cities connected by (a) one bridge and by (b) two bridges. 



Strategies for Handling Deadlocks 

 Deadlock prevention  

 Deadlock avoidance (based on "safe state")  

 Deadlock detection and recovery 

 Different Models 

 AND condition  

 OR condition 

 

 



Types of Deadlock 

 Resource deadlock  

 Communication deadlock 

An example of communication deadlock 



Conditions for Deadlock 

 AND model: a cycle in the wait-for graph.  

 OR model: a knot in the wait-for graph. 

 
  

 



Conditions for Deadlock (Cont’d) 

 A knot (K) consists of a set of nodes such that for every node 

a in K , all nodes in K and only the nodes in K are reachable 

from node a. 

Two systems under the OR condition with  

(a) no deadlock and without (b) deadlock. 



Focus 12: Rosenkrantz' Dynamic Priority 

Scheme (using timestamps) 

 T1: 
  lock A; 
  lock B; 
  transaction starts; 
  unlock A;  
  unlock B; 
 
wait-die (non-preemptive method) 
 [ LCi < LCj   halt Pi (wait) 
     LCi  LCj   kill Pi (die)  
 ] 
 
wound-wait (preemptive method) 
 [ LCi  <  LCj    kill Pj (wound) 
      LCi   LCj   halt Pi (wait) 
  ] 



Example 13 

A system consisting of five processes. 

Process id Priority 1st request time Length  Retry interval 

P1 2 1 1 1 

P2 1 1.5 2 1 

P3 4 2.1 2 2 

P4 5 3.3 1 1 

P5 3 4.0 2 3 



Example 13 (Cont’d) 

wound-wait: 

 

wait-die: 

 



Load Distribution 

 

 

 

A taxonomy of load distribution algorithms. 



Static Load Distribution (task scheduling) 

 Processor interconnections 

 Task partition 

 Horizontal or vertical partitioning.  

 Communication delay minimization partition.  

 Task duplication. 

 Task allocation 

 

 



Models 

 Task precedence graph: each link defines the precedence 

order among tasks. 

 Task interaction graph: each link defines task interactions 

between two tasks. 

 

 

 

 

 

(a) Task precedence graph and (b) task interaction graph. 



Example 14 

 

 

 

Mapping a task interaction graph (a)  
to a processor graph (b). 



Example 14 (Cont’d) 

 The dilation of an edge of Gt is defined as the length 
of the path in Gp onto which an edge of Gt is 
mapped. The dilation of the embedding is the 
maximum edge dilation of Gt. 

 The expansion of the embedding is the ratio of the 
number of nodes in Gt to the number of nodes in Gp. 

 The congestion of the embedding is the maximum 
number of paths containing an edge in Gp where 
every path represents an edge in Gt. 

 The load of an embedding is the maximum number 
of processes of Gt assigned to any processor of Gt. 

 



Periodic Tasks With Real-time Constraints 

 Task Ti has request period ti and run time ci.  

 Each task has to be completed before its next request.  

 All tasks are independent without communication. 



Liu and Layland's Solutions (priority-driven 

and preemptive) 

 Rate monotonic scheduling (fixed priority 

assignment). Tasks with higher request rates will 

have higher priorities. 

 Deadline driven scheduling (dynamic priority 

assignment). A task will be assigned the highest 

priority if the deadline of its current request is the 

nearest. 

 

 



Schedulability 

 Deadline driven schedule: iff 
n 

     ci/ti  1 
i=0 

 Rate monotonic schedule: if    
n 

     ci/ti  n(21/n - 1); 
i=0 

 may or may be not when  
             n 

    n(21/n - 1) <   ci/ti  1 
             i=0 

 



Example 15 (schedulable) 

 T1: c1 = 3, t1 = 5 and T2: c2 = 2, t2 = 7 (with the same initial 

request time). 

 The overall utilization is 0:887 > 0:828 (bound for n = 2). 

 

 

  

 



Example 16 (un-schedulable under rate 

monotonic scheduling) 

 T1: c1 = 3, t1 = 5 and T2: c2 = 3, t2 = 8 (with the same initial 

request time). 

 The overall utilization is 0:975 > 0:828 

 

 
 

 

 

 

An example of periodic tasks that is not schedulable. 



Example 16 (Cont’d) 

 If each task meets its first deadline when all tasks are started 

at the same time then the deadlines for all tasks will always 

be met for any combination of starting times. 

 scheduling points for task T : T 's first deadline and the ends 

of periods of higher priority tasks prior to T 's first deadline. 

 If the task set is schedulable for one of scheduling points of 

the lowest priority task, the task set is schedulable; otherwise, 

the task set is not schedulable. 



Example 17 (schedulable under rate 

monotonic schedule) 

 c1 = 40, t1 = 100, c2 = 50, t2 = 150, and c3 = 80, t3 = 350.  

 The overall utilization is 0:2 + 0:333 + 0:229 = 0:762 < 0:779 

(the bound for n > 3). 

 c1 is doubled to 40. The overall utilization is 

0:4+0:333+0:229 = 0:962 > 0:779. 

 The scheduling points for T3: 350 (for T3), 300 (for T1 and 

T2), 200 (for T1), 150 (for T2), 100 (for T1). 

 



Example 17 (Cont’d) 

c1 + c2 + c3   t1, 

40 + 50 + 80 > 100; 

2c1 + c2 + c3   t2, 

80 + 50 + 80 > 150; 

2c1 + 2c2 + c3   2t2, 

80 + 100 + 80 > 200; 

3c1 + 2c2 + c3   2t3, 

120 + 100 + 80 = 300; 

4c1 + 3c2 + c3   t1, 

160 + 150 + 80 > 350. 

 



Example 17 (Cont’d) 

A schedulable periodic task. 



Dynamic Load Distribution (load balancing) 

A state-space traversal example. 



Dynamic Load Distribution (Cont’d) 

A dynamic load distribution algorithm has six policies: 

 Initiation  

 Transfer  

 Selection 

 Profitability  

 Location  

 Information 



Focus 13: Initiation 

Sender-initiated approach: 

Sender-initiated load balancing. 



Focus 13 (Cont’d) 

/* a new task arrives */ 

 queue length   HWM   

 

* [ poll_set :=  ; 

 

 [| poll_set | < poll_limit   

  [ select a new node u randomly; 

    poll_set := poll_set  node u;  

    queue_length at u < HWM   

   transfer a task to node u and stop  

  ]  

  ] 

  ] 

 

 



Receiver-Initiated Approach 

Receiver-initiated load balancing. 



Receiver-Initiated Approach (Cont’d) 

/* a task departs */  

queue length < LWM   

[ poll limit:= ; 

 *  [ | poll_set | < poll limit   

    [ select a new node u randomly; 

      poll_set := poll set  node u; 

      queue_length at u > HWM   

    transfer a task from node u and stop  

     ] 

      ]  

] 



Bidding Approach 

 

 

 

 

Bidding algorithm. 



Focus 14: Sample Nearest Neighbor Algorithms 

Diffusion 

 At round t + 1 each node u exchanges its load Lu(t) with its neighbors' 
Lv(t). 

 Lu(t + 1) should also include new incoming load u(t) between rounds 
t and t + 1. 

 Load at time t + 1: 
 
 Lu(t + 1) = Lu(t) +   u,v(Lv(t)- Lu(t)) + u(t) 
         v  A(u) 

  
 where 0   u,v  1 is called the diffusion parameter of nodes u and v. 
  

 



Gradient  

 Maintain a contour of the gradients formed by the differences 

in load in the system. 

