
Table of Contents
n Introduction and Motivation
n Theoretical Foundations
n Distributed Programming Languages
n Distributed Operating Systems
n Distributed Communication
n Distributed Data Management
n Reliability
n Applications
n Conclusions
n Appendix

Dependability

Highly related to fault tolerance

n Dependability
n Availability (time instance)
n Reliability (time interval without failure)
n Safety (absence of catastrophic failure)
n Maintainability (how easy to be repaired)

Build a highly dependable system depends on
controlling failure

Type of Faults

n Types of faults:
n Hardware faults
n Software faults
n Communication faults
n Timing faults

n Schneider’s classification:
n Omission failure
n Failstop failure
n Crash failure
n Byzantine failure

Redundancy

Failure mask by
n Hardware redundancy: extra PE's, I/O’s
n Software redundancy: extra version of software modules
n Information redundancy: error detecting code
n Time redundancy: additional time used to perform a

function

Example: triple modular redundancy (TMR)

Fault Handling Methods

n Active replication (e.g., TMR)
n Passive replication (primary-backup)
n Semi-active replication

Process resilience: checkpoints (state saving)

n Storage of checkpoints
n Checkpointing methods in distributed systems:

coordinated set up to avoid the domino effect

An example of domino effect (because of orphan messages).

Domino Effect

Building Blocks of Fault-Tolerant Design

n Stable storage is a logical abstraction for a special storage
that can survive system failure.

n Fail-stop processors do not perform any incorrect action and
simply cease to function.

n An atomic action is a set of operations which are executed
indivisibly by hardware. That is, either operations are
completed successfully and fully or the state of the system
remains unchanged (operations are not executed at all).

Focus 21: Byzantine Faults

n Several divisions of the Byzantine army camp outside an
enemy city. Each division commanded by its own general.
Generals from different divisions communicate only through
messengers. Some of the generals may be traitors. After
observing the enemy, the generals must decide upon a
common battle plan.

Two Requirements

n All loyal generals decide upon the same plan of action
n A small number of traitors cannot cause the loyal generals to

adopt a wrong plan

Note
n Loyal generals may start with different decisions, but end up

the same decision.
n The final decision must come from at least one loyal

general’s initial decision.

Focus 21 (Cont’d)

n Theoretical result
n Consensus is reachable if n ³ 3m + 1, where n is the total number of

generals and m is the number of traitors.

n (m+1)-round of consensus algorithm
n At the first round, each node, including traitors, broadcasts its initial

decision
n At the (i+1)th round, each node broadcasts all messages received at ith

round

Agreement Protocol
(superscript: version number, d: don’t care)

An algorithm for reaching agreement.

P1* (traitor) P2 P3 P4
First round:
(-,v2,v3,v4) (v12, -,v3, v4) (v11,v2,-, v4) (v13,v2, v3,-)
Second round:
(v12, -, v3, v4)
(v11, v2, -, v4)
(v13, v2, v3, -)

(v11, v2, -, v4)
(v13, v2, v3, -)
(-, v24, v34, v44)

(v12, -, v3, v4)
(v13, v2, v3, -)
(-, v25, v35, v45)

(v12, -, v3, v4)
(v11, v2, -, v4)
(-, v26, v36, v46)

(d1, d2, d3, d4) (v17, v2, v3, v4) (v17, v2, v3, v4) (v17, v2, v3, v4)

No-Agreement Among Three Processes

Cases leading to failure of the Byzantine agreement.

Extended Agreement Protocols
n Boolean values or arbitrary real values for the decisions.
n Unauthenticated or authenticated messages.
n Synchronous or asynchronous.
n Completely connected network or partially connected

networks.
n Deterministic or randomized.
n Byzantine faults or fail-stop faults.
n Non-totally decentralized control system and, in particular,

hierarchical control systems.

Reliable Process
Active model

Passive model

Reliable Communication

n Acknowledgement with time out:
Timeout mechanism with an acknowledge for the receipt of

each packet.
n TCP:

Transport protocol for reliable point-to-point comm
n Efficiency:

TCP allows multiple data packets to be transmitted before
the ack of the first packet is received
TCP can also estimate the round-trip time and limit data
rates to clear out congestions

Reliable Group Communication

n Feedback suppression: multicast or broadcast each positive
(or negative) acknowledge.

n Negative acknowledgement
n Signal for a missing packet.
n Pros: better scalability (without positive acknowledgement).
n Cons: sender is forced to keep each packet in the buffer forever.

n Combination of positive and negative acknowledgements

Example 26: Positive and Negative
Acknowledgements in Multiple Broadcasting

Let A be a packet and a (a) the positive (negative) acknowledgement
for A.

