Chapter 7
Network Flow
Soviet Rail Network, 1955

Two different views: Russians on max flow, Americans on min cut

Maximum Flow and Minimum Cut

Max flow and min cut.
- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

Nontrivial applications / reductions.
- Data mining.
- Open-pit mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- Many many more ...
Efficient Implementation of Max-Flow: Edmonds-Karp 1972

Prof. Richard Karp, Turing Laureate, visited CIS Temple U. in 2012
Minimum Cut Problem

Flow network.
- Abstraction for material **flowing** through the edges.
- $G = (V, E) =$ directed graph, no parallel edges.
- Two distinguished nodes: $s =$ source, $t =$ sink.
- $c(e) =$ capacity of edge e.

![Flow Network Diagram](image-url)
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is:

\[
\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)
\]

\[
\begin{align*}
\text{Capacity} &= 10 + 5 + 15 \\
&= 30
\end{align*}
\]
Def. An s-t cut is a partition \((A, B)\) of \(V\) with \(s \in A\) and \(t \in B\).

Def. The capacity of a cut \((A, B)\) is: \(\text{cap}(A, B) = \sum_{e \text{ out of } A} c(e)\)

\[
\begin{align*}
\text{Capacity} &= 9 + 15 + 8 + 30 \\
&= 62
\end{align*}
\]
Min s-t cut problem. Find an s-t cut of minimum capacity.
Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$ [capacity]
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [conservation]

Def. The value of a flow f is: $\nu(f) = \sum_{e \text{ out of } s} f(e)$.
Def. An s-t flow is a function that satisfies:

- For each $e \in E$: $0 \leq f(e) \leq c(e)$
- For each $v \in V - \{s, t\}$: $\sum_{e \text{ in to } v} f(e) = \sum_{e \text{ out of } v} f(e)$

Def. The value of a flow f is: $v(f) = \sum_{e \text{ out of } s} f(e)$.

Flows

<table>
<thead>
<tr>
<th>s --></th>
<th>3 --></th>
<th>4 --></th>
<th>7 --></th>
<th>t --></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Value = 24
Max flow problem. Find s-t flow of maximum value.
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)$$

Example

Graph:

- **Source (s)**
- **Sink (+)**
- **Nodes:** 2, 3, 5, 6, 7
- **Edges:**
 - s to 2: 10
 - 2 to 3: 4
 - 2 to 5: 9
 - 3 to 4: 11
 - 3 to 5: 3
 - 3 to 6: 8
 - 4 to 3: 15
 - 4 to 6: 15
 - 5 to 6: 0
 - 6 to 7: 10
 - 6 to 5: 15
 - 7 to +: 30

Flow Values:

- $f(e)$ for each edge.

Cut:

- $A = \{s, 2, 3, 4\}$
- $B = \{5, 6, 7, +\}$

Value Calculation:

$$\text{Value} = 6 + 0 + 8 - 1 + 11 = 24$$
Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

\[
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f)
\]
Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t cut. Then

$$
\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) = v(f).
$$

Pf.

$$
v(f) = \sum_{e \text{ out of } s} f(e)
$$

by flow conservation, all terms except $v = s$ are 0

$$
\rightarrow \quad = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)
$$

$$
= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).
$$
Weak duality. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \Rightarrow Flow value ≤ 30
Weak duality. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq \text{cap}(A, B)$.

Pf.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e) \leq \sum_{e \text{ out of } A} f(e) \leq \sum_{e \text{ out of } A} c(e) = \text{cap}(A, B).$$
Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut. If $v(f) = \text{cap}(A, B)$, then f is a max flow and (A, B) is a min cut.

Value of flow = 28
Cut capacity = 28 \Rightarrow Flow value \leq 28
Towards a Max Flow Algorithm

Greedy algorithm.

- Start with \(f(e) = 0 \) for all edge \(e \in E \).
- Find an \(s\)-\(t \) path \(P \) where each edge has \(f(e) < c(e) \).
- Augment flow along path \(P \).
- Repeat until you get stuck.

```
s
1
2

0 20 10 0
0 10
0
0

Flow value = 0
```
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20
Towards a Max Flow Algorithm

Greedy algorithm.
- Start with $f(e) = 0$ for all edge $e \in E$.
- Find an s-t path P where each edge has $f(e) < c(e)$.
- Augment flow along path P.
- Repeat until you get stuck.

\[
\begin{array}{c}
\text{locally optimality } \not\Rightarrow \text{ global optimality}
\end{array}
\]

![Graph with labels](image1.png)

greedy = 20

![Graph with labels](image2.png)

opt = 30
Residual Graph

Original edge: \(e = (u, v) \in E \).
- Flow \(f(e) \), capacity \(c(e) \).

Residual edge.
- "Undo" flow sent.
- \(e = (u, v) \) and \(e^R = (v, u) \).
- Residual capacity:

\[
c_f(e) = \begin{cases}
 c(e) - f(e) & \text{if } e \in E \\
 f(e) & \text{if } e^R \in E
\end{cases}
\]

Residual graph: \(G_f = (V, E_f) \).
- Residual edges with positive residual capacity.
- \(E_f = \{ e : f(e) < c(e) \} \cup \{ e^R : f(e) > 0 \} \).
Ford-Fulkerson Algorithm

\[G : \]

\[s \rightarrow 2 : 10 \]
\[2 \rightarrow 3 : 2 \]
\[2 \rightarrow 4 : 4 \]
\[3 \rightarrow 5 : 9 \]
\[4 \rightarrow 5 : 6 \]
\[4 \rightarrow t : 10 \]
\[5 \rightarrow t : 10 \]

\[s \rightarrow 3 : 10 \]

