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Distributed Operating Systems

n Operating Systems: provide problem-oriented abstractions of 
the underlying physical resources.

n Files (rather than disk blocks) and sockets (rather than raw 
network access).



Selected Issues
n Mutual exclusion and election

n Non-token-based vs. token-based
n Election and bidding

n Detection and resolution of deadlock
n Four conditions for deadlock: mutual exclusion, hold and wait, no 

preemption, and circular wait.
n Graph-theoretic model: wait-for graph
n Two situations: AND model (process deadlock) and OR model 

(communication deadlock)

n Task scheduling and load balancing
n Static scheduling vs. dynamic scheduling



Mutual Exclusion and Election

n Requirements:
n Freedom from deadlock.
n Freedom from starvation.
n Fairness.

n Measurements:
n Number of messages per request.
n Synchronization delay.
n Response time.



Non-Token-Based Solutions:
Lamport's Algorithm
n To request the resource process Pi sends its timestamped 

message to all the processes (including itself ).
n When a process receives the request resource message, it 

places it on its local request queue and sends back a 
timestamped acknowledgment.

n To release the resource, Pi sends a timestamped release 
resource message to all the processes (including itself ).

n When a process receives a release resource message from Pi,
it removes any requests from Pi from its local request queue.
A process Pj is granted the resource when
n Its request r is at the top of its request queue, and,
n It has received messages with timestamps larger than the timestamp of 

r from all the other processes.



Example for Lamport’s Algorithm



Extension

n There is no need to send an acknowledgement when process
Pj receives a request from process Pi after it has sent its own
request with a timestamp larger than the one of Pi's request.

n An example for Extended Lamport’s Algorithm



Ricart and Agrawala's Algorithm

It merges acknowledge and release messages into one 
message reply.

An example using Ricart and Agrawala's algorithm.



Token-Based Solutions: Ricart and
Agrawala's Second Algorithm

n When token holder Pi exits CS, it searches other processes in 
the order i + 1,i + 2,…,n,1,2,…,i - 1 for the first j such that 
the timestamp of Pj 's last request for the token is larger than 
the value recorded in the token for the timestamp of Pj 's last 
holding of the token.



Token-based Solutions (Cont’d)

Ricart and Agrawala's second algorithm.



P(i)::=*[ request-resource
consume 
release-resource
treat-request-message 
others
]

distributed-mutual-exclusion ::= ||P(i:1..n)

clock: 0,1,…, (initialized to 0)
token-present: Boolean (F for all except one process)
token-held: Boolean (F)
token: array (1..n) of clock (initialized 0)
request: array (1..n) of clock (initialized 0)

Pseudo Code



n others::= all the other actions that do not request to enter the 
critical section.

n consume::= consumes the resource after entering the critical 
section

n request-resource::=
[ token present = F
→ [ send (request-signal, clock, i) to all; 

receive (access-signal, token);
token-present:= T;
token-held:= T

]
]

Pseudo Code (Cont’d)



release-resource::=
[ token (i):=clock;

token-held:= F;
min j in the order [i + 1,… n,1,2,…,i – 2, i – 1]

∧ (request(j) > token(j))
→ [ token-present:= F;

send (access-signal, token) to Pj
]

]

Pseudo Code (Cont’d)



treat-request-message::=
[ receive (request-signal, clock; j)

→[request(j):=max(request(j),clock);
token-present ∧¬token-held→ release-resource

]
]

Pseudo Code (Cont’d)



Ring-Based Algorithm

P(i:0..n-1)::=
[ receive token from P((i-1) mod n); 

consume the resource if needed; 
send token to P ((i + 1) mod n)

]

distributed-mutual-exclusion::= ||P(i:0..n-1)



Ring-Based Algorithm (Cont’d)

The simple token-ring-based algorithm (a) and the 
fault-tolerant token-ring-based algorithm (b).



Tree-Based Algorithm

A tree-based mutual exclusion algorithm.



Maekawa's Algorithm

n Permission from every other process but only from a 
subset of processes.

n If Ri and Rj are the request sets for processes Pi and
Pj , then Ri ∩ Rj≠φ.



