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Divide-and-Conquer

Divide-and-conquer.
! Break up problem into several parts.
! Solve each part recursively.
! Combine solutions to sub-problems into overall solution.

Most common usage.
! Break up problem of size n into two equal parts of size ½n.
! Solve two parts recursively.
! Combine two solutions into overall solution in linear time.

Consequence.
! Brute force:  n2.
! Divide-and-conquer:  n log n.



5.1  Mergesort
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obvious applications

problems become easy once 
items are in sorted order

non-obvious applications

Sorting

Sorting.  Given n elements, rearrange in ascending order.

Applications.
! Sort a list of names.
! Organize an MP3 library.
! Display Google PageRank results.
! List RSS news items in reverse chronological order.

! Find the median. 
! Find the closest pair.
! Binary search in a database.
! Identify statistical outliers.
! Find duplicates in a mailing list.

! Data compression.
! Computer graphics. 
! Computational biology.
! Supply chain management.
! Book recommendations on Amazon.
! Load balancing on a parallel computer.

. . .
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Mergesort

Mergesort.
! Divide array into two halves.
! Recursively sort each half.
! Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)
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Merging

Merging.  Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
! Linear number of comparisons.
! Use temporary array.

Challenge for the bored.  In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage
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A Useful Recurrence Relation

Def.  T(n)  = number of comparisons to mergesort an input of size n.

Mergesort recurrence.  

Solution.  T(n) = O(n log2 n). 

Assorted proofs.  We describe several ways to prove this recurrence. 
Initially we assume n is a power of 2 and replace £ with =.

!!  

 

T(n) £
 0 if  n =1
T n /2é ù( )
solve left half
"! #!$! %!$!

+ T n /2ë û( )
solve right half
"! #!$! %!$!

+ n
merging
&

otherwise
ì 

í 
ï 

î ï 
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Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$!

+ n
merging
&

otherwise
ì 
í 
ï 

î ï 
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Proof by Telescoping

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  For n > 1:

!!  

 

T(n)
n

= 2T(n /2)
n

+ 1

= T(n /2)
n /2

+ 1

= T(n / 4)
n / 4

+ 1 + 1

"

= T(n /n)
n /n

+ 1 +"+ 1
log2 n

#!$!%! &!%!

= log2 n

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$!

+ n
merging
&

otherwise
ì 
í 
ï 

î ï 

assumes n is a power of 2
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Proof by Induction

Claim.  If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf.  (by induction on n)
! Base case:  n = 1.
! Inductive hypothesis:  T(n) =  n log2 n.
! Goal:  show that T(2n) =  2n log2 (2n).

  

 

T(2n) = 2T(n)  +  2n
= 2n log2 n  +  2n
= 2n log2(2n)-1( ) +  2n
= 2n log2(2n)

assumes n is a power of 2

!!  

 

T(n) =
0 if  n =1
2T(n /2)

sorting both halves
"!#!$! %!$!

+ n
merging
&

otherwise
ì 
í 
ï 

î ï 
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Analysis of Mergesort Recurrence

Claim.  If T(n) satisfies the following recurrence, then T(n)  £ n élg nù.

Pf.   (by induction on n)
! Base case:  n = 1.
! Define n1 = ën / 2û ,  n2 = én / 2ù.
! Induction step:  assume true for 1, 2, ... , n–1.

  

 

T(n) £ T(n1)  +  T(n2 )  +  n
£ n1 lgn1é ù +  n2 lgn2é ù +  n
£ n1 lgn2é ù +  n2 lgn2é ù +  n
= n lgn2é ù +  n
£ n( lgné ù-1 )  +  n
= n lgné ù

  

 

n2 = n /2é ù

£ 2 lgné ù / 2é ù
= 2 lgné ù / 2

Þ lgn2 £ lgné ù -1

!!  

 

T(n) £
 0 if  n =1
T n /2é ù( )
solve left half
"! #!$! %!$!

+ T n /2ë û( )
solve right half
"! #!$! %!$!