Capacity
Augmenting Path Algorithm

Augment\((f, c, P)\) {
 \(b \leftarrow \text{bottleneck}(P)\)
 \[
 \begin{align*}
 \text{foreach } e & \in P \{ \\
 & \text{if } (e \in E) \ f(e) \leftarrow f(e) + b \\
 & \text{else } \ f(e^R) \leftarrow f(e^R) - b \\
 \}
 \text{return } f
 \end{align*}
 \]
}

Ford-Fulkerson\((G, s, t, c)\) {
 \[
 \begin{align*}
 \text{foreach } e & \in E \ f(e) \leftarrow 0 \\
 G_f & \leftarrow \text{residual graph}
 \end{align*}
 \]
 \[
 \text{while } (\text{there exists augmenting path } P) \{ \\
 f \leftarrow \text{Augment}(f, c, P) \\
 \text{update } G_f
 \}
 \text{return } f
 \]
Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are no augmenting paths.

Max-flow min-cut theorem. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]
The value of the max flow is equal to the value of the min cut.

Pf. We prove both simultaneously by showing TFAE:

(i) There exists a cut (A, B) such that $v(f) = \text{cap}(A, B)$.

(ii) Flow f is a max flow.

(iii) There is no augmenting path relative to f.

(i) \Rightarrow (ii) This was the corollary to weak duality lemma.

(ii) \Rightarrow (iii) We show contrapositive.

- Let f be a flow. If there exists an augmenting path, then we can improve f by sending flow along path.
Proof of Max-Flow Min-Cut Theorem

(iii) \Rightarrow (i)

- Let f be a flow with no augmenting paths.
- Let A be set of vertices reachable from s in residual graph.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

\[
\nu(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)
= \sum_{e \text{ out of } A} c(e)
= \text{cap}(A, B)
\]
Running Time

Assumption. All capacities are integers between 1 and C.

Invariant. Every flow value $f(e)$ and every residual capacity $c_f(e)$ remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most $v(f^*) \leq mC$ iterations, where m is the number of edges.

Pf. Each augmentation increase value by at least 1. □

Corollary. If $C = 1$, Ford-Fulkerson runs in $O(mn)$ time.

Integrality theorem. If all capacities are integers, then there exists a max flow f for which every flow value $f(e)$ is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. □
7.3 Choosing Good Augmenting Paths
Ford-Fulkerson: Large Number of Augmentations

Q. Is generic Ford-Fulkerson algorithm polynomial in input size?

A. No. If max capacity is C, then algorithm can take C iterations.

m (# of edges), n (# of nodes), and $\log C$
Ford-Fulkerson: Large Number of Augmentations

\[C = 100 \]
Use care when selecting augmenting paths.
- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: choose augmenting paths so that:
- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with:
- Both are strongly polynomial algorithms: $O(mn)$
Intuition. Choosing path with highest bottleneck capacity increases flow by max possible amount.

- Don't worry about finding exact highest bottleneck path.
- Maintain scaling parameter Δ.
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting of only arcs with capacity at least Δ.

![Diagram of Capacity Scaling](image-url)
Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e ∈ E  f(e) ← 0
    Δ ← smallest power of 2 greater than or equal to C
    G_f ← residual graph

    while (Δ ≥ 1) {
        G_f(Δ) ← Δ-residual graph
        while (there exists augmenting path P in G_f(Δ)) {
            f ← augment(f, c, P)
            update G_f(Δ)
        }
        Δ ← Δ / 2
    }
    return f
}
```
Capacity Scaling: Correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Correctness. If the algorithm terminates, then f is a max flow.

Pf.
- By integrality invariant, when $\Delta = 1 \implies G_f(\Delta) = G_f$.
- Upon termination of $\Delta = 1$ phase, there are no augmenting paths.
Capacity Scaling: Running Time

Lemma 1. The outer while loop repeats \(1 + \lceil \log_2 C \rceil\) times.
Pf. Initially \(C \leq \Delta < 2C\). \(\Delta\) decreases by a factor of 2 each iteration. □

Lemma 2. Let \(f\) be the flow at the end of a \(\Delta\)-scaling phase. Then the value of the maximum flow is at most \(v(f) + m \Delta\). ▶ proof on next slide

Lemma 3. There are at most \(2m\) augmentations per scaling phase.
- Let \(f\) be the flow at the end of the previous scaling phase.
- \(L2 \Rightarrow v(f^*) \leq v(f) + m (2\Delta)\).
- Each augmentation in a \(\Delta\)-phase increases \(v(f)\) by at least \(\Delta\). □

Theorem. The scaling max-flow algorithm finds a max flow in \(O(m \log C)\) augmentations. It can be implemented to run in \(O(m^2 \log C)\) time.

Still pseudo polynomial! The followings are strongly polynomial and \(O(mn)\)
- Aug. path with fewest # of edges [Edmonds-Karp 1972, Dinitz 1970].
- Preflow-push maximum-flow (notion of node height) [Goldberg 1986].
Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then value of the maximum flow is at most $v(f) + m \Delta$.

Pf. (almost identical to proof of max-flow min-cut theorem)

- We show that at the end of a Δ-phase, there exists a cut (A, B) such that $\text{cap}(A, B) \leq v(f) + m \Delta$.
- Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
- By definition of A, $s \in A$.
- By definition of f, $t \notin A$.

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

$$\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$$

$$= \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$$

$$\geq \text{cap}(A, B) - m\Delta \quad \blacksquare$$