 Load in high points (overloaded nodes) of the contour will 

flow to the lower regions (underloaded nodes) following the 

gradients. 

 The propagated pressure of a processor u, p(u), is defined as 

p(u) =  

 0 (if u is lightly loaded)  

 1 + min{p(v)|v  A(u)} (otherwise) 

 

 



Gradient (Cont’d) 

 (a) A 4 x 4 mesh with loads. (b) The corresponding propagated 

pressure of each node (a node is lightly loaded if its load is less than 3). 

 

 

 



Dimension Exchange: Hypercubes  

 A sweep of dimensions (rounds) in the n-cube is applied.  

 In the ith round neighboring nodes along the ith dimension 

compare and exchange their loads. 

 



Dimension Exchange: Hypercubes (Cont’d) 

Load balancing on a healthy 3-cube. 



Extended Dimension Exchange:  

Edge-Coloring 

 

 

 
 

 

 

Extended dimension exchange model through edge-coloring. 



Exercise 4 

1. Provide a revised Misra's ping-pong algorithm in which the ping and the 

pong are circulated in opposite directions. Compare the performance and 

other related issues of these two algorithms. 

2. Show the state transition sequence for the following system with n = 3 and 

k = 5 using Dijkstra's self-stabilizing algorithm. Assume that P0 = 3, P1 = 

1, and P2 = 4. 

3. Determine if there is a deadlock in each of the following wait-for graphs 

assuming the OR model is used. 

 



Exercise 4 (Cont’d) 

Table 2: A system consisting of four processes. 

Process id Priority 1st request time Length  Retry 

interval 

Resource(s) 

P1 3 1 1 1 A 

P2 4 1.5 2 1 B 

P3 1 2.5 2 2 A,B 

P4 2 3 1 1 B,A 

4. Consider the following two periodic tasks (with the same request time) 

 Task T1: c1 = 4, t1 = 9  

 Task T2: c2 = 6, t2 = 14 

(a) Determine the total utilization of these two tasks and compare it with Liu 

and Layland's least upper bound for the fixed priority schedule. What 

conclusion can you derive? 



Exercise 4 (Cont’d) 

(b) Show that these two tasks are schedulable using the rate-monotonic 

priority assignment. You are required to provide such a schedule. 

(c) Determine the schedulability of these two tasks if task T2 has a higher 

priority than task T1 in the fixed priority schedule. 

(d) Split task T2 into two parts of 3 units computation each and show that 

these two tasks are schedulable using the rate-monotonic priority 

assignment. 

(e) Provide a schedule (from time unit 0 to time unit 30) based on deadline 

driven scheduling algorithm. Assume that the smallest preemptive 

element is one unit. 

 



Exercise 4 (Cont’d) 

5. For the following 4 x 4 mesh find the corresponding propagated pressure 

of each node.  Assume that a node is considered lightly loaded if its 

load is less than 2. 
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Distributed Communication 

 One-to-all (broadcast) 

Different types of communication 

One-to-one (unicast) 

One-to-many (multicast) 



Classification 

 Special purpose vs. general purpose. 

 Minimal vs. nonminimal.  

 Deterministic vs. adaptive.  

 Source routing vs. distributed routing. 

 Fault-tolerant vs. non fault-tolerant. 

 Redundant vs. non redundant.  

 Deadlock-free vs. non deadlock-free. 

 



A general PE with a separate router. 

Router Architecture 



 Topology. The topology of a network, typically 
modeled as a graph, defines how PEs are connected. 

 Routing. Routing determines the path selected to 
forward a message to its destination(s). 

 Flow control. A network consists of channels and 
buffers. Flow control decides the allocation of these 
resources as a message travels along a path. 

 Switching. Switching is the actual mechanism that 
decides how a message travels from an input channel 
to an output channel: store-and-forward and cut-
through (wormhole routing). 

 
 

Four Factors for Communication Delay 



General-Purpose Routing 

Source routing: link state (Dijkstra's algorithm) 

 

 

 

A sample source routing  



General-Purpose Routing (Cont’d) 

Distributed routing: distance vector (Bellman-Ford algorithm) 

 

 

 

 

 

 

 

A sample distributed routing 



Distributed Bellman-Ford Routing Algorithm 

 Initialization. With node d being the destination 

node, set D(d) = 0 and label all other nodes (.,  ). 

 Shortest-distance labeling of all nodes. For each 

node v  d do the following: Update D(v) using the 

current value D(w) for each neighboring node w to 

calculate D(w) + l(w, v) and perform the following 

update: 

 

  D(v) := min{D(v), D(w) + l(w; v)} 

 

 



Distributed Bellman-Ford Algorithm 
(Cont’d) 



Example 18 

 

 

 

 
 

 

A sample network. 



Example 18 (Cont’d) 

 

 

 

 
 

 

Bellman-Ford algorithm applied to the network with P5 being the destination. 

Round P1 P2 P3 P4 

Initial (.,  ) (.,  ) (.,  ) (.,  ) 

1 (.,  ) (.,  ) (5,20) (5,2) 

2 (3,25) (4,3) (4,4) (5,2) 

3 (2,7) (4,3) (4,4) (5,2) 



Looping Problem 

Time next 

node 

0 1 2 3 K, 4<k<15 16 17 18 19 (20, ) 

P2 7 7 9 9 2n/2 +7  23 23 25 25 27 

P3 9 9 11 11 2n/2+9  25 25 25 25 25* 

Time next 

node 

0 1 2 3 K, 

4<k<15 

16 17 18 19 (20, 

) 

P1 11 11 13 13 2n/2 +9  25 27 27 29 29 

P3 7 7 9 9 2n/2 +7  23 23 23 23 23 

P3 3 5 5 7 2n/2+3  19 21 21 23* 23 

(a) Network delay table of P1 

(b) Network delay table of P2 

Link (P4; P5) fails at the destination P5. 



Time next 

node 

0 1 2 3 K, 4<k<15 16 17 18 19 (20, ) 

P1 12 12 12 14 2n/2 +10 26 28 28 30 30 

P2 6 6 8 8 2n/2 +5  22 22 24 24 26 

P4 4 6 6 8 2n/2 +4  20 22 22 24 24 

P5 20 20 20 20 20  20 20* 20 20 20 

Time next 

node 

0 1 2 3 K, 

4<k<15 

16 17 18 19 (20, ) 

P2 4 4 6 6 2n/2 +4  20 20 22 22 24 

P3 6 6 8 8 2n/2 +5  22 22 22 22 22* 

P5                      

(c) Network delay table of P3 

(d) Network delay table of P4 

Looping Problem (Cont’d) 



Special-Purpose Routing 

E-cube routing in n-cube: u  w as a navigation vector. 

 

 

 

A routing in a 3-cube with source 000 and destination 110: 

(a)Single path. (b) Three node-disjoint paths. 



Binomial-Tree-Based Broadcasting in 

N-Cubes 

 

 

 

The construction of binomial trees. 



Hamiltonian-Cycle-Based 

Broadcasting in N-Cubes 

 

 

 

(a) A broadcasting initiated from 000.  

(b) A Hamiltonian cycle in a 3-cube. 



Parameterized Communication Model  

Postal model: 

  = l/s where s is the time it takes for a node to send the next 

message and l is the communication latency. 

 Under the one-port model the binomial tree is optimal when 

 = 1. 

 

 



Example 19: Broadcast Tree  

Comparison with  = 6: (a) binomial tree and (b) optimal spanning tree. 



Focus 15: Fault-Tolerant Routing 

Wu's safety level: 

 The safety level associated with a node is an approximated measure of the 

number of faulty nodes in the neighborhood. 

