

Additional Subject: Adversary Argument

Adversary Arguments

Adversary: force the programmer to ask as many questions as possible Constraint: adversary's answers have to be "consistent"

Adversary gradually construct a "bad" input for the programmer

Finding max and min

Problem: finding max and min for 2k keys

Solution: (1) compare k pairs, (2) find max (min) among winners (losers) one win and one lose as one unit of information

Lower bound: 3n/2 - 2 (total information needed: 2n-2, n-1 wins and n-1 loses. n/2 comparisons of unseen keys following by n-2 operations)

Status of keys x and y compared by an algorithm	Adversary response	New status	Units of new information
N, N	x > y	W, L	2
W, N or WL , N	x > y	W, L or WL, L	1
L, N	x < y	L, W	1
W, W	x > y	W,WL	1
L, L	x > y	WL, L	1
W, L or WL , L or W , WL	x > y	No change	0
WL,WL	Consistent with assigned values	No change	0

Finding max and min: adversary in action

Interactions between the adversary and programmer

C	х	1	x	2	x	3	<i>x</i> ₄	why why	X	5	x	6
Compar- ison	Status	Value •	Status	Value	Status	Value	Status	Value	Status	Value	Status	Value
x ₁ , x ₂	W	20	L	10	N	*	N	*	N	*	N	*
x_1, x_5	W	20							L	5		
x3, x4					W	15	L	8				
x3, x6					W	15					L	12
x_3, x_1	WL	20			W	25						
x2, x4			WL	10			L	8				
x5, x6									WL	5	L	3
x6, x4							L	2			WL	3

Finding the second-largest key

Problem: finding the second-largest key

Solution: (1) applies a knockout tournament

(2) uses the knockout again among the losers to the largest key

Lower bound: n + 'lg n' + 1

Finding the second-largest key: adversary

Case	Adversary reply	Updating of weights
$\overline{w(x)} > w(y)$	x > y	New $w(x) = \text{prior } (w(x) + w(y));$ new $w(y) = 0.$
w(x) = w(y) > 0	Same as above.	Same as above.
w(y) > w(x)	y > x	New $w(y) = \text{prior } (w(x) + w(y));$ new $w(x) = 0.$
w(x) = w(y) = 0	Consistent with previous replies.	No change.

First knockout: n-1

Second knockout: 'lgn' -1

Force max to compare 'Ign'

A key has lost iff its weight is zero
The sum of he weights is always n
When it stops, only one key can
have nonzero weight

(otherwise, there are two keys that never lost)

Finding the second-largest key: adversary in action

Comparands	Weights	Winner	New weights	Keys
x_1, x_2	$w(x_1) = w(x_2)$	x_1	2, 0, 1, 1, 1	20, 10, *, *, *
x_1, x_3	$w(x_1) > w(x_3)$	x_1	3, 0, 0, 1, 1	20, 10, 15, *, *
x_5, x_4	$w(x_5) = w(x_4)$	<i>x</i> ₅	3, 0, 0, 0, 2	20, 10, 15, 30, 40
x_1, x_5	$w(x_1) > w(x_5)$	x_1	5, 0, 0, 0, 0	41, 10, 15, 30, 40

Finding the median

Problem: finding the median when n is odd, i.e., (n+1)/2-th element.

Naïve solution: (1) sort and (2) select the (n+1)/2-th element.

Complexity of the naïve solution: O(n lg n)

Lower bound: 3n/2-3/2

(best lower bound so far: slightly > 2, but still has a gap)

Finding the median: adversary

Adversary: "floating" median cannot assign values larger (smaller) than the median to more than (n-1)/2 keys.

Crucial comparison for x: if it is the first time where x > y, for y > median, or x < y for some $y \le median$.

Noncrucial: comparisons of x and y, where x > median and y < median

Finding the median: adversary

Adversary: forces the programmer to make noncritical comparisons n-1 (crucial) + (n-1)/2 non-crucial = 3n/2-3/2

Each operation in the table creates at most one L-key and one S-key until there are (n-1)/2 L-keys or (n-1)/2 S-keys

- L Has been assigned a value Larger than median.
- S Has been assigned a value Smaller than median.
- N Has not yet been in a comparison.

Comparands	Adversary's action
N, N	Make one key larger than median, the other smaller.
L, N or N, L	Assign a value smaller than median to the key with status N .
S. N or N, S	Assign a value larger than median to the key with status N .

Kings and Sorted Sequence of Kings

Tournament: a complete directed graph such that for any u and v, either $u \rightarrow v$ (u beats v) or $v \rightarrow u$, but not both.

King: u is a king if all other directly or indirectly through a third player in a tournament.

u₄ and u5 are kings

$$u_i \rightarrow u_{i+1}$$
, and

 u_i is a king in the sub-tounament induced by $\{u_j\colon i\le j\le n\}$.

Kings and Sorted Sequence of Kings: adversary

King is legitimate: includes players with the maximum number of wins.

King (Sheng, Shen, and Wu 2003) (open problem): Ω (n^{4/3}) and O(n^{3/2})

Sorted sequence of kings (Sheng, Shen and Wu 2003): $\Theta(n^{3/2})$

Tournament ranking

Upset: i < j, but u_j beats u_i

Median order

- A order with minimum number of upsets
- NP-complete

Local median order

- Sub-tournament N(i, j): u_i , u_{i+1} , ..., u_j
- \cdot # wins by u_i is greater than # loses in N(i,j)
- · # loses by u_j is greater than # wins in N(i,j)

Nested relationships (Wu 2000)

- Median order
- Local median order
- Sorted sequence of kings
- Sorted sequence

