

Additional Subject:

Adversary Argument

Adversary Arguments

Adversary: force the programmer to ask as many questions as possible Constraint: adversary's answers have to be "consistent"

Adversary gradually construct a "bad" input for the programmer

Finding max and min

Problem: finding max and min for 2 k keys

Solution: (1) compare k pairs, (2) find max (min) among winners (losers) one win and one lose as one unit of information

Lower bound: $3 n / 2-2$ (total information needed: $2 n-2, n-1$ wins and $n-$ 1 loses. $n / 2$ comparisons of unseen keys following by $n-2$ operations)

Status of keys x and y compared by an algorithm	Adversary response	New status	Units of new information
N, N	$x>y$	W, L	2
W, N or $W L, N$	$x>y$	W, L or $W L, L$	1
L, N	$x<y$	L, W	1
W, W	$x>y$	$W, W L$	1
L, L	$x>y$	W, L, y	No change

Finding max and min: adversary in action

Interactions between the adversary and programmer

Comparison	x_{1}		x_{2}		x_{3}		x_{4}		x_{5}		x_{6}	
	Status	Value										
x_{1}, x_{2}	W	20	L	10	N	*	N	*	N	*	N	*
x_{1}, x_{5}	W	20							L	5		
x_{3}, x_{4}					W	15	L	8				
x_{3}, x_{6}					W	15					L	12
x_{3}, x_{1}	WL	20				25						
x_{2}, x_{4}			WL				L	8				
x_{5}, x_{6}									$W L$	5	L	3
x_{6}, x_{4}							L	2			WL	3

Finding the second-largest key

Problem: finding the second-largest key

Solution: (1) applies a knockout tournament
(2) uses the knockout again among the losers to the largest key

Lower bound: $n+{ }^{\prime} \lg n^{\prime}+1$

Finding the second-largest key: adversary

Case	Adversary reply	Updating of weights
$w(x)>w(y)$	$x>y$	New $w(x)=$ prior $(w(x)+w(y)) ;$ new $w(y)=0$.
$w(x)=w(y)>0$	Same as above.	Same as above.
$w(y)>w(x)$	$y>x$	New $w(y)=$ prior $(w(x)+w(y)) ;$ new $w(x)=0$.
$w(x)=w(y)=0$	Consistent with previous replies.	No change.

First knockout: n-1
Second knockout: ‘ lgn '-1

Force max to compare ${ }^{\prime} \operatorname{lgn}{ }^{\top}$

A key has lost iff its weight is zero The sum of he weights is always n When it stops, only one key can have nonzero weight
 (otherwise, there are two keys that never lost)

Finding the second-largest key: adversary in action

| Comparands | Weights | Winner | New weights | Keys |
| :---: | :---: | :---: | :---: | :---: | :---: |
| x_{1}, x_{2} | $w\left(x_{1}\right)=w\left(x_{2}\right)$ | x_{1} | $2,0,1,1,1$ | $20,10, *, *, *$ |
| x_{1}, x_{3} | $w\left(x_{1}\right)>w\left(x_{3}\right)$ | x_{1} | $3,0,0,1,1$ | $20,10,15, *, *$ |
| x_{5}, x_{4} | $w\left(x_{5}\right)=w\left(x_{4}\right)$ | x_{5} | $3,0,0,0,2$ | $20,10,15,30,40$ |
| x_{1}, x_{5} | $w\left(x_{1}\right)>w\left(x_{5}\right)$ | x_{1} | $5,0,0,0,0$ | $41,10,15,30,40$ |

Finding the median

Problem: finding the median when n is odd, i.e., $(n+1) / 2$-th element.
Naïve solution: (1) sort and (2) select the ($n+1$)/2-th element.
Complexity of the naïve solution: $O(n \lg n)$

Lower bound: 3n/2-3/2
(best lower bound so far: slightly > 2, but still has a gap)

Finding the median: adversary

Adversary: "floating" median
cannot assign values larger (smaller) than the median to more than ($n-1$)/2 keys.

Crucial comparison for x : if it is the first time where $x>y$, for $y>$ median, or $x<y$ for some $y \leq$ median.
Noncrucial: comparisons of x and y, where $x>$ median and y < median

Finding the median: adversary

Adversary: forces the programmer to make noncritical comparisons

$$
n-1 \text { (crucial) }+(n-1) / 2 \text { non-crucial }=3 n / 2-3 / 2
$$

Each operation in the table creates at most one L-key and one S-key until there are ($n-1$)/2 L-keys or ($n-1$)/2 S-keys
L Has been assigned a value L arger than median.
S Has been assigned a value S maller than median.
N Has not yet been in a comparison.

Comparands Adversary's action

$N, N \quad$ Make one key larger than median, the other smaller.
L, N or $N, L \quad$ Assign a value smaller than median to the key with status N.
S, N or $N, S \quad$ Assign a value larger than median to the key with status N.

Kings and Sorted Sequence of Kings

Tournament: a complete directed graph such that for any u and v, either $u \rightarrow v$ (u beats v) or $v \rightarrow u$, but not both.

King: u is a king if all other directly or indirectly through a third player in a tournament.

$$
u_{4} \text { and u5 are kings }
$$

Sorted sequence of kings (Wu 2000): an ordered list of players in a tournament $u_{1}, u_{2}, \ldots, u_{n}$ such that
$u_{i} \rightarrow u_{i+1}$, and
u_{i} is a king in the sub-tounament induced by $\left\{u_{j}: i \leq j \leq n\right\}$.

$$
\begin{aligned}
& u_{2} \rightarrow u_{4} \rightarrow u_{1} \rightarrow u_{5} \rightarrow u_{3} \rightarrow u_{6} \\
& u_{2} \rightarrow u_{6} \rightarrow u_{4} \rightarrow u_{1} \rightarrow u_{5} \rightarrow u_{3}
\end{aligned}
$$

Kings and Sorted Sequence of Kings: adversary

King is legitimate: includes players with the maximum number of wins.
King (Sheng, Shen, and Wu 2003) (open problem): $\Omega\left(n^{4 / 3}\right)$ and $O\left(n^{3 / 2}\right)$
Sorted sequence of kings (Sheng, Shen and Wu 2003): $\Theta\left(n^{3 / 2}\right)$

Tournament ranking

Upset: $\mathrm{i}<\mathrm{j}$, but u_{j} beats u_{i}

Median order

- A order with minimum number of upsets
- NP-complete

Local median order

- Sub-tournament $N(i, j): u_{i}, u_{i+1}, \ldots, u_{j}$
- \# wins by u_{i} is greater than \# loses in $N(i, j)$
- \# loses by u_{j} is greater than \# wins in $N(i, j)$

Nested relationships (Wu 2000)

- Median order
- Local median order
- Sorted sequence of kings
- Sorted sequence

