Table of Contents

- Introduction and Motivation
- Theoretical Foundations
- Distributed Programming Languages
- Distributed Operating Systems
- Distributed Communication
- Distributed Data Management
- Reliability
- Applications
- Conclusions
- Appendix

Distributed Communication

One-to-one (unicast)

One-to-many (multicast)

One-to-all (broadcast)

Different types of communication

Classification

- Special purpose vs. general purpose.
- Minimal vs. nonminimal.
- Deterministic vs. adaptive.
- Source routing vs. distributed routing.
- Fault-tolerant vs. non fault-tolerant.
- Redundant vs. non redundant.
- Deadlock-free vs. non deadlock-free.

Router Architecture

A general PE with a separate router.

Four Factors for Communication Delay

- Topology. The topology of a network, typically modeled as a graph, defines how PEs are connected.
- Routing. Routing determines the path selected to forward a message to its destination(s).
- Flow control. A network consists of channels and buffers. Flow control decides the allocation of these resources as a message travels along a path.
- Switching. Switching is the actual mechanism that decides how a message travels from an input channel to an output channel: store-and-forward and cutthrough (wormhole routing).

General-Purpose Routing

Source routing: link state (Dijkstra's algorithm)
Used in Internet protocol: Open Shortest Path First (OSPF)

A sample source routing

General-Purpose Routing (Cont'd)

Distributed routing: distance vector (Bellman-Ford algorithm) Used in Internet protocol: Routing Information Protocol (RIP) and Interior Gateway Routing Protocol (IGRP)

A sample distributed routing

Distributed Bellman-Ford Routing Algorithm

- Initialization. With node d being the destination node, set $D(d)=0$ and label all other nodes $(., \infty)$.
- Shortest-distance labeling of all nodes. For each node $\mathrm{v} \neq \mathrm{d}$ do the following: Update $\mathrm{D}(\mathrm{v})$ using the current value $\mathrm{D}(\mathrm{w})$ for each neighboring node w to calculate $\mathrm{D}(\mathrm{w})+\mathrm{l}(\mathrm{w}, \mathrm{v})$ and perform the following update:

$$
\mathrm{D}(\mathrm{v}):=\min \{\mathrm{D}(\mathrm{v}), \mathrm{D}(\mathrm{w})+\mathrm{l}(\mathrm{w} ; \mathrm{v})\}
$$

Distributed Bellman-Ford Algorithm (Cont’d)

Example 18

A sample network.

Example 18 (Cont'd)

Round	P1	P2	P3	P4
Initial	$(., \infty)$	$(., \infty)$	$(., \infty)$	$(., \infty)$
1	$(., \infty)$	$(., \infty)$	$(5,20)$	$(5,2)$
2	$(3,25)$	$(4,3)$	$(4,4)$	$(5,2)$
3	$(2,7)$	$(4,3)$	$(4,4)$	$(5,2)$

Bellman-Ford algorithm applied to the network with P_{5} being the destination.

Looping Problem

Link $\left(P_{4} ; P_{5}\right)$ fails at the destination P_{5}.

Time next node	0	1	2	3	$\mathrm{~K}, 4<\mathrm{k}<15$	16	17	18	19	$(20, \infty)$
P2	7	7	9	9	$2\lfloor\mathrm{n} / 2\rfloor+7$	23	23	25	25	27
P3	9	9	11	11	$2\lfloor\mathrm{n} / 2\rfloor+9$	25	25	25	25	25^{*}

(a) Network delay table of P1

Time next node	0	1	2	3	K, $4<\mathrm{k}<15$	16	17	18	19	$(20$, $\infty)$
P1	11	11	13	13	$2\lfloor\mathrm{n} / 2\rfloor+9$	25	27	27	29	29
P3	7	7	9	9	$2\lfloor\mathrm{n} / 2\rfloor+7$	23	23	23	23	23
P3	3	5	5	7	$2\lfloor\mathrm{n} / 2\rfloor+3$	19	21	21	23^{*}	23

(b) Network delay table of P2

Looping Problem (Cont’d)