+ n
merging
&

otherwise
ì 

í 
ï 

î ï 

log2n
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Two Exercises
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Master Theorem

T(n) = 9 T(n/3) + n, T(n) = Θ(n2); T(n) = 3T(n/4) + n log n, T(n) = Θ(n log n)
T(n) = T(2n/3) + 1, T(n) = Θ(log n); T(n) = 2T(n/2) + Θ(n), T(n) = Θ(n log n)
T(n) = 8T(n/2) + Θ(n2), T(n) = Θ(n3); T(n) = 7T(n/2) + Θ(n2), T(n) = Θ(n log7)



Parallel Merge Sort

Merge sort with parallel recursion: O(n), still slow

Parallel multiway merge sort

Merge sort with parallel merge

Merge sort with two layers
Bottom layer: slow by efficient
Top layer: fast but inefficient

Multisequence selection

14

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)



Extra: Parallel Multiway Merge Sort

Map-Shuffle-Reduce in Hadoop

Partition data and assign to m processors
Each processor sorts data based on n samples 

Data access: message passing

15



16

Extra: Parallel Merge (Sort) 

Merge two sorted subsequences: O(log2 n) with O(n / log2n) processors: switch 
to  sequence merge sort with sizes are reduced to O(log2n)

Data access: PRAM
Parallel random-access memory
EREW or CRCW

Speedup: seq. time / para. time, Efficiency: # of processors (k)/speed up
Cost: # of processors x parallel time,   Cost-optimal: efficiency = 1

Other parallel sorts: bitonic, quick, radix, and sample sort

R. Cole,  Parallel Merge Sort,  SIAM Journal on Computing, 1988
J. Wu and S. Olariu,  On Cost-Optimal Merge of Two Intransitive Sorted Sequence, 2003
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Extra: Searching

Systematically search the “space” for a solution.

Key: how to divide (-and-eliminate) the solution space. 

1. A person is L distance away from a long wall with no end on both sides. A
diamond is placed on the wall which can be identified through touching.
Design a searching method with a constant bound in moving distance.

person

L
wall
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Extra: Searching

1. A fish needs to be steamed between 5 to 18 minutes. Design a fast-
searching method to find the best cooking time. Under- and over-cook
can be compared via tasting, but not during cooking. (1 minute is the
basic unit of time duration. Quality of fish is a quadratic function.)

check golden-section search



Extra: Fibonacci Sequence and Golden Ratio

Fn=Fn-1+Fn-2, F0=0, F1=1: 0, 1, 1, 2, 3, 5, 8, 13, 21, …,

(a+b)/b = b/a = 1.618…

In music, human body, nature, …

Eye of god

19



Extra: Fibonacci Puzzle

Extended Fibonacci sequence:
2,  4,   6,  10, 16, 26, …
4,  8,  12, 20, 32, 52, …
8, 16, 24, 40, 64, 104, …

Fibonacci sequence in Last Super
1, 2, 3, 5, 8, 13

21 x 21 = 34 X 13 (?)

Mathematics is the language in which God has written the universe -Galileo Galilei
20



5.3  Counting Inversions
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Music site tries to match your song preferences with others.
! You rank n songs.
! Music site consults database to find people with similar tastes.

Similarity metric:  number of inversions between two rankings.
! My rank:  1, 2, …, n.
! Your rank:  a1, a2, …, an.
! Songs i and j inverted if i < j, but ai > aj.

Brute force:  check all Q(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5

A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2
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More Applications of Rankings

Applications.
! Collaborative filtering ( preferences /taste info. from many users)
! Measuring the "sortedness" of an array.
! Sensitivity analysis of Google's ranking function. 

Voting theory: 3-party voting (Condorcet paradox, Arrow’s 
impossibility theorem on voting)

1: A>B>T         Based on 1 and 3: A beats B
2: B>T>A         Based on 2 and 3: T beats A
3: T>A>B         Based on 1 and 2:  B beats T

(A: Anderson, B: Biden, T: Trump)
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
! Divide:  separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide:  O(1).
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
! Divide:  separate list into two pieces.
! Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7
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Counting Inversions:  Divide-and-Conquer

Divide-and-conquer.
! Divide:  separate list into two pieces.
! Conquer: recursively count inversions in each half.
! Combine: count inversions where ai and aj are in different halves, 

and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide:  O(1).