 Let (S0,S1,S2,…,Sn-1), 0  Si  n, be the non-descending safety status 

sequence of node a's neighboring nodes in an n-cube such that 0  Si  

Si+1  n-1. 

 If (S0,S1,S2,…,Sn-1)   (0,1,2,…,n-1) then S(a) = n 

     else if (S0,S1,S2,…Sk-1)   (0,1,2,…,k-1) ^ (Sk = k-1) then S(a) = k. 



Focus 15: Fault-Tolerant Routing (Cont’d) 

Localized algorithms: 

 



Fault-Tolerant Routing (Cont’d) 

 If the safety level of a node is k (0 < k  n), there is at least 

one Hamming distance path from this node to any node 

within k-Hamming-distance. 

 

 

 

  

A fault-tolerant routing using safety levels.  

 



Fault-Tolerant Broadcasting 

 If the source node is n-safe, there exists an n-level injured 

spanning binomial tree in an n-cube. 

 

 

 

 

Broadcasting in a faulty 4-cube. 



Wu's Extended Safety Level in 2-D Meshes 

 

 

 

A sample region of minimal paths. 



Deadlock-Free Routing 

Virtual channels and virtual networks: 

(a) A ring with two virtual channels, (b) channel dependency 

graph of (a), and (c) two virtual rings vr1 and vr0. 



Focus 16: Deadlock-Free Routing Without 

Virtual Channels 

 XY-routing in 2-D meshes: X dimension followed by Y 

dimension. 

 Glass and Ni's Turn model: Certain turns are forbidden. 

(a) Abstract cycles in 2-d meshes, (b) four turns (solid arrows) allowed in XY-

routing, (c) six turns allowed in positive-first routing, and (d) six turns allowed 

in negative-first routing. 

 



Basic Routing Strategies in Internet 

Source routing: link state 

 

 

 

 

 

Distributed routing: distance vector 

 

 
 

 

 

Figure 1: A sample source routing 

Figure 2: A sample distributed routing 



Routing in Ad Hoc Wireless Networks 

 The dynamic nature of ad hoc wireless networks 

presents a challenge to current routing techniques. 
 

 



Major Challenges 

 Scalable design  

 Low power design  

 Mobility management  

 Low latency 
 

 



Classification 

 Proactive vs. reactive 

 proactive: continuously evaluate network connectivity 

 reactive: invoke a route determination procedure on-

demand. 

 Flat vs. cluster-based 
 

 



DSR Routing (Johnson, CMU) 

 There are no periodic routing advertisement messages (thereby reducing 

network bandwidth overhead). 

 Each host maintains a route cache: source routes that it has learned . 

 If a route is not found from route cache, the source attempts to discover 

one using route discovery. 

 Route maintenance monitors the correct operation of a route in use. 

 

 

 

 

 

 
Figure 3: A sample DSR routing 



Zone-Based Routing (Hass, Cornell) 

 Trade-offs: network capacity usage in proactive approaches and the long delay 

in reactive approaches. 

 A routing zone (for a host) includes the nodes within a given number of hops. 

 Each host maintains routing information only to nodes within its routing zone. 

 Information outside the routing zone is obtained through on demand. 

 

 

 

 

Figure 4: Zone routing 



Domination-Set-Based Routing (Wu and Li, FAU) 

 

 
 

 

 

Figure 5: School bus route. 



Desirable Features 

 Simple and quick  

 Connected dominating set 

 
 

 

Figure 6: A simple ad hoc wireless  

network of five wireless mobile hosts. 



Existing Approaches 

 Graph theory community: 

 Bounds on the domination number (Haynes, Hedetniemi, and Slater, 

1998). 

 Special classes of graph for which the domination problem can be 

solved in polynomial time. 

 Ad hoc wireless network community: 

 Global: MCDS (Sivakumar, Das, and Bharghavan, 1998). 

 Quasi-global: spanning-tree-based (Wan, Alzoubi, and Frieder, 

2002). 

 Quasi-local: cluster-based (Lin and Gerla, 1999). 

 Local: marking process (Wu and Li, 1999). 



MCDS (Sivakumar, Das, and Bharghavan, UIUC) 

 All nodes are initially colored white. 

 The node with the maximum node degree is selected as the 

root and colored black. All the neighbors of the root are 

colored gray. 

 Select a gray node that has the maximum white neighbors. 

The gray node is colored black and its white neighbors are 

marked gray. 

 Repeat step (3) until there is no more white node. 



MCDS (Cont’d.) 

black nodes = CDS (connected dominating set) 

 

Figure 7: MCDS as an approximation of CDS 



Spanning-Tree-Based (Wan, Alzoubi, and 

Frieder, IIT) 

 A spanning tree rooted at v (selected through an election 
process) is first constructed. 

 Nodes are labeled according to a topological sorting order of 
the tree. 

 Nodes are marked based on their positions in the order 
starting from root v. 

 All nodes are white initially.  

 V is marked black and all nodes are labeled black unless there is black 
neighbor. 

 Each black node (except root v) selects a neighbor with the 
largest label but smaller than its own label  and mark it gray. 

 



Spanning-Tree-Based (Cont’d.) 

black nodes = DS     

black nodes + gray nodes = CDS 

 

 

 

 

 

Figure 8: selecting CDS in a spanning tree 



Cluster-Based (Lee and Gerla, UCLA) 

 All nodes are initially white. 

 When a white node finds itself having the lowest id among all 

its white neighbors, it becomes a cluster head and colors itself 

black. 

 All its neighbors join in the cluster and change their colors to 

gray. 

 Repeat steps (1) and (2) until there is no white node left.  

 Special gray nodes: gray nodes that have two neighbors in 

different clusters. 

 



Cluster-Based (Cont’d.) 

 

 

black nodes = DS       

black nodes + special gray nodes = CDS 

Figure 9: sequential propagation in the cluster-based approach. 

 



Localized Algorithms 

 Processors (hosts) only interact with others in a 

restricted vicinity. 

 Each processor performs exceedingly simple tasks 

(such as maintaining and propagating information 

markers). 

 Collectively these processors achieve a desired 

global objective.  

 There is no sequential propagation of information. 

 



Focus 17: Wu and Li's Marking Process 

 A node is marked true if it has two unconnected 

neighbors.  

 A set of marked nodes (gateways nodes) V’ form a 

connected dominating set. 



Example 20 

Figure 10: A sample ad hoc wireless network 



Properties 

 Property 1: V’ is empty if and only if G is a complete graph; 

otherwise, V’ forms a dominating set. 

 Property 2: V’ includes all the intermediate vertices of any 

shortest path.  

 Property 3: The induced graph G’ = G[V’] is a connected 

graph. 

 



Dominating-set-based Routing 

 If the source is not a gateway host, it forwards packets to a source 

gateway neighbor. 

 This source gateway acts as a new source to route packets in the induced 

graph generated from the connected dominating set. 

 Eventually, packets reach a destination gateway, which is either the 

destination host itself or a gateway of the destination host. 

Figure 11: Dominating-set-based routing 



Other Results 

 Dominating set reduction*  

 (Wu and Li, Dial M 1999)  

 Extended marking process (Rule-k) 

 (Dai and Wu, Globecom 2002)  

 Localized maintenance*  

 (Wu and Dai, I-SPAN 2002)  

 Networks with unidirectional links*  

 (Wu, IEEE TPDS 2002) 

 

 



Other Results (Continue) 

 Scalable design: hierarchical routing* 

 (Wu and Li, Telecomm. Sys. J. 2001)  

 Mobility management* 

 (Wu and Li, Telecomm. Sys. J. 2001) 

  Power-aware routing and Power-aware broadcasting* 

 (Wu, Dai, Gao, and Stojmenovic, J. Comm. and Networks, 
2002 and Wu, Wu, and Stojmenovic, WOC'2002) 

 Dominating-set- and GPS-based routing*  

 (Datta, Stojmenovic, and Wu, IPDPS workshop, 2001 and 
Wu, IEEE TPDS 2002) 

 
 



Dominating Set Reduction  

 Reduce the size of the dominating set.  