Time next node	0	1	2	3	$\mathrm{~K}, 4<\mathrm{k}<15$	16	17	18	19	$(20, \infty)$
P1	12	12	12	14	$2\lfloor\mathrm{n} / 2\rfloor+10$	26	28	28	30	30
P2	6	6	8	8	$2\lfloor\mathrm{n} / 2\rfloor+5$	22	22	24	24	26
P4	4	6	6	8	$2\lfloor\mathrm{n} / 2\rfloor+4$	20	22	22	24	24
P5	20	20	20	20	20	20	20^{*}	20	20	20

(c) Network delay table of P3

Time next node	0	1	2	3	K, $4<\mathrm{k}<15$	16	17	18	19	$(20, \infty)$
P2	4	4	6	6	$2\lfloor\mathrm{n} / 2\rfloor+4$	20	20	22	22	24
P3	6	6	8	8	$2\lfloor\mathrm{n} / 2\rfloor+5$	22	22	22	22	22^{*}
P5	∞									

(d) Network delay table of P4

Slow convergence in asynchronous mode

From node 0 to node $\mathrm{n}-1$, unlabeled nodes have cost of 0
Paths that come in the following sequences with shorter routes $0,1,2, \ldots, n-4, n-3, n-2, n-1$
$0,1,2, \ldots, n-4, n-3,-, \quad n-1$
$0,1,2, \ldots,-, \quad n-3 n-2, n-1$
$0,1,2, \ldots,-, \quad \mathrm{n}-3,-, \quad \mathrm{n}-1$
$0,-, 2, \quad-, \quad n-3,-, \quad n-2$

Special-Purpose Routing

E-cube routing in n-cube: $\mathrm{u} \oplus \mathrm{w}$ as a navigation vector.

(a)

000
(b)

A routing in a 3-cube with source 000 and destination 110:
(a)Single path. (b) Three node-disjoint paths.

Compact Routing Table

Interval Routing: (destination, port number)

However, it does work well when a new link or node is added
Prefix Routing: forward to the port labeled with the longest prefix of destination

When a node has a label L , then the label of its child is $\mathrm{L} \cdot \mathrm{x}(\lambda$: empty string for child to parent)

Binomial-Tree-Based Broadcasting in N-Cubes

B4
The construction of binomial trees
(\# of nodes at each level corresponds to a binomial number).

Hamiltonian-Cycle-Based Broadcasting in N-Cubes

(a) A broadcasting initiated from 000 with coordinated sequence (CS): $\{3,2,1\}$.
(b) A Hamiltonian cycle in a 3-cube.

Edge-disjointed Multiple Binomial Trees

- Source 000 sends m to each neighbor
- Each neighbor broadcasts m with a right rotation CS
- CS: $\{3,2,1\}$ at 001

CS: $\{1,2,3\}$ at 010
CS: $\{2,1,3\}$ at 100

FIGURE 6.12

Edge-disjoint multiple binomial trees.

Table 6.4 Multiple paths to each node of a 3-cube

Cut-through: recursive doubling

One-port or all-port (without contention over links/paths)

(L) one-port and (R) all-port on ring

One-port on mesh with minimum total distance using eyes: (a) 2×2, (b) 4×4, and (c) $2^{k} \times 2^{k}$ meshes

Parameterized Communication Model

Postal model:

- $\lambda=1 / \mathrm{s}$, where 1 is the communication latency and s is the latnecy for a node to send the next message.
- Under the one-port model the binomial tree is optimal when $\lambda=1$.

$$
\mathrm{N}_{\lambda}(\mathrm{t})=\mathrm{N}_{\lambda}(\mathrm{t}-1)+\mathrm{N}_{\lambda}(\mathrm{t}-\lambda) \text {, if } \mathrm{t} \geq \lambda ; 1 \text {, otherwise }
$$

Example 19: Broadcast Tree

Comparison with $\lambda=6$: (a) binomial tree and (b) optimal spanning tree.

