Chapter 7
Network Flow
Two different views: Russians on max flow, Americans on min cut

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more …
Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012
Flow network.

- Abstraction for material flowing through the edges.
- \(G = (V, E) \) = directed graph, no parallel edges.
- Two distinguished nodes: \(s = \text{source}, t = \text{sink} \).
- \(c(e) \) = capacity of edge \(e \).

Minimum Cut Problem

\[
\text{flow network diagram}
\]
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

\[
\text{Capacity} = 10 + 5 + 15 = 30
\]
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:
\[\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e) \]

Capacity = 9 + 15 + 8 + 30 = 62
Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

![Graph](image.png)

Capacity = 10 + 8 + 10 = 28
Def. An *s-t flow* is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The *value* of a flow f is: $\nu(f) = \sum_{e \text{ out of } s} f(e)$.

Flows
Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

Def. The value of a flow f is: $\nu(f) = \sum_{e \text{ out of } s} f(e)$.
Max flow problem. Find s-t flow of maximum value.
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)
\]

Value:

Value = $6 + 0 + 8 - 1 + 11 = 24$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).$$

Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

by flow conservation, all terms except $v = s$ are 0

$$\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$
Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \Rightarrow Flow value ≤ 30

![Graph with flow values and capacities](image)
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

Pf.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
\leq \sum_{e \text{ out of } A} f(e)
\leq \sum_{e \text{ out of } A} c(e)
= \text{cap}(A, B)
\]
Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \implies Flow value ≤ 28
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

![Graph diagram showing the flow values and paths](image.png)

Flow value = 0
Greedy algorithm.

- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with \(f(e) = 0 \) for all edge \(e \in E \).
- Find an \(s-t \) path \(P \) where each edge has \(f(e) < c(e) \).
- Augment flow along path \(P \).
- Repeat until you get **stuck**.

\[\text{locally optimality } \not\Rightarrow \text{ global optimality} \]
Residual Graph

Original edge: \(e = (u, v) \in E. \)
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:
 \[
 c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
 \end{cases}
 \]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : f(e) > 0 \}. \)
Ford-Fulkerson Algorithm

\[G: \]

![Graph showing the Ford-Fulkerson Algorithm with capacities on the edges.]

- Source (s) to node 2: 10 units
- Node 2 to node 4: 4 units
- Node 4 to node 5: 6 units
- Node 5 to sink (t): 10 units
- Node 3 to node 2: 2 units
- Node 4 to node 3: 8 units
- Node 5 to node 4: 10 units

Capacity arrows indicate the maximum flow that can be sent along each edge.
Augmenting Path Algorithm

Augment(f, c, P) {
 b ← bottleneck(P)
 foreach e ∈ P {
 if (e ∈ E) f(e) ← f(e) + b
 else f(e^R) ← f(e^R) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 G_f ← residual graph
 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update G_f
 }
 return f
}
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow \(f \) is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

(i) There exists a cut \((A, B)\) such that \(v(f) = \text{cap}(A, B)\).

(ii) Flow \(f \) is a max flow.

(iii) There is no augmenting path relative to \(f \).

(i) \(\Rightarrow \) (ii) This was the corollary to weak duality lemma.

(ii) \(\Rightarrow \) (iii) We show contrapositive.

• Let \(f \) be a flow. If there exists an augmenting path, then we can improve \(f \) by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) \(\Rightarrow \) (i)

- Let \(f \) be a flow with no augmenting paths.
- Let \(A \) be set of vertices \textit{reachable from} \(s \) in residual graph.
- By definition of \(A \), \(s \in A \).
- By definition of \(f \), \(t \notin A \).

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
= \sum_{e \text{ out of } A} c(e)
= \text{cap}(A, B)
\]

original network
Running Time

Assumption. All capacities are integers between 1 and \(C\).

Invariant. Every flow value \(f(e)\) and every residual capacity \(c_f(e)\) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most \(v(f^*) \leq mC\) iterations, where \(m\) is the number of edges.

Pf. Each augmentation increase value by at least 1. □

Corollary. If \(C = 1\), Ford-Fulkerson runs in \(O(mn)\) time.

Integrality theorem. If all capacities are integers, then there exists a max flow \(f\) for which every flow value \(f(e)\) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. □
7.3 Choosing Good Augmenting Paths
Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.
Ford-Fulkerson: Large Number of Augmentations

$C = 100$
Choosing Good Augmenting Paths

Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with:
- Both are strongly polynomial algorithms: $O(mn)$
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Diagram](image)
Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Δ ← smallest power of 2 greater than or equal to C
 G_f ← residual graph

 while (Δ ≥ 1) {
 G_f(Δ) ← Δ-residual graph
 while (there exists augmenting path P in G_f(Δ)) {
 f ← augment(f, c, P)
 update G_f(Δ)
 }
 Δ ← Δ / 2
 }
 return f
}
Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
- By integrality invariant, when $\Delta = 1 \Rightarrow \mathcal{G}_f(\Delta) = \mathcal{G}_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths. □
Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats $1 + \lceil \log_2 C \rceil$ times.

Pf. Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 each iteration. □

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$.

Lemma 3. There are at most $2m$ augmentations per scaling phase.

- Let f be the flow at the end of the previous scaling phase.
- $L2 \Rightarrow v(f^*) \leq v(f) + m (2\Delta)$.
- Each augmentation in a Δ-phase increases $v(f)$ by at least Δ. □

Theorem. The scaling max-flow algorithm finds a max flow in $O(m \log C)$ augmentations. It can be implemented to run in $O(m^2 \log C)$ time.

Still pseudo polynomial! The followings are strongly polynomial and $O(mn)$

- Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
- Preflow-push maximum-flow (notion of node height) [Goldberg 1986].
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

\[
v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \\
\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta \\
= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta \\
\geq \text{cap}(A, B) - m\Delta
\]