 Role of gateway/non-gateway is rotated. 

 N [v] = N (v) U {v} is a closed neighbor set of v 

 Rule 1: If N [v]  N [u] in G and id(v) < id(u), then unmark v. 

 Rule 2: If N (v)  N (u) U N (w) in G and id(v) = min{id(v), id(u), 

id(w)}, then unmark v. 

 

Figure 12: Two sample examples. 



Example 21 

 

 

 

Figure 13: (a) Dominating set from the marking process (b) 

Dominating set after dominating set reduction. 



Exercise 5 

1. Provide an addressing scheme for the following extended mesh (EM) 

which is a regular 2-D mesh with additional diagonal links. 

2. Provide a general shortest routing algorithm for EMs. 

 

 

 

 

 

 

 

3. Suppose the postal model is used for broadcasting and * = 8. What is the 

maximum number of nodes that can be reached in time unit 10. Derive the 

corresponding broadcast tree. 

 



Exercise 5 (Cont’d) 

4. Consider the following turn models: 

 West-first routing. Route a message first west, if necessary, and then 
adaptively south, east, and north. 

 North-last routing. First adaptively route a message south, east, and west; 
route the message north last. 

 Negative-first routing. First adaptively route a message along the negative X 
or Y axis; that is, south or west, then adaptively route the message along the 
positive X or Y axis. 

 Show all the turns allowed in each of the above three routings. 

5. Show the corresponding routing paths using (1) positive-last, (2) west-first, 
(3) north-last, and (4) negative-first routing for the following unicasting: 

6. Wu and Fernandez (1992) gave the following safe and unsafe node 
definition: A nonfaulty node is unsafe if and only if either of the following 
conditions is true: (a) There are two faulty neighbors, or (b) there are at 
least three unsafe or faulty neighbors. Consider a 4-cube with faulty nodes 
0100, 0011, 0101, 1110, and 1111. Find out the safety status (safe or 
unsafe) of each node.  



Exercise 5 (Cont’d) 

7. To support fault-tolerant routing in 2-D meshes, D. J. Wang (1999) 

proposed the following new model of faulty block: Suppose the 

destination is in the first quadrant of the source. Initially, label all faulty 

nodes as faulty and all non-faulty nodes as fault-free. If node u is fault-

free, but its north neighbor and east neighbor are faulty or useless, u is 

labeled useless. If node u is fault-free, but its south neighbor and west 

neighbor are faulty or can't-reach, u is labeled can't-reach. The nodes are 

recursively labeled until there are no new useless or can't-reach nodes. 

 (a) Give an intuitive explanation of useless and can't-reach.  

 (b) Re-write the definition when the destination is in the second quadrant of the 

source. 



Exercise 5 (Cont’d) 

8. Chiu proposed an odd-even turn model, which is an extension to Glass and 
Ni's turn model. The odd-even turn model tries to prevent the formation of 
the rightmost column segment of a cycle. Two rules for turn are given in: 

 Rule 1: Any packet is not allowed to take an EN (east-north) turn at 
any nodes located in an even column, and it is not allowed to take an 
NW turn at any nodes located in an odd column. 

 Rule 2: Any packet is not allowed to take an ES turn at any nodes 
located in an even column, and it is not allowed to take a SW turn at 
any nodes located in an odd column. 

(a) Use your own word to explain that the odd-even turn model is deadlock-
free. 

(b) Show all the shortest paths (permissible under the extended odd-even turn 
model) for 

  (a) s1:(0, 0) and d1:(2,2) and (b) s2:(0,0) and d2:(3,2) 
(c) Prove Properties 1, 2, and 3 of Wu and Li's marking process for ad hoc 

wireless networks. 



Exercise 5 (Cont’d) 

9. Suppose we use the following two rules to reduce 

the size of the dominating set derived from Wu and 

Li's marking process. 

 Rule 1: Consider two vertices v and u in G’. If N[v]  N[u] in G and id(v) < 
id(u), change the marker of v to F if node v is marked, i.e., G' is changed to 
G'-{v}, 

 Rule 2: Assume that u and w are two marked neighbors of marked vertex v in 
G'. If N(v)   N(u)  N(w)  in G and id(v)= min{ id(v), id(u), id(w)}, then 
change the marker of v to F. 

 

(1) Why id is used in both rules? 

(2) If N[v]  N[u] in G can Rule 1 be changed without checking the id's of v 
and u? (Consider two cases: (a) Rule 1 is used alone and (b) Rule 1 and 
Rule 2 are used together.) 
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Distributed Data Management 

 Data objects 
 Files  

 Directories 

 Data objects are dispersed and replicated 
 Unreplicated  

 Fully replicated  

 Partially replicated 

 



Serializability Theory 

Atomic execution 

 A transaction is an "all or nothing" operation.  

 The concurrent execution of several transactions affects the 

database as if executed serially in some order. The interleaved 

order of the actions of a set of concurrent transactions is 

called a schedule. 

 

 



Example 22: Concurrent Transactions  

T1 begin 

 1 read A (obtaining A_balance)  

 2 read B (obtaining B_balance) 

 3 write A_balance-$10 to A 

 4 write B_balance+$10 to B 

 end  

T2 begin 

 1 read B (obtaining B balance) 

 2 write B_balance-$5 to B  

 end 



 Three types of conflict: r-w (read-write), w-r (write-read), 
and w-w (write-write). 

 rj[x] reads from wi[x] iff 

 wi[x] < rj[x].  

 There is no wk[x] such that wi[x] < wk[x] < rj[x]. 

 Two schedules are equivalent iff 

 Every read operation reads from the same write operation in both 
schedules. 

 Both schedules have the same final writes. 

 When a non-serial schedule is equivalent to a serial schedule, 
it is called serializable schedule. 

 
 

 

Concepts 



A nonserializable schedule (a) and serializable 

 schedule (b) for Example 22. 

Transaction (step) Action 

T1(1) read A(obtaining 

A_balance) 

T1(2) 

 

read B(obtaining 

B_balance) 

T1(3) 

 

write A_balance-

$10 to A 

T2(1) 

 

read B(obtaining 

B_balance) 

T2(1) 

 

write B_balance-

$5 to B 

T2(4) 

 

write 

B_balance+$10 

to B 

(a) 

Transaction (step) Action 

T1(1) read A(obtaining 

A_balance) 

T2(1) 

 

read B(obtaining 

B_balance) 

T2(1) 

 

write B_balance-

$5 to B 

T1(2) 

 

read B(obtaining 

B_balance) 

T1(3) 

 

write A_balance-

$10 to A 

T1(4) 

 

write 

B_balance+$10 

to B 

(b) 



Concurrency Control 

 Locking scheme 

 Timestamp-based scheme 

 Optimistic concurrency control 

 

 



Focus 18: Two-Phase Locking 

 A transaction is well-formed if it 

 locks an object before accessing it, 

 does not lock an object that is already locked, and  

 before it completes, unlocks each object it has locked. 

 A schedule is two-phase if no object is unlocked before all 

needed objects are locked. 