Example 11

R1 : {P1; P3; P4}
R2 : {P2; P4; P5}
R3 : {P3; P5; P6}
R4 : {P4; P6; P7}
R5 : {P5; P7; P1}
R6 : {P6; P1; P2}
R7 : {P7; P2; P3}



The Dining Philosophers Problem

n Sharing multiple resources n edge reversal:
n Mutual exclusion set up a proper wait-for structure
n Deadlock prevention
n Amount of concurrency
n Two neighbors i and j: holds_forkij and

holds_turnij

n Drinking Philosophers Problem



Related Issues

n Election: After a failure occurs in a distributed system, it is 
often necessary to reorganize the active nodes so that they can 
continue to perform a useful task.

n Bidding: Each competitor selects a bid value out of a given set
and sends its bid to every other competitor in the system. Every
competitor recognizes the same winner.

n Self-stabilization: A system is self-stabilizing if, regardless of 
its initial state, it is guaranteed to arrive at a legitimate state in a 
finite number of steps.



Focus 11: Chang and Robert’s algorithm

Election on a ring
n Election and elected signals
n Smallest ID is the winner
n Two rounds of circulation
n O(n log n) messages



Garcia-Molina's Bully Algorithm for
Election

n When P detects the failure of the coordinator or receives an 
ELECTION packet, it sends an ELECTION packet to all 
processes with higher priorities.

n If no one responds (with packet ACK), P wins the election 
and broadcast the ELECTED packet to all.

n If one of the higher processes responds, it takes over. P's job 
is done. This higher process will repeat the same action as P.



Focus 11 (Cont’d)

Bully algorithm.



Lynch's Non-Comparison-Based Election
Algorithms

n Process id is tied to time in terms of rounds.
n Time-slice algorithm: (n, the total number of 

processes, is known)
n Process Pi (with its id(i)) sends its id in round id(i)2n, i.e., at most one 

process sends its id in every 2n consecutive rounds.
n Once an id returns to its original sender, that sender is elected. It sends 

a signal around the ring to inform other processes of its winning
status.

n message complexity: O(n)
n time complexity: min{id(i)} n



n Variable-speed algorithm: (n is unknown)
n When a process Pi sends its id (id(i)), this id travels at 

the rate of one transmission for every 2id(i) rounds.
n If an id returns to its original sender, that sender is 

elected.

n message complexity: n + n/2 + n/22 + … + n/2(n-1)
< 2n = O(n)

n time complexity: 2 min{id(i)}n

Lynch's Algorithms (Cont’d)



Dijkstra's Self-Stabilization

n Legitimate state P : A system is in a legitimate state P if and 
only if one process has a privilege.

n Convergence: Starting from an arbitrary global state, S is 
guaranteed to reach a global state satisfying P within a finite 
number of state transitions.



Example 12

n A ring of finite-state machines with three states. A privileged 
process is the one that can perform state transition.

n For Pi, 0 < i≤ n -
1,

n Pi≠Pi-1→ Pi := Pi-1,
n P0=Pn-1→ P0:=(P0+1) mod k

Theorem: If k > n, then Dijkstra’s token ring for mutual 
exclusion always eventually reaches a correct configuration.

For n > 2, theorem also hold if k = n-1.



Table 1: Dijkstra’s self-stabilization algorithm (n =3 and k =4).

P0 P1 P2 Privileged 
processes

Process to make 
move

2 1 2 P0,P1,P2 P0

3 1 2 P1,P2 P1

3 3 2 P2 P2

3 3 3 P0 P0

0 3 3 P1 P1

0 0 3 P2 P2

0 0 0 P0 P0

1 0 0 P1 P1

1 1 0 P2 P2

1 1 1 P0 P0

2 1 1 P1 P1

2 2 1 P2 P2

2 2 2 P0 P0

3 2 2 P1 P1

3 3 2 P2 P2

3 3 3 P0 P0



Non-Convergence Example
When n > 3, k = n-2.

Infinite computation exists in which always n-1 processes are privileged



Extensions

n The role of demon (that selects one privileged process)
n The role of asymmetry.
n The role of topology.
n The role of the number of states



Detection and Resolution of Deadlock

n Mutual exclusion. No resource can be shared by more than 
one process at a time.

n Hold and wait. There must exist a process that is holding at 
least one resource and is waiting to acquire additional 
resources that are currently being held by other processes.

n No preemption. A resource cannot be preempted.
n Circular wait. There is a cycle in the wait-for graph.



Detection and Resolution of Deadlock (Cont’d)

Two cities connected by (a) one bridge and by (b) two bridges.



Strategies for Handling Deadlocks

n Deadlock prevention
n Deadlock avoidance (based on "safe state")
n Deadlock detection and recovery
n Different Models

n AND condition
n OR condition



Types of Deadlock

n Resource deadlock
n Communication deadlock

An example of communication deadlock



Conditions for Deadlock

n AND model: a cycle in the wait-for graph.
n OR model: a knot in the wait-for graph.

Wait-for graph is a special case of resource-
allocation graph: each resource has exactly 
one instance.