E.g., A, Ba, Cb, Db, Ec, Fcd, Gdef

1.Message A is sent first, acknowledged by the sender of B, which
is in turn acknowledged by the senders of C and D.

2. The sender of E acknowledges C and the sender of F acknowledges
the receipt of D but a negative acknowledgment of C .

3. Some node (not necessarily the original sender) retransmits C .

4. The sender of G acknowledges both E and F but sends a negative
acknowledgment of D (after receiving F).

Multicasting Basics

n IP multicast
n Source trees (shortest path trees)
n Shared trees (also core trees)

n Reserve path forwarding
n It is tree-based with upstream (toward the source) and

downstream (away from the source) links
n Application layer multicast

n Overlay networks, such as P2P

Different Types of Multicasting

n Atomic multicast: all-or-thing semantics (basic requirement)
n Reliable multicast: reliable, but no message ordering
n Ordered multicast

n FIFO multicast: FIFO-ordered delivery (also local order)
n Causal multicast: causal-ordered delivery
n Total order multicast: global total order

Reliable Multicasting

n Each receiver multicasts the received message to others
n Node crash (suppose sequential send) or link failure

Atomic condition is also satisfied:
n If the sender crashes before sending a single message, it is ok.
n If the sender crashes at the middle, the one received the

message will re-multicast the message to others.

The cost can be reduced if the failure is bounded
n Can reduce the number of re-multicast

Causal Order Multicast

n Can use vector time stamps
n Similar to mutual exclusion protocol

Multicast with Total Order

seq(m1) < seq(m2)

Neither seq(m1) < seq(m2) nor seq(m2) < seq(m1)

Multicast
with total
order

Multicast
without total
order

Focus 22: Total-Ordered Multicasting

n Total-ordered multicasting
n Each transfer order (message) can be assigned a global sequence

number.
n There exists a global sequence.

n Sequencer
n The sender sends message to a sequencer
n The sequencer allocates a global sequence number to the message.
n The message is delivered by every destination based on the order.

Implementations of Sequencer

n Privilege-based (token circulated among the senders)
n Fixed sequencer (a fixed third party)
n Moving sequencer (token circulated among the third-party

nodes)

Reliable Order Multicast

n In an asynchronous distributed system, total order
multicasts cannot be implemented when even a
single process crashes.

Similar to the asynchronous consensus problem

Open Groups and Issues

n Open groups: multicast members are allowed to
spontaneously join and leave

View changes: {0, 1, 2, 3} to {1, 2, 3}
Inconsistency: 2 and 3 delivery m, not 1 in new view

Focus 23: Birman’s Virtual Synchrony
n Virtual synchrony: reliable multicast with a special property.
n View: a multicast group.
n View change: (a) a new process joins, (b) a process leaves,

and (c) a process crashes.
n Each view change is multicast to members in the group.
n Special property: each view change acts as a barrier across

which no multicast can pass. (Application: distributed
debugging.)

Focus 23 (Cont’d)

Virtual synchrony.

Implementing a Virtual Synchronous
Reliable Multicast

n Message received versus message delivered.
n If message m has been delivered to all members in the group,

m is called stable.
n Point-to-point communication is reliable (TCP).
n Sender may crash before completing the multicasting. (Some

members received the message but others did not.)

Message receipt versus message delivery.

n At group view Gi, a view changed is multicast.
n When a process receives the view-change message for Gi+1, it

multicasts to Gi+1 a copy of unstable messages for Gi
followed by a flush message.

n A process installs the new view Gi+1 when it has received a
flush message from everyone else.

Virtual synchrony.

Implementing a Virtual Synchronous
Reliable Multicast (Cont’d)

Exercise 7
1. Explain the difference between FIFO order, casual order, and total
order multicast with examples.

2. Show how to implement a causal order multicast using vector time
stamps.

3. In Byzantine agreement protocol k + 1 rounds of message exchanges
are needed to tolerant k faults. The number of processes n is at least 3k +
1. Assume P1 and P2 are faulty in a system of n = 7 processes.
n (a) Show the messages P3 receives in first, second, and third round.
n (b) Demonstrate the correctness of the protocol by showing the final result

vector (after a majority voting) for P3.
n (c) Briefly show that result vectors for other non-faulty processes are the

same.