 

 

 

 

 

 
Two-phase locking 



Example 23: Well-Formed, Two-Phase 

Transactions  

T1: begin 
 lock A  
 read A (obtaining A balance)  
 lock B  
 read B (obtaining B balance)  
 write A_balance-$10 to A  
 unlock A  
 write B_balance+$10 to B  
 unlock B 
 end 
 
T2: begin 
 lock B  
 read B (obtaining B balance)  
 write B_balance-$5 to B  
 unlock B  
 end 
 

 



Different Looking Schemes 

 Centralized locking algorithm: distributed 

transactions, but centralized lock management. 

 Primary-site locking algorithm: each object has a 

single site designated as its primary site (as in 

INGRES). 

 Decentralized locking: The lock management duty is 

shared by all the sites. 

 



Focus 19: Timestamp-based Concurrency 

Control  

 Timer(x) (Timew(x)): the largest timestamp of any 

read (write) processed thus far for object x. 

 (Read) If ts < Timew(x) then the read request is rejected 

and the corresponding transaction is aborted; otherwise, it 

is executed and Timer(x) is set to max{Timer(x), ts}. 

 (Write) If ts < Timew(x) or ts < Timer(x), then the write 

request is rejected; otherwise, it is executed and Timew(x) 

is set to ts. 

 

 



Example 24 

 Timer(x) = 4 and Timew(x) = 6 initially.  

 Sample: 

 read(x,5), write(x,7), read(x,9), read(x, 8), write(x,8) 

 First and last are rejected and Timer(x) = 7, Timew(x) 

= 9 when completed. 

 

 



Conservative Timestamp Ordering 

 Each site keeps a write queue (W-queue) and a read 

queue (R-queue). 

 A read (x, ts) request is executed if all W-queues are 

nonempty and the first write on each queue has a 

timestamp greater than ts; otherwise, the read request is 

buffered in the R-queue. 

 A write (x, ts) request is executed if all R-queues and W–

queues are nonempty and the first read (write) on each R-

queue (W-queue) has a timestamp greater than ts; 

otherwise, the write request is buffered in the W-queue. 

 

 



Strict Consistency 

 Any read returns the result of the most recent write. 

 Impossible to enforce, unless 

 All writes are instantaneously visible to all processes.  

 All reads get the then-current values, no matter how 

quickly next writes are done. 

 An absolute global time order is maintained. 

 

 



Weak Consistency 

 Sequential consistency: All processes see all shared 

accesses in the same order. 

 Causal consistency: All processes see causually-

related shared accesses in the same order. 

 FIFO consistency: All process see writes from each 

process in the order they were issued. 

 



 Weak consistency: Enforces consistency on a group 

of operations, not on individual reads and writes. 

 Release consistency: Enforces consistency on a 

group of operations enclosed by acquire and release 

operations. 

 Eventual consistency: All replicas will gradually 

become consistent. (Web pages with dominated read 

operations.) 

 

 

Weak Consistency (Cont’d) 



Example 25: Sample Consistent Models 

 

 

 

 

 
causally-consistent 

P1 W(x,a) W(x,c) 

P2 R(x,a) W(x,b) 

P3 R(x,a) R(x,c) R(x,b) 

P4 R(x,a) R(x,b) R(x,c) 

P1 W(x,a) 

P2 R(x,a) W(x,b) 

P3 R(x,b) R(x,a) 

P4 R(x,a) R(x,b) 

non-causally-consistent 



Example 25 (Cont’d) 

 

 

 

 

 

FIFO-consistent 

P1 W(x,a) 

P2 R(x,a) W(x,b) W(x,c) 

P3 R(x,b) R(x,a) R(x,c) 

P4 R(x,a) R(x,b) R(x,c) 



Update Propagation 

 State versus Operations 

 Propagate a notification of an update (such as invalidate signal)  

 Propagate data  

 Propagate the update operation 

 Pull versus Push 

 Push-based approach (server-based)  

 Pull-based approach (client-based) 

 Lease-based approach (hybrid of push and pull) 

 Consistency of duplicated data 

 Write-invalidate vs. write-through 

 Quorum-voting as an extension of single-write/multiple-read 



Focus 20: Quorum-Voting 

  w > v/2 and r + w > v 

 
 where w and r are write and read quorum and v is the total 

number of votes. 

 

 



Hierarchical Quorum Voting 

A 3-level tree in the hierarchical quorum voting with read quorum= 2 and 

write quorum = 3. 

 



Gray's Two-Phase Commitment Protocol 

The finite state machine model for the  

two-phase commit protocol. 



Phase 1 

At the coordinator: 
 
 /*prec: initiate state (q) */  
1. The coordinator sends a commit_request message to every participant 
and waits for replies from all the participants. 
 
     /*postc: waiting state (w) */ 
 
At participants: 
 
 /*prec: initiate state (q)*/  
1. On receiving the commit_request message, a participant takes the 

following actions. If the transaction executing at the participant is 
successful, it writes undo and redo log, and sends a yes message to the 
coordinator; otherwise, it sends a no message. 

 
    /*postc: wait state (w) if yes or abort state (a) if no*/ 
 

 



Phase 2 

At the coordinator 

 

     /*prec: wait state (w)*/ 

 1. If all the participants reply yes then the coordinator writes a commit record 

into the log and then sends a commit message to all the participants. 

Otherwise, the coordinator sends an abort message to all the participants. 

 

     /*postc: commit state (c) if commit or abort state (a) if abort */ 

 

2. If all the acknowledgments are received within a timeout period, the 

coordinator writes a complete record to the log; otherwise, it resends the 

commit/abort message to those participants from which no 

acknowledgments were received. 

 



Phase 2 (Cont’d) 

At the participants 
 
/*prec: wait state (w) */  
1. On receiving a commit message, a participant releases all the resources and 

locks held for executing the transaction and sends an acknowledgment. 
 
/*postc: commit state (c) */ 
 /*prec: abort state (a) or wait state (w) */ 
 
2. On receiving an abort message, a participant undoes the transaction using 

the undo log record, releases all the resources and locks held by it, and 
sends an acknowledgment. 

 
/*postc: abort state (a) */ 



Site Failures and Recovery Actions 

Location Time of failure Actions at coordi. Actions at parti. 

Coordi. Before commit Broadcasts abort on 

recovery 

Committed parti. 

Undo the trans. 

Coordi. Before complete 

after commit 

Broadcasts commit 

on recovery 

__ 

Coordi. After complete -- -- 

Parti. In Phase 1 Coordi. aborts the 

transaction 

__ 

Parti. In Phase 2 __ Commit/abort on 

recovery 



Two Types of Logs 

 undo log allows an uncommitted transaction to record in 

stable storage values it wrote. 

 redo log allows a transaction to commit before all the values 

written have been recorded in stable storage. 

 
 

 

 

A recovery example. 



 A protocol is synchronous within one state transition if one 

site never leads another site by more than one state transition. 

 concurrent set C(s): the set of all states of every site that may 

be concurrent with state s. 

 In two-phase commitment: C (w(c)) = {c(p), a(p), w(p)} and 

C (q(p)) = {q(c), w(c)} (w(c) is the w state of coordinator and 

q(p) is the q state of participant). 

 In three-phase commitment: C (w(c)) = {q(p), w(p), a(p)} and 

C (w(p)) = {a(c), p(c), w(c)}. 

 

 

 
 

 

Concepts 



Skeen's Three-Phase Commitment Protocol 



Exercise 6 

1. For the following two transactions: 
 T1 begin 
  1 read A (obtaining A balance)  
  2 write A balance\Gamma $10 to A  
  3 read B (obtaining B balance) 
     4 write A balance+$10 to B 
  end 
 
 T2 begin 
  1 read A (obtaining A balance) 
   2 write A balance+$5 to A  
  end 
 
 (a) Provide all the interleaved executions (or schedules).  
 (b) Find all the serializable schedules among the schedules obtained in (a). 