Conditions for Deadlock (Cont’d)

A knot (K) consists of a set of nodes such that for every node 
a in K , all nodes in K and only the nodes in K are reachable 
from node a.

Two systems under the OR condition with
(a) no deadlock and without (b) deadlock.



Focus 12: Rosenkrantz' Dynamic Priority
Scheme (using timestamps)

T1:
lock A; 
lock B;
transaction starts; 
unlock A;
unlock B;

wait-die (non-preemptive method) 
[ LCi < LCj→ halt Pi (wait)

LCi≥LCj → kill Pi (die)
]

wound-wait (preemptive method)
[ LCi < LCj → kill Pj (wound) 

LCi≥LCj→ halt Pi (wait)
]



Example 13

A system consisting of five processes.

Process id Priority 1st request time Length Retry interval

P1 2 1 1 1

P2 1 1.5 2 1

P3 4 2.1 2 2

P4 5 3.3 1 1
P5 3 4.0 2 3



Example 13 (Cont’d)

wound-wait:

wait-die:



Load Distribution

A taxonomy of load distribution algorithms.



Static Load Distribution (task scheduling)

n Processor interconnections
n Task partition

n Horizontal or vertical partitioning.
n Communication delay minimization partition.
n Task duplication.

n Task allocation



Models

n Task precedence graph: each link defines the precedence 
order among tasks.

n Task interaction graph: each link defines task interactions 
between two tasks.

(a) Task precedence graph (reducing critical path) and (b) task interaction
graph (balancing comp. and comm.)



Example 14

Mapping a task interaction graph (a) 
to a processor graph (b).



Example 14 (Cont’d)

n The dilation of an edge of Gt is defined as the length 
of the path in Gp onto which an edge of Gt is 
mapped. The dilation of the embedding is the 
maximum edge dilation of Gt.

n The expansion of the embedding is the ratio of the 
number of nodes in Gt to the number of nodes in Gp.

n The congestion of the embedding is the maximum 
number of paths containing an edge in Gp where 
every path represents an edge in Gt.

n The load of an embedding is the maximum number 
of processes of Gt assigned to any processor of Gt.



Periodic Tasks With Real-time Constraints

n Task Ti has request period ti and run time ci.
n Each task has to be completed before its next request.
n All tasks are independent without communication.



Liu and Layland's Solutions

n Rate monotonic scheduling (RMS, fixed priority 
assignment). Tasks with higher request rates will 
have higher priorities.

n Deadline driven scheduling (DDS, dynamic
priority assignment). A task will be assigned the
highest priority if the deadline of its current
request is the nearest.

Both are preemptive
RMS is easier to implement compared to DDS.



Schedulability
n Deadline driven schedule: iff

n

∑ ci/ti≤ 1
i=0

n Rate monotonic schedule: if
n

∑ ci/ti≤ n(21/n - 1);
i=0

may or may be not when
n

n(21/n - 1) < ∑ ci/ti≤
1

i=0



Example 15 (schedulable)

n T1: c1 = 3, t1 = 5 and T2: c2 = 2, t2 = 7 (with the same initial 
request time).

n The overall utilization is 0.887 > 0.828 (bound for n = 2),
n but, it is schedulable.



Example 16 (un-schedulable under rate
monotonic scheduling)

n T1: c1 = 3, t1 = 5 and T2: c2 = 3, t2 = 8 (with the same initial 
request time).

n The overall utilization is 0.975 > 0.828

An example of periodic tasks that is not schedulable.



Example 16 (Cont’d)

n If each task meets its first deadline when all tasks are started 
at the same time then the deadlines for all tasks will always 
be met for any combination of starting times.

n scheduling points for task T : T 's first deadline and the ends 
of periods of higher priority tasks prior to T 's first deadline.

n If the task set is schedulable for one of scheduling points of 
the lowest priority task, the task set is schedulable; otherwise, 
the task set is not schedulable.



Example 17 (schedulable under rate
monotonic schedule)

n c1 = 20, t1 = 100, c2 = 50, t2 = 150, and c3 = 80, t3 = 350.
n The overall utilization is 0.2 + 0.333 + 0.229 = 0.762 < 0.779 

(the bound for n > 3).
n c1 is doubled to 40. The overall utilization is 

0.4+0.333+0.229 = 0.962 > 0.779.
n The scheduling points for T3: 350 (for T3), 300 (for T1 and 

T2), 200 (for T1), 150 (for T2), 100 (for T1).



