
Table of Contents
n Introduction and Motivation
n Theoretical Foundations
n Distributed Programming Languages
n Distributed Operating Systems
n Distributed Communication
n Distributed Data Management
n Reliability
n Applications
n Conclusions
n Appendix

Three Issues

n Use of multiple PEs
n Cooperation among the PEs
n Potential for survival to partial failure

Control Mechanisms

Four basic sequential control mechanisms with
their parallel counterparts.

Statement type \
Control type

Sequential control Parallel Control

Sequential/parallel
statement

Begin S1, S2

end
Parbegin S1, S2

Parend
Fork/join

Alternative statement goto, case if C then
S1 else S2

Guarded commands:
G→C

Repetitive statement for … do doall, for all

Subprogram procedure
Subroutine

procedure
subroutine

Focus 6: Expressing Parallelism

A precedence graph of eight statements.

parbegin/parend statement
S1;[[S2;[S3||S4];S5;S6]||S7];S8

Focus 6 (Cont’d.)

fork/join statement
s1;
c1:= 2;
fork L1;
s2;
c2:=2;
fork L2;
s4;
go to L3;

L1: s3;
L2: join c1;

s5;
L3: join c2;

s6;

A precedence graph.

Dijkstra's Semaphore + Parbegin/Parend
S(i): A sequence of P operations; Si; a sequence of V
operations

s: a binary semaphore initialized to 0.

S(1): S1;V(s12);V(s13)
S(2): P(s12);S2;V(s24);V(s25)
S(3): P(s13);S3;V(s35)
S(4): P(s24);S4;V(s46)
S(5): P(s25);P(s35);S5;V(s56)
S(6): P (s46); P (s56); S6

Focus 7: Concurrent Execution

n R(Si), the read set for Si, is the set of all variables whose
values are referenced in Si.

n W(Si), the write set for Si, is the set of all variables whose
values are changed in Si.

n Bernstein conditions:
n R(S1) ∩ W(S2) = φ
n W(S1) ∩ R(S2) = φ
n W(S1) ∩ W(S2) = φ

Example 7

S1 : a := x + y,
S2 : b := x × z,
S3 : c := y - 1, and
S4 : x := y + z.
S1||S2, S1||S3, S2||S3, and S3||S4.

Then, S1||S2||S3 forms a largest complete subgraph.

Example 7 (Cont’d.)

A graph model for Bernstein's conditions.

Alternative statement in DCDL (CSP like distributed control
description language)

[G1 → C1 G2 → C2 … Gn→ Cn].

Alternative Statement

Calculatem = max{x, y}:
[x ≥ y→ m := x y ≥ x→ m := y]

Example 8

Repetitive Statement

*[G1 → C1 G2 → C2 … Gn → Cn].

Example 9

meeting-time-scheduling ::= t := 0;

*[t := a(t) t := b(t) t := c(t)]

Communication and Synchronization

n One-way communication: send and receive
n Two -way communication: RPC(Sun), RMI(Java and

CORBA), and rendezvous (Ada)
n Several design decisions:

n One-to one or one-to-many
n Synchronous or asynchronous
n One-way or two-way communication
n Direct or indirect communication
n Automatic or explicit buffering
n Implicit or explicit receiving
n Persistent (message-queueing) or transient communication
n Discrete or streaming communication (syn. and QoS)

Primitives Example Languages

PARALLELISM
Expressing parallelism

Processes
Objects
Statements
Expressions
Clauses

Mapping
Static
Dynamic
Migration

Ada, Concurrent C, Lina, NIL Emerald,
Concurrent Smalltalk
Occam
Par Alfl, FX-87
Concurrent PROLOG, PARLOG

Occam, Star Mod
Concurrent PROLOG, ParAlfl
Emerald

COMMUNICATION
Message Passing

Point-to-point messages
Rendezvous
Remote procedure call
One-to-many messages

Data Sharing
Distributed data Structures
Shared logical variables

Nondeterminism
Select statement
Guarded Horn clauses

CSP, Occam, NIL
Ada, Concurrent C
DP, Concurrent CLU, LYNX
BSP, StarMod

Lina, Orca
Concurrent PROLOG, PARLOG

CSP, Occam, Ada, Concurrent C, SR
Concurrent PROLOG, PARLOG

PARTIAL FILURES
Failure detection
Atomic transactions
NIL

Ada, SR
Argus, Aeolus, Avalon

Message-Passing Library for Cluster
Machines (e.g., Beowulf clusters)

n Parallel Virtual Machine (PVM):
www.epm.ornl/pvm/pvm_home.html

n Message Passing Interface (MPI):
www.mpi.nd.edu/lam/
www-unix.mcs.anl.gov/mpi/mpich/

n Java multithread programming:
www.mcs.drexel.edu/~shartley/ConcProjJava
www.ora.com/catalog/jenut

n Beowulf clusters:
www.beowulf.org

http://www.epm.ornl/pvm/pvm_home.html
http://www.mpi.nd.edu/lam/
http://www.mcs.drexel.edu/%7Eshartley/ConcProjJava
http://www.ora.com/catalog/jenut
http://www.beowulf.org/

Message-Passing (Cont’d.)

n Asynchronous point-to-point message passing:
n send message list to destination
n receive message list {from source}

n Synchronous point-to-point message passing:
n send message list to destination
n receive empty signal from destination
n receive message list from sender
n send empty signal to sender