Exercise 6 (Cont’d)  

2. Point out serializable schedules in the following 
 
L1 = w2(y)w1(y)r3(y)r1(y)w2(x)r3(x)r3(z)r2(z)  
L2 = r3(z)r3(x)w2(x)r2(z)w1(y)r3(y)w2(y)r1(y)  
L3 = r3(z)w2(y)w2(x)r1(y)r3(y)r2(z)r3(x)w1(y)  
L4 = r2(z)w2(y)w2(x)w1(y)r1(y)r3(y)r3(z)r3(x) 
 
3. A voting method called voting-with-witness replaces some of the replicas 

by witnesses. Witnesses are copies that contain only the version number 
but no data. The witnesses are assigned votes and will cast them when 
they receive voting requests. Although the witnesses do not maintain data, 
they can testify to the validity of the value provided by some other replica. 
How should a witness react when it receives a read quorum request? What 
about a write quorum request? Discuss the pros and cons of this method. 
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Type of Faults 

 Types of faults: 

 Hardware faults  

 Software faults  

 Communication faults  

 Timing faults 

 Schneider’s classification: 

 Omission failure  

 Failstop failure (detectable) 

 Crash failure (undetectable) 

 Crash and link failure 

 Byzantine failure 

 

 



Redundancy 

 Hardware redundancy: extra PE's, I/O's  

 Software redundancy: extra version of software modules  

 Information redundancy: error detecting code 

 Time redundancy: additional time used to perform a 

function 

 

 



Fault Handling Methods 

 Active replication  

 Passive replication 

 Semi-active replication 

 

 



Building Blocks of Fault-Tolerant Design 

 Stable storage is a logical abstraction for a special storage 

that can survive system failure. 

 Fail-stop processors do not perform any incorrect action and 

simply cease to function. 

 An atomic action is a set of operations which are executed 

indivisibly by hardware. That is, either operations are 

completed successfully and fully or the state of the system 

remains unchanged (operations are not executed at all). 



 Storage of checkpoints  

 Checkpointing methods 

 

 
 

 

An example of domino effect. 

Domino Effect 



Focus 21: Byzantine Faults 

 Several divisions of the Byzantine army camp outside an 

enemy city. Each division commanded by its own general. 

Generals from different divisions communicate only through 

messengers. Some of the generals may be traitors. After 

observing the enemy, the generals must decide upon a 

common battle plan. 



Two Requirements 

 All loyal generals decide upon the same plan of action  

 A small number of traitors cannot cause the loyal generals to 

adopt a wrong plan 

 



Focus 21 (Cont’d)  

 Theoretical result: 

 

n   3m + 1 

 

where n is the total number of generals and m is the number 

of traitors. 

 



Agreement Protocol 

 

 

An algorithm for reaching agreement. 

P1* P2 P3 P4 

First round: 

(-,v2,v3,v4) 

 

(v1
2, -,v3, v4) 

 

(v1
1,v2,- v4) 

 

(v1
3,v2, v3,-) 

Second round: 

(v1
2, -, v3, v4) 

(v1
1, v2, -, v4) 

(v1
3, v2, v3, -) 

 

(v1
1, v2, -, v4) 

(v1
3, v2, v3, -) 

(-, v2
4, v3

4, v4
4) 

 

(v1
1, -, v3, v4) 

(v1
3, v2, v3, -) 

(-, v2
5, v3

5, v4
5) 

 

(v1
2, -, v3, v4) 

(v1
1, v2, -, v4) 

(-, v2
6, v3

6, v4
6) 

(d1, d2,d3, d4) (v1
7, v2, v3, v4) (v1

7, v2, v3, v4) (v1
7, v2, v3, v4) 



No-Agreement Among Three Processes 

 

 

 

 

Cases leading to failure of the Byzantine agreement. 

 



Extended Agreement Protocols 

 Boolean values or arbitrary real values for the decisions.  

 Unauthenticated or authenticated messages.  

 Synchronous or asynchronous. 

 Completely connected network or partially connected 
networks.  

 Deterministic or randomized.  

 Byzantine faults or fail-stop faults.  

 Non-totally decentralized control system and, in particular, 
hierarchical control systems. 

 



Reliable Communication 

 Acknowledgement: acknowledge the receipt of each packet.  

 TCP: transport protocol for reliable point-to-point comm. 

 Negative acknowledgement 

 Signal for a missing packet. 

 Pros: better scalability (without positive acknowledgement). 

 Cons: sender is forced to keep each packet in the buffer forever. 



Reliable Group Communication 

 Feedback suppression: multicast or broadcast each positive 

(or negative) acknowledge. 

 Combination of positive and negative acknowledgements 

 

 



Example 26: Combination of Positive and 

Negative Acknowledgements in Broadcasting. 

 Let A be a packet and a (a) the positive (negative) 
acknowledgement for A. 
 
A,Ba,Cb,Db,Ec,F cd,Cb,Gdef 

  

 1.Message A is sent first, acknowledged by the sender of B, which is in 
turn acknowledged by the senders of C and D. 
 
2. The sender of E acknowledges C and the sender of F acknowledges 
the receipt of D but a negative acknowledgment of C . 
 
3. Some node (not necessarily the original sender) retransmits C .  

  

 4. The sender of G acknowledges both E and F but sends a negative 
acknowledgment of D (after receiving F ). 
 



Different Types of Reliable Multicasting 

 Reliable multicast: no message ordering  

 FIFO multicast: FIFO-ordered delivery  

 Causal multicast: causal-ordered delivery  

 Atomic multicast: reliable multicast + total-ordered delivery  

 FIFO atomic multicast: FIFO multicast + total-ordered 

delivery  

 Causal atomic multicast: Causal multicast + total-ordered 

delivery 

 



Focus 22: Total-Ordered Multicasting 

 Total-ordered multicasting  

 Each transfer order (message) can be assigned a global sequence 

number. 

 There exists a global sequence. 

 Sequencer  

 The sender sends message to a sequencer  

 The sequencer allocates a global sequence number to the message. 

 The message is delivered by every destination based on the order. 

 

 



Implementations of Sequencer 

 Privilege-based (token circulated among the senders)  

 Fixed sequencer (a fixed third party)  

 Moving sequencer(token circulated among the third-party 

nodes) 

 



Multicast with Total Order 

seq(m1) < seq(m2) 

Neither seq(m1) < seq(m2) nor seq(m2) < seq(m1) 

Multicast 

with total 

order 

 

 

Multicast 

without total 

order 

 

 



Focus 23: Birman’s Virtual Synchrony 

 Virtual synchrony: reliable multicast with a special property.  

 View: a multicast group.  

 View change: (a) a new process joins, (b) a process leaves, 
and 
(c) a process crashes. 

 Each view change is multicast to members in the group.  

 Special property: each view change acts as a barrier across 
which no multicast can pass. (Application: distributed 
debugging.) 

 
 
 



Focus 23 (Cont’d) 

 

 

 

Virtual synchrony. 



Implementing a Virtual Synchronous 

Reliable Multicast 

 Message received versus message delivered.  

 If message m has been delivered to all members in the group, 

m is called stable. 

 Point-to-point communication is reliable (TCP).  

 Sender may crash before completing the multicasting. (Some 

members received the message but others did not.) 

 

 

 
 

Message receipt versus message delivery. 

 



 At group view Gi, a view changed is multicast.  