Example 17 (Cont’d)

c1 + c2 + c3≤t1,
40 + 50 + 80 > 100;
2c1 + c2 + c3≤t2, 
80 + 50 + 80 > 150;
2c1 + 2c2 + c3≤2t1,
80 + 100 + 80 > 200;
3c1 + 2c2 + c3≤2t2,
120 + 100 + 80 = 300;
4c1 + 3c2 + c3≤t3,
160 + 150 + 80 > 350.



Example 17 (Cont’d)

A schedulable periodic task.



Dynamic Load Distribution (load balancing)

A state-space traversal example.



Dynamic Load Distribution (Cont’d)

A dynamic load distribution algorithm has six policies:
n Initiation
n Transfer
n Selection
n Profitability
n Location
n Information



Focus 13: Initiation

Sender-initiated approach:

Sender-initiated load balancing.



Focus 13 (Cont’d)

/* a new task arrives */ 
queue length≥HWM→

* [ poll_set := φ ;

[| poll_set | < poll_limit→
[ select a new node u randomly;
poll_set := poll_set ∪ node u; 
queue_length at u < HWM→

transfer a task to node u and stop
]

]
]



Receiver-Initiated Approach

Receiver-initiated load balancing.



Receiver-Initiated Approach (Cont’d)

/* a task departs */ 
queue length < LWM→	
[ poll limit:=φ ;

* [ | poll_set | < poll limit→
[ select a new node u randomly;

poll_set := poll set ∪ node u; 
queue_length at u > HWM→

transfer a task from node u and stop
]

]
]



Bidding Approach

Bidding algorithm.



Focus 14: Sample Nearest Neighbor Algorithms

Diffusion
n At round t + 1 each node u exchanges its load Lu(t) with its neighbors' 

Lv(t).
n Lu(t + 1) should also include new incoming load φu(t) between rounds t

and t + 1.
n Load at time t + 1:

Lu(t + 1) = Lu(t) + ∑αu,v(Lv(t)- Lu(t)) + φu(t)
v∈A(u)

where 0≤αu,v≤1 is called the diffusion parameter of nodes u and v.



Gradient

n Maintain a contour of the gradients formed by the differences 
in load in the system.

n Load in high points (overloaded nodes) of the contour will 
flow to the lower regions (underloaded nodes) following the 
gradients.

n The propagated pressure of a processor u, p(u), is defined as 
p(u) =
n 0 (if u is lightly loaded)
n 1 + min{p(v)|v∈A(u)} (otherwise)



Gradient (Cont’d)

(a) A 4 x 4 mesh with loads. (b) The corresponding propagated
pressure of each node (a node is lightly loaded if its load is less than 3).



Dimension Exchange: Hypercubes

n A sweep of dimensions (rounds) in the n-cube is applied.
n In the ith round neighboring nodes along the ith dimension 

compare and exchange their loads.



Dimension Exchange: Hypercubes (Cont’d)

Load balancing on a healthy 3-cube.



Extended Dimension Exchange:
Edge-Coloring

Extended dimension exchange model through edge-coloring.



Exercise 4

1. Apply wound-wait and wait-die schemes to the example shown in Table 2.
2. Show the state transition sequence for the following system with n = 3 and
k = 5 using Dijkstra's self-stabilizing algorithm. Assume that P0 = 3, P1 =
1, and P2 = 4.

3. Determine if there is a deadlock in each of the following wait-for graphs
assuming the OR model is used.



Exercise 4 (Cont’d)

Process id Priority 1st request time Length Retry 
interval

Resource(s)

P1 3 1 1 1 A

P2 4 1.5 2 1 B

P3 1 2.5 2 2 A,B

P4 2 3 1 1 B,A

Table 2: A system consisting of four processes.

4. Consider the following two periodic tasks (with the same request time)

n Task T1: c1 = 4, t1 = 9

n Task T2: c2 = 6, t2 = 14

(a) Determine the total utilization of these two tasks and compare it with Liu 
and Layland's least upper bound for the fixed priority schedule. What 
conclusion can you derive?



Exercise 4 (Cont’d)

(b) Show that these two tasks are schedulable using the rate-monotonic 
priority assignment. You are required to provide such a schedule.

(c) Determine the schedulability of these two tasks if task T2 has a higher 
priority than task T1 in the fixed priority schedule.

(d) Split task T2 into two parts of 3 units computation each and show that 
these two tasks are schedulable using the rate-monotonic priority 
assignment.

(e) Provide a schedule (from time unit 0 to time unit 30) based on deadline 
driven scheduling algorithm. Assume that the smallest preemptive 
element is one unit.



Exercise 4 (Cont’d)

5. For the following 4 x 4 mesh find the corresponding propagated pressure 
of each node. Assume that a node is considered lightly loaded if its 
load is less than 2.