Multicasting

- Multicast path
- Core tree (for a graph): minimizing total length
- Shortest path tree (for a graph): minimizing path for each
- Steiner tree (points without a graph): a minimum tree that includes all destinations.

Three-points Steiner tree with the Fermat point S (e.g., all angles $\leq 120^{\circ}$)

In general, there $\mathrm{N}-2$ Format points for given N points

Finding a minimum-weight Steiner tree is NP-hard

Focus 15: Fault-Tolerant Routing

Wu's safety level:

- The safety level associated with a node is an approximated measure of the number of faulty nodes in the neighborhood.
- Initially all faulty nodes have 0 as safety levels and all non-faulty nodes have n .
- Let $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}-1}\right), 0 \leq \mathrm{S}_{\mathrm{i}} \leq \mathrm{n}$, be the non-descending safety status sequence of node a 's neighboring nodes in an n-cube.
- Iteratively do the following: If $\left(\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}-1}\right) \geq(0,1,2, \ldots, \mathrm{n}-1)$ then $\mathrm{S}(\mathrm{a})$ $=n$ else if $\left(S_{0}, S_{1}, S_{2}, \ldots S_{k-1}\right) \geq(0,1,2, \ldots, k-1)^{\wedge}\left(S_{k}=k-1\right)$ then $S(a)=k$.

Insight: Embedding of binomial tree B_{n} in Q_{n} in terms of $B_{n-1}\left(\right.$ in a $\left.Q_{n-1}\right), B_{n-2}$, \ldots, B_{1}, and B_{0} in any orientation.

Focus 15: Fault-Tolerant Routing (Cont'd)

Distributed algorithms: iterative exchanges (maximum n rounds) with neighbors' safety levels
A node a is called safe if its level is n, i.e., $S(a)=n$

Fault-Tolerant Routing (Cont'd)

If the safety level of a node is k , there is at least one Hamming distance path from this node to any node within k -hop. If there are at most n faults, every unsafe node has a safe neighbor.

A fault-tolerant routing using safety levels.

Fault-Tolerant Broadcasting

If the source node is n-safe, there exists an n-level injured spanning binomial tree in an n-cube: source can reach all nonfaulty nodes through a Hamming distance path.

Broadcasting in a faulty 4-cube.

Wu's Extended Safety Level in 2-D Meshes

A sample region of minimal paths.

Safety Block

Safety block: (1) All faulty nodes are unsafe. All nonfaulty nodes are initially safe. (2) If a nonfaulty node has two or more faculty/unsafe neighbors, it is unsafe. Extended safety block: (1). (2) ...has a faulty/unsafe neighbor in both dimensions... Wu's orthogonal convex region: All safe nodes are enabled. A unsafe node is initially disabled, but it is changed to the enabled status if it has two or more enabled neighbors.

(L) Regular and (R) extended safe/unsafe

Enabled/disabled for (L) regular and (R) for extended

Deadlock-Free Routing

Virtual channels and virtual networks:

,
(a)

(b)

(c)
(a) A ring with two virtual channels, (b) channel dependency graph of (a), and (c) two virtual rings $v r_{1}$ and $v r_{0}$.

Focus 16: Deadlock-Free Routing Without Virtual Channels

- XY-routing in 2-D meshes: X dimension followed by Y dimension.
- Glass and Ni's Turn model: Certain turns are forbidden.

(a) Abstract cycles in 2-d meshes, (b) four turns (solid arrows) allowed in XYrouting, (c) six turns allowed in positive-first routing, and (d) six turns allowed in negative-first routing.

Planar-Adaptive Routing

For general k-ary n-cubes, select $n+12$-D planes $A_{0}, A_{1}, \ldots, A_{n}$. A_{i} spans dimension d_{i} and d_{i+1}.
Three virtual channels are used: one for d_{i} and two for $d_{i+1}: d_{i, 2}$, $d_{i+1,0}$, and $d_{i+1,1}$. (Second subscript is virtual channel number.) Each plane has one positive and one negative subnetworks.