 When a process receives the view-change message for Gi+1, it 
multicasts to Gi+1 a copy of unstable messages for Gi 
followed by a flush message. 

 A process installs the new view Gi+1 when it has received a 
flush message from everyone else. 
 
 

 
 
 
 

Virtual synchrony. 

Implementing a Virtual Synchronous 

Reliable Multicast (Cont’d) 



Reliable Process 

Active model 
 
 

Passive model 



Exercise 7 

 1. Use a practical example to illustrate the differences among faults, 
errors, and failures. 

 

 2. Illustrate the correctness of the agreement protocol for authenticated 
messages using a system of four processes with two faulty processes. You 
need to consider the following two cases: 
 The sender is healthy and two receivers are faulty (the remaining receiver is healthy).  

 The sender is faulty and one receiver is faulty (the remaining receivers are healthy). 

 

 3. In Byzantine agreement protocol k + 1 rounds of message exchanges 
are needed to tolerant k faults. The number of processes n is at least 3k + 
1. Assume P1 and P2 are faulty in a system of n = 7 processes. 

 (a) Show the messages P3 receives in first, second, and third round. 

 (b) Demonstrate the correctness of the protocol by showing the final result 
vector (after a majority voting) for P3. 

 (c) Briefly show that result vectors for other non-faulty processes are the 
same. 
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Distributed Operating Systems 

 Key issues 
 Communication primitives  

 Naming and protection  

 Resource management  

 Fault tolerance  

 Services: file service, print service, process service, terminal service, 
file service, mail service, boot service, gateway service  

 Distributed operating systems vs. network operating 
systems  

 Commercial and research prototypes  

 Wiselow, Galaxy, Amoeba, Clouds, and Mach 
 



Distributed File Systems 

 A file system is a subsystem of an operating system whose 
purpose is to provide long-term storage. 

 Main issues:  

 Merge of file systems  

 Protection  

 Naming and name service  

 Caching  

 Writing policy 

 Some research prototypes:  

 UNIX United, Coda, Andrew (AFS), Frangipani, Sprite, Plan 9, 
DCE/DFS, XFS, and Farsite (Microsoft Research). 
 



Distributed Shared Memory 

 A distributed shared memory is a shared memory 

abstraction what is implemented on a loosely coupled system. 

 

 

 

Distributed shared memory. 

 



Focus 24: Stumm and Zhou's Classification 

 Central-server algorithm (nonmigrating and 

nonreplicated). 

 (Client) Sends a data request to the central server. 

 (Central server) Receives the request, performs data 

access and 

sends a response. 

 (Client) Receives the response. 

 



Focus 24 (Cont’d) 

 Migration algorithm (migrating and non-
replicated). 

 (Client) If the needed data object is not local, determines 
the 
location and then sends a request. 

 (Remote host) Receives the request and then sends the 
object. 

 (Client) Receives the response and then accesses the data 
object (read and /or write). 

 
 



Focus 24 (Cont’d) 

Read-replication algorithm (migrating and 

replicated) 

(Client) If the needed data object is not local, 

determines the location and sends a request. 

(Remote host) Receives the request and then sends the 

object. 



Focus 24 (Cont’d) 

(Client) Receives the object and then multicasts by 

sending either invalidate or update messages to all sites 

that have a copy of the data object. 

(Remote host) Receives an invalidation signal and then 

invalidates its local copy, or receives an update signal 

and then updates the local copy. 

(Client) Accesses the data object (write). 

 

 

 



Focus 24 (Cont’d) 

 Full-replication algorithm (non-migrating and 

replicated) 

 (Client) If it is a write, sends the data object to the 

sequencer.  

 (Sequencer) Receives the data object and adds a sequence 

number. Sends the client a signal with the sequence 

number and multicasts the data object together with the 

sequence number to all the other sites. 

 

 



Focus 24 (Cont’d) 

 (Client) Receives the acknowledgment and updates local 

memory based on the sequence number of each data 

object. 

 

(Other sites) Receive the data object and update local 

memory based on the sequence number of each data 

object. 

 

 

 



Focus 24 (Cont’d) 

 Main Issues: 

 Structure and granularity  

 Coherence semantics  

 Scalability  

 Heterogeneity  

 Several research prototypes: 

 Dash, Ivy, Munin, and Clouds  

 Alewife (MIT), Treadmarks (Rice), Coherent Virtual machine 

(Maryland), and Millipede (Israel Inst. Tech.) 

 

 



Distributed Database Systems 

 A distributed database is a collection of multiple, logically 
interrelated databases distributed over a computer network. 

 Possible design alternatives:  

 Autonomy  

 Distribution  

 Heterogeneity 

 
 
 
 
 
 



Distributed Database Systems (Cont’d) 

Alternative architectures. 



Essentials of Distributed Database Systems 

 Local autonomy  

 No reliance on a central site  

 Continuous operation  

 Location independence 

 Fragment independence 

 Replication independence 

 Distributed query processing  

 Distributed transaction management  

 Hardware independence  

 Operating system independence  

 Network independence  

 Data independence 

 
 



 Network scaling problem  

 Distributed query processing  

 Integration with distributed operating systems  

 Heterogeneity  

 Concurrency control  

 Security 

 Next-generation database systems: 

 Object-oriented database management systems  

 Knowledge base management systems 

 

Open Research Problems 



 ADDS (Amocha Distributed Database Systems)  

 JDDBS (Japanese Distributed Database Systems)  

 Ingres/star  

 SWIFT (Society for Worldwide Interbank Financial Financial 
Telecommunication) 

 System R  

 MYRIAD  

 MULTIBASE  

 MERMAID 
 

Research Prototypes and Commercial 

Products 



Heterogeneous Processing 

 Tuned use of diverse processing hardware to meet 

distinct computational needs. 

 Mixed-machine systems. Different execution modes by 

inter-connecting several different machine models. 

 Mixed-mode systems. Different execution modes by 

reconfigurable parallel architecture obtained by 

interconnecting the same processors. 

 



Classifications 

 Single Execution Mode/Single Machine Model 
(SESM)  

 Single Execution Mode/Multiple Machine Models 
(SEMM)  

 Multiple Execution Modes/Single Machine Model 
(MESM)  

 Multiple Execution Modes/Multiple Machine 
Models (MEMM) 
 



Focus 25: Optimization 

An optimization problem that minimizes 
 
    ti,j 
 
such that 

  

     cj  C 
 
where ti,j equals the time for machine i on code segment j, ci 
equals the cost for machine i, C equals the specified overall 
cost constraint. 
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"Killer" Applications 

 Distributed Object-based Systems: CORBA  

 Distributed Document-based Systems: WWW  

 Distributed Coordination-based Systems: JINI  

 Distributed Multimedia Systems: QoS requirements 

 

 



Recent Applications: MapReduce 

 A framework for processing highly distributable problems 

across huge datasets on a file system or a database. 

 Map: In a recursive way, the master node takes the input, divides it 

into smaller sub-problems, and distributes them to worker nodes. A 

multi-level tree structure is formed. 

 Reduce: The master node then collects the answers to all the sub-

problems and combines them in some way to form the output – the 

answer to the problem it was originally trying to solve. 

 Apache Hadoop: a software framework that supports data-intensive 

distributed applications under a free license. It was derived from Google’s 

MapReduce and Google File System (GFS). 

 



Recent Applications: PageRank 

A link analysis algorithm  

 PR(E): Rage Rank of E 

 likelihood that a person 

randomly clicking on links 

will arrive at any particular 

page 

 

 

 

M(pi): set of pages link to pi, 

L(pj): the number of outgoing 

links on pj, d: dumping 

factor, N: total number of 

pages. 