Example 10

The squash program replaces every pair of consecutive
asterisks "**" by an upward arrow “↑”.

input::= * [send c to squash]
output::= * [receive c from squash]

Example 10 (Cont’d.)

squash::=
*[receive c from input→

[c ≠ *→ send c to output
[c = *→ receive c from input;

[c ≠ *→ send * to output;
send c to output

c = *→ send ↑ to output
]

]
]

]

Focus 8: Fibonacci Numbers

n F(i) = F(i-1) + F (i - 2) for i > 1, with initial values F(0) = 0
and F(1) = 1.

n F(i) = (φ i -φ’i)/(φ -φ’) ,where φ= (1+50.5)/2 (golden ratio)
and φ’ = (1-50.5)/2.

0, 1, 2, 3, 5, 8, 13, 21, 35, 54, …

Focus 8 (Cont’d.)

A solution for F (n).

Focus 8 (Cont’d.)

n f(0) ::=
send n to f(1);
receive p from f(2);
receive q from f(1);
ans := q

n f(-1) ::=
receive p from f(1)

Focus 8 (Cont’d.)

n f(i) ::=
receive n from f(i - 1);
[n > 1→ [send n - 1 to f(i + 1);

receive p from f(i + 2);
receive q from f(i + 1);
send p + q to f(i - 1);
send p + q to f(i - 2)]

n = 1→ [send 1 to f(i - 1);
send 1 to f(i - 2)]

n = 0→ [send 0 to f(i - 1);
send 0 to f(i - 2)]

]

Another solution for F (n).

Focus 8 (Cont’d.)

n f(0)::=
[n > 1→ [send n to f(1);

receive p from f(1);
receive q from f(1);
ans := p
]

n = 1→ ans := 1
n = 0→ ans := 0

]

Focus 8 (Cont’d.)

n f(i)::=
receive n from f(i - 1);
[n > 1→ [send n - 1 to f(i + 1);

receive p from f(i + 1);
receive q from f(i + 1);
send p + q to f(i - 1);
send p to f(i - 1)
]

n = 1→ [send 1 to f(i - 1);
send 0 to f(i - 1)

]
]

Focus 8 (Cont’d.)

Focus 9: Message-Passing Primitives of MPI

n MPI_Isend: asynchronous communication
n MPI_send: receipt-based synchronous communication
n MPI_ssend: delivery-based synchronous communication
n MPI_sendrecv: response-based synchronous communication

Focus 9 (Cont’d.)

Message-passing primitives of MPI: Isend, send, ssend, sendrecv.

Focus 10: Interprocess Communication in UNIX

n Socket: int socket (int domain, int type, int protocol).
n domain: normally internet.
n type: datagram or stream.
n protocol: TCP (Transport Control Protocol) or UDP (User Datagram

Protocol)

n Socket address: an Internet address and a local port number.

Focus 10 (Cont’d.)

Sockets used for datagrams

High-Level (Middleware) Communication
Services

n Achieve access transparency in distributed systems
n Remote procedure call (RPC)
n Remote method invocation (RMI)

Remote Procedure Call (RPC)

n Allow programs to call procedures located on other machines.
n Traditional (synchronous) RPC and asynchronous RPC.

RPC.

Remove Method Invocation (RMI)

RMI.

Robustness

n Exception handling in high level languages (Ada and
PL/1)

n Four Types of Communication Faults
n A message transmitted from a node does not reach its

intended destinations
n Messages are not received in the same order as they were

sent
n A message gets corrupted during its transmission
n A message gets replicated during its transmission

If a remote procedure call terminates abnormally
(the time out expires) there are four possibilities.
n The receiver did not receive the call message.
n The reply message did not reach the sender.
n The receiver crashed during the call execution and either

has remained crashed or is not resuming the execution
after crash recovery.

n The receiver is still executing the call, in which case the
execution could interfere with subsequent activities of the
client.

Failures in RPC

Exercise 3

1.(The Welfare Crook by W. Feijen) Suppose we have three
long magnetic tapes each containing a list of names in
alphabetical order. The first list contains the names of people
working at IBM Yorktown, the second the names of students
at Columbia University and the third the names of all people
on welfare in New York City. All three lists are endless so no
upper bounds are given. It is known that at least one person is
on all three lists. Write a program to locate the first such
person (the one with the alphabetically smallest name). Your
solution should use three processes, one for each tape.

Exercise 3 (Cont’d.)

2.Convert the following DCDL expression to a precedence
graph.

[S1 || [[S2 || S3]; S4] || S5]

Use fork and join to express this expression.

3.Convert the following program to a precedence graph:

S1;[[S2;S3||S4;S5||S6]||S7];S8

Exercise 3 (Cont’d.)

4.G is a sequence of integers defined by the recurrence Gi = Gi-1

+ Gi-3 for i > 1, with initial values G0 = 0, G1 = 1, and G2 = 1.
Provide a DCDL implementation of Gi and use one process
for each Gi.

5.Using DCDL to write a program that replaces a*b by a ↑ b
and a**b by a ↓ b, where a and b are any characters other
than *. For example, if a1a2*a3**a4***a5 is the input string
then a1a2 ↑ a3 ↓ a4***a5 will be the output string.