Positive and negative Networks in d_{i} and $\mathrm{d}_{\mathrm{i}+1}$

Escape channels

- Regular channels: non-waiting
- Escape channels: waiting
- Strongly connected
- Strictly decreasing path: for any pair of nodes, a decreasing (labelled) path exist.

Theorem: The minimum number of channels needed to meet the above two conditions is $2 \mathrm{n}-1$, where n is the number of nodes.
L. Sheng and J. Wu, A Note on "A Tight Lower Bound on the Number of Channels Required for Deadlock-Free Wormhole Routing", IEEE TC, Sept. 2000.

Exercise 5

1. Provide an addressing scheme for the following extended mesh (EM) which is a regular 2-D mesh with additional diagonal links. Provide a general shortest routing algorithm for EMs.

2. Repeat Example 18 after changing (P1, P3) to 4 and (P3, P5) to 8.
3. Suppose the postal model is used for broadcasting and $\lambda=5$. What is the maximum number of nodes that can be reached in time unit 10 . Derive the corresponding broadcast tree.

Exercise 5 (Cont'd)

4. Consider the following turn models:

- West-first routing. Route a message first west, if necessary, and then adaptively south, east, and north.
- North-last routing. First adaptively route a message south, east, and west; route the message north last.
- Negative-first routing. First adaptively route a message along the negative X or Y axis; that is, south or west, then adaptively route the message along the positive X or Y axis.
(a) Show all the turns allowed in each of the above three routings.
(b) Show the corresponding routing paths using (1) positive-first, (2) westfirst, (3) north-last, and (4) negative-first routing for the following unicasting: $(2,1)$ to $(5,9),(7,1)$ to $(5,3),(6,4)$ to $(3,1)$, and $(1,7)$ to $(5,2)$.

5. Wu and Fernandez (1992) gave the following safe and unsafe node definition: A nonfaulty node is unsafe if and only if either of the following conditions is true: (a) There are two faulty neighbors, or (b) there are at least three unsafe or faulty neighbors. Consider a 4-cube with faulty nodes $0100,0011,0101,1110$, and 1111 . Find out the safety status (safe or uncofol of aonh nodo

Exercise 5 (Cont'd)

Repeat the above using Wu's safety vector. Critically compare safety node, safety level, and safety vector in terms of fault-tolerance capability and complexity. (J. Wu, Reliable communication in cube-based multipcomputers using safety vectors, IEEE TPDS, 9, (4), April 1998, 321-334.)
6. To support fault-tolerant routing in 2-D meshes, D. J. Wang (1999) proposed the following new model of faulty block: Suppose the destination is in the first quadrant of the source. Initially, label all faulty nodes as faulty and all non-faulty nodes as fault-free. If node u is fault-free, but its north neighbor and east neighbor are faulty or useless, u is labeled useless. If node u is faultfree, but its south neighbor and west neighbor are faulty or can't-reach, u is labeled can't-reach. The nodes are recursively labeled until there are no new useless or can't-reach nodes.
(a) Give an intuitive explanation of useless and can't-reach.
(b) Re-write the definition when the destination is in the second quadrant of the source.

Exercise 5 (Cont'd)

7. Chiu proposed an odd-even turn model, which is an extension to Glass and Ni's turn model. The odd-even turn model tries to prevent the formation of the rightmost column segment of a cycle. Two rules for turn are given in:

- Rule 1: Any packet is not allowed to take an EN (east-north) turn at any nodes located in an even column, and it is not allowed to take an NW turn at any nodes located in an odd column.
- Rule 2: Any packet is not allowed to take an ES turn at any nodes located in an even column, and it is not allowed to take a SW turn at any nodes located in an odd column.
(a) Use your own word to explain that the odd-even turn model is deadlockfree.
(b) Show all the shortest paths (permissible under the extended odd-even turn model) for

$$
\text { (a) } \mathrm{s}_{1}:(0,0) \text { and } d_{1}:(2,2) \text { and (b) } s_{2}:(0,0) \text { and } d_{2}:(3,2)
$$

Ge-Ming Chiu. "The odd-even turn model for adaptive routing." IEEE TPDS, 11, (7), July 2000, 729-738.