 

 

HITS (Jon Kleinberg): each node has 

two values in a mutual recursion 

• Authority: the sum of the Hub 

Scores of each node that points to it.  

• Hub: the sum of the Authority 

Scores of each node that it points to.  



Emerging Systems 

 Wireless networks and mobile computing: mobile agents 

 Move the computation to the data rather than the data to the 

computations. 

 Grid 

 TeraGrid: 13.6 teraflops of Linux Cluster computing power 

distributed at the four TeraGrid sites. 

 Open Grid Services Architecture (OGSA): delivering tighter 

integration between grid computing networks and Web services 

technologies. 

 Grid Computing (via OGSA) as the basis of evolution of Internet 

computing in the future. 



Distributed Grid 

OptIPuter (UC San Diego and U. of Chicago) 

 Parallel optical networks using IP 

 Supernetworks: networks faster than the computers attached to them 

 Parallelism takes the form of multiple wavelengths, or lambdas (1-10 
Gbps) 

 A new resource abstraction: distributed virtual computer 

 

E-Science (UK Research Councils, 2001) 

 Large-scale science carried out through distributed global 
collaboration enabled by networks, requiring access to very large data 
collaborations, very large-scale computing resources, and high-
performance visualization. 



Cloud Computing 

Sharing of resources to achieve 
coherence and economies of scale 
similar to utility (e.g. electricity 
grid) over a network (e.g. Internet) 

 Characteristics 

• Agility, API, cost, device, 
virtualization, multi-tenancy, 
reliability, scalability,  
performance, security, 
maintenance 

 Service 
• Infrastructure as a Service (LaaS) 

• Platform as a Service (PaaS) 

• Software as a Service (SaaS) 

 

 



Cyber infrastructure 

Infrastructure composed of “cyber” elements 

 Includes High-End Computing (Supercomputing), grid 
computing, distributed computing, etc 

Working definition 

 An integrated system of interconnected computation, 
communication, or information element that supports a range 
of applications 

 



Cyberinfrastructure (con’t) 

 Cyberinfrastructure consists of 

 Computational engines (supercomputers, clusters, workstations, small processors, 

…) 

 Mass storage (disk drives, tapes, …) 

 Networking (including wireless, distributed, ubiquitous) 

 Digital libraries/data bases 

 Sensors/effectors 

 Software (OS, middleware, domain specific tools) 

 Services (education, training, consulting, user assistance) 



Cyberinfrastructure (con’t) 

 Characteristics 
 Built on broadly accessible, highly capable network: 100’s of terabits 

backbones down to intermittent, wireless connectivity at very low speeds; 

 Contains significant and varied computing resources: 100’s of petaflops at 

high ends, with capacity to support most scientific work; 

 Contains significant storage capacity: exabyte collections common; high-

degree of DB confederation possible; 

 Allows wide range of of sensors/effectors to be connected: sensor nets of 

millions of elements attached; 

 Contains a broad variety of intelligent visualization, search, database, 

programming and other services that are fitted to specific disciplines. 



Cyberinfrastructure (con’t) 

 Technical Challenges 

 Computer Science and Engineering broadly 

 How to build the components 

 Networks, processors, storage devices, sensors, software 

 How to shape the technical architecture 

 Pervasive, many cyberinfrastructures, constantly evolving/changing capabilities 

 How to customize cyberinfrastructures to particular S&E domains 



Vision of the Field 

Convergence of Multiple Disciplines 

 Parallel processing, distributed systems, and network computing 

 Distributed computing as an important component in 

Cyberinfrastructure 

• Upper and middle layers in integrated cyberinfrastructure  

 Ultimate Cyberinfrastructure 

• Network-Centric 

• Petascale computing, exabyte storage, and terabit networks 



Vision of the Field (Con’t.) 

Diverse aspects (ICDCS’04 areas) 

• Agents and Mobile Code 

• Distributed Algorithms 

• Distributed Data Management 

• Distributed Operating Systems 

• Middleware 

• Multimedia 

• Network Protocols 

• Peer-to-Peer Communication 

• Real-time and Embedded Systems 

• Security and Fault Tolerant Systems 

• Ubiquitous Computing 

• Wireless Communication and Networks 

 

 



The Future of Distributed Computing 

 Theoretical aspects, including global state, logical/physical clock, 

synchronization, and algorithm verification. 

 Fault tolerance and crash recovery through software fault tolerance. 

 Tools (for CASE and performance measure) and languages are badly 

needs. 

 High-performance systems that connects 105 or more processors. 

 Real-time distributed systems used for automated manufacturing, 

remote sensing and control, and other time-critical missions. 

 Actual distributed systems with significantly improved fault tolerance, 

resource sharing, and communications. These systems will function as 

single, coherent, powerful, virtual machines providing transparent user 

access to network-wide resources. 



Major “old” Challenges  

 Transparency 

 Scalability 

 The need to meet various goals 

• Real time constraints 

• Fault tolerance 

• Security 

• Other quality/performance related objectives 

 Cross-field interaction 

 

 

 



Major “New” Challenges: Others 

Supernetworks: networks are faster than the computers 

attached to them 

 Endpoints scale to bandwidth-match the network with multiple-

10Gbps lambdas 

 Models that simplify distributed application programming 

 Middleware for bandwidth-matching distributed resources  

High-speed, parallel-access storage abstractions 

Adaptive and peer-to-peer data access 

Real-time object models enabling predictable performance 

Fault tolerance and security protocols and models 

 

 

 

 



Major “New” Challenges: Green 

Computing 

 Also green IT and ICT 

Sustainability 

 Article: Harnessing Green 

IT: Principles and Practices 

 Government 

 EPA’s Energy Star program 

 Industry 

 Climate Savers Computing 

Initiative 

 The Green Grid 

 Green500 

 Green Comm Challenge 

 

 

 

 

 

 

 

 

 

 Algorithmic efficiency 

 Resource allocation 

 Virtualization 

 Terminal servers (thin client) 

 Power management 

 Data center power 

 Operating system support 

 Power supply 

 Storage 

 Video card 

 Display 

 Materials recycling 

 Telecommuting 
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A List of Common Symbols in DCDL 

    Alternate    

*   Repetition  

||   Parallel  

    Condition  

;   Sequence  

Send  Output  

:=    Assignment  

Receive  Input  

::   Definition  

[   Begin  

]   End  

   For all (universal quantifier)  

   There exist (existential quantifier)  

=   Equal  

   Unequal  

  OR  

    AND  

   NOT 

 

 



Ideas for Projects 

 Scalability metric 

 Amdahl's law and Gustafson law 

 time-constrained 

 efficiency-constrained 

 memory-constrained scaling 

 Parallel/distributed environment 

 MPI  

 PVM 

 Parallel/distributed system model 

 including criteria to access their suitability. 

 Networks of workstations 

 with applications 

 Distributed simulation 

 Petri nets and other related models 



Ideas for Projects (Cont’d) 

 Mobile computing 

 Routing 

 Checkpointing 

 channel allocation 

 Information model 

 switch-based LANS 

 internet 

 Routing 

 Optimal 

 fault tolerant 

 deadlock-free.  

 Scheduling 

 static and dynamic load distribution. 



Ideas for Projects (Cont’d) 

 Fault tolerance 

 various applications 

 Scalable design 

 interconnection networks. 

 Survey 

 Database, file, DSM, heterogeneous computing, OS, etc. 

 Collective communication 

 multicast, broadcast, barrier sync., etc. 

 RPC and remote message passing 

 different approaches. 

 Consistency models and applications 

 different weak consistency models. 

 
 

 




