EXAM (11/13/2000)

## COP 6617 Distributed System Design

Open books and notes

Name $\longrightarrow$ SSN $\longrightarrow$

1. (20 pts) Calculate (a) node degree, (b) diameter, (c) the number of links for an $n \times n$ extended mesh (see page 207).
2. (20 pts) Binomial coefficient $\binom{n}{k}$ can be calculated in a tabular format (Pascal's triangle) based on $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$. Provide a DCDL implementation of $\binom{n}{k}$ and use one process for each binomial coefficient. Note that $\binom{n}{n}=\binom{n}{0}=1$. Demonstrate the correctness of your solution using $\binom{4}{2}$.
3. (20 pts) Provide linear and vector clocks for all the events in the system given in Problem 2 of Chapter 3 (page 101). Assume that $L C^{\prime} s$ for $P_{1}, P_{2}, P_{3}$ are initialized to 1,2 , and 0 , respectively. $d^{\prime \prime} s$ for $P_{1}, P_{2}, P_{3}$ are 2,1 , and 2, respectively.
4. (20 pts) In Figure 6.2 (page 179), find the shortest distance from $P_{1}$ to $P_{i}$, where $i=2,3,4,5$ using (a) Dijkstra's algorithm and (b) Bellman and Ford's algorithm.
5. (20 pts) Recently (in July issue of IEEE TC), Chiu proposed an odd-even turn model, which is an extension to Glass and Ni's turn model. The odd-even turn model tries to prevent the formation of the rightmost column segment of a cycle. Two rules for turn are given in:

- Rule 1: Any packet is not allowed to take an EN (east-north) turn at any nodes located in an even column, and it is not allowed to take an NW turn at any nodes located in an odd column.
- Rule 2: Any packet is not allowed to take an ES turn at any nodes located in an even column, and it is not allowed to take a SW turn at any nodes located in an odd column.
(a) Use your own word to explain that the odd-even turn model is deadlock-free.
(b) Show all the shortest paths (permissible under the extended odd-even turn model) for (a) $s_{1}:(0,0)$ and $d_{1}:(2,2)$ and (b) $s_{2}:(0,0)$ and $d_{2}:(3,2)$