Conquer:  2T(n / 2)

Combine:  ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.
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13 blue-green inversions:  6 + 3 + 2 + 2 + 0 + 0 

Counting Inversions:  Combine

Combine:  count blue-green inversions
! Assume each half is sorted.
! Count inversions where ai and aj are in different halves. 
! Merge two sorted halves into sorted whole.

Count:  O(n)

Merge:  O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

  

 

T(n) £  T n /2ë û( )+ T n /2é ù( )+ O(n) Þ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant
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Counting Inversions:  Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition.  [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ¬ Sort-and-Count(A)
(rB, B) ¬ Sort-and-Count(B)
(rB, L) ¬ Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}



5.4  Closest Pair of Points
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Closest Pair of Points

Closest pair.  Given n points in the plane, find a pair with smallest 
Euclidean distance between them.

Fundamental geometric primitive.
! Graphics, computer vision, geographic information systems, 

molecular modeling, air traffic control.
! Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force.  Check all pairs of points p and q with Q(n2) comparisons.

1-D version.  O(n log n) easy if points are on a line.

Assumption.  No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.

L
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Closest Pair of Points:  First Attempt

Divide.  Sub-divide region into 4 quadrants.
Obstacle.  Impossible to ensure n/4 points in each piece.

L
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Closest Pair of Points

Algorithm.
! Divide:  draw vertical line L so that roughly ½n points on each side.

! Bonus point: Given a country map, perform two vertical-oriented 
cuts of the map into three parts: east, middle, and west, such that

|east| + |west| = |middle|   (|x| stands for the population of x)

L
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Closest Pair of Points

Algorithm.
! Divide:  draw vertical line L so that roughly ½n points on each side.
! Conquer:  find closest pair in each side recursively.

12

21

L
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Closest Pair of Points

Algorithm.
! Divide:  draw vertical line L so that roughly ½n points on each side.
! Conquer:  find closest pair in each side recursively.
! Combine:  find closest pair with one point in each side.
! Return best of 3 solutions.

12

21
8

L

seems like Q(n2) 
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.

12

21

d = min(12, 21)

L
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Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
! Observation:  only need to consider points within d of line L.

12

21

d

L

d = min(12, 21)
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12

21

1

2

3

4
5

6

7

d

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
! Observation:  only need to consider points within d of line L.
! Sort points in 2d-strip by their y coordinate.

L

d = min(12, 21)
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12

21

1

2

3

4
5

6

7

d

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < d.
! Observation:  only need to consider points within d of line L.
! Sort points in 2d-strip by their y coordinate.
! Only check distances of those within 11 positions in sorted list!

L

d = min(12, 21)
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Closest Pair of Points

Def.  Let si be the point in the 2d-strip, with
the ith smallest y-coordinate.

Claim.  If |i – j| ³ 12, then the distance between
si and sj is at least d.
Pf.
! No two points lie in same ½d-by-½d box.
! Two points at least 2 rows apart

have distance ³ 2(½d).   ▪

Fact.  Still true if we replace 12 with 7. 
(This is independent of d calculated 
at each recursive call.)

d

27

29
30

31

28

26

25

d

½d

2 rows
½d

½d

39

i

j
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Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

d1 = Closest-Pair(left half)
d2 = Closest-Pair(right half)
d = min(d1, d2)

Delete all points further than d from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than d, update d.

return d.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)
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Closest Pair of Points:  Analysis

Running time.

Q.  Can we achieve O(n log n)?

A.  Yes. Don't sort points in strip from scratch each time.
! Each recursive returns two lists: all points sorted by y coordinate, 

and all points sorted by x coordinate.
! Sort by merging two pre-sorted lists.

Q. Can we do better?

A.  Yes, O(n) using randomized solution (Chapter 13)

  

 

T(n) £ 2T n /2( ) + O(n) Þ T(n) = O(n logn)

  

 

T(n) £ 2T n /2( ) + O(n log n) Þ T(n)  =  O(n log2 n)
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Integer Multiplication

X times Y: half-and-half, but still O(n2)

Complexity: 

Reduce 4 calls to 3: 

New complexity:

Hence,


