
1

Chapter 5

Divide and Conquer

Slides by Kevin Wayne.
Copyright © 2005 Pearson-Addison Wesley.
All rights reserved.

2

Divide-and-Conquer

Divide-and-conquer.
Break up problem into several parts.
Solve each part recursively.
Combine solutions to sub-problems into overall solution.

Most common usage.
Break up problem of size n into two equal parts of size ½n.
Solve two parts recursively.
Combine two solutions into overall solution in linear time.

Consequence.
Brute force: n2.
Divide-and-conquer: n log n.

5.1 Mergesort

4

obvious applications

problems become easy once
items are in sorted order

non-obvious applications

Sorting

Sorting. Given n elements, rearrange in ascending order.

Applications.
Sort a list of names.
Organize an MP3 library.
Display Google PageRank results.
List RSS news items in reverse chronological order.

Find the median.
Find the closest pair.
Binary search in a database.
Identify statistical outliers.
Find duplicates in a mailing list.

Data compression.
Computer graphics.
Computational biology.
Supply chain management.
Book recommendations on Amazon.
Load balancing on a parallel computer.
. . .

5

Mergesort

Mergesort.
Divide array into two halves.
Recursively sort each half.
Merge two halves to make sorted whole.

merge

sort

divide

A L G O R I T H M S

A L G O R I T H M S

A G L O R H I M S T

A G H I L M O R S T

Jon von Neumann (1945)

O(n)

2T(n/2)

O(1)

6

Merging

Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
Linear number of comparisons.
Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

A G L O R H I M S T

A G H I

using only a constant amount of extra storage

7

A Useful Recurrence Relation

Def. T(n) = number of comparisons to mergesort an input of size n.

Mergesort recurrence.

Solution. T(n) = O(n log2 n).

Assorted proofs. We describe several ways to prove this recurrence.
Initially we assume n is a power of 2 and replace ≤ with =.

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

8

Proof by Recursion Tree

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

n

T(n / 2k)

2(n/2)

4(n/4)

2k (n / 2k)

n/2 (2)

. . .

. . .
log2n

n log2n

T(n) =
0 if n =1
2T(n /2)

sorting both halves

+ n
merging
 otherwise

9

Proof by Telescoping

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. For n > 1:

T(n)
n

= 2T(n /2)
n

+ 1

= T(n /2)
n /2

+ 1

= T(n / 4)
n / 4

+ 1 + 1

= T(n /n)
n /n

+ 1 ++ 1
log2 n

= log2 n

T(n) =
0 if n =1
2T(n /2)

sorting both halves

+ n
merging
 otherwise

assumes n is a power of 2

10

Proof by Induction

Claim. If T(n) satisfies this recurrence, then T(n) = n log2 n.

Pf. (by induction on n)
Base case: n = 1.
Inductive hypothesis: T(n) = n log2 n.
Goal: show that T(2n) = 2n log2 (2n).

T(2n) = 2T(n) + 2n
= 2n log2 n + 2n
= 2n log2(2n) −1() + 2n
= 2n log2(2n)

assumes n is a power of 2

T(n) =
0 if n =1
2T(n /2)

sorting both halves

+ n
merging
 otherwise

11

Analysis of Mergesort Recurrence

Claim. If T(n) satisfies the following recurrence, then T(n) ≤ n lg n.

Pf. (by induction on n)
Base case: n = 1.
Define n1 = n / 2 , n2 = n / 2.
Induction step: assume true for 1, 2, ... , n–1.

T(n) ≤ T(n1) + T(n2) + n
≤ n1 lgn1 + n2 lgn2 + n
≤ n1 lgn2 + n2 lgn2 + n
= n lgn2 + n
≤ n(lgn −1) + n
= n lgn

n2 = n /2

≤ 2 lg n / 2
= 2 lg n / 2

⇒ lgn2 ≤ lg n −1

T(n) ≤
 0 if n =1
T n /2 ()
solve left half

+ T n /2 ()
solve right half

+ n
merging
 otherwise

log2n

12

Two Exercises

13

Master Theorem

T(n) = 9 T(n/3) + n, T(n) = Θ(n2); T(n) = 3T(n/4) + n log n, T(n) = Θ(n log n)
T(n) = T(2n/3) + 1, T(n) = Θ(log n); T(n) = 2T(n/2) + Θ(n), T(n) = Θ(n log n)
T(n) = 8T(n/2) + Θ(n2), T(n) = Θ(n3); T(n) = 7T(n/2) + Θ(n2), T(n) = Θ(n log7)

Parallel Merge Sort

Merge sort with parallel recursion: O(n), still slow

Parallel multiway merge sort

Merge sort with parallel merge

Merge sort with two layers
Bottom layer: slow by efficient
Top layer: fast but inefficient

Multisequence selection

14

T(n)

T(n/2)T(n/2)

T(n/4)T(n/4)T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

Parallel Multiway Merge Sort

Map-Shuffle-Reduce in Hadoop

Partition data and assign to m processors
Each processor sorts data based on n samples

Data access: message passing

15

16

Parallel Merge (Sort)

Merge two sorted subsequences: O(log2 n) with O(n / log2n) processors: switch
to sequence merge sort with sizes are reduced to O(log2n)

Data access: PRAM
Parallel random-access memory
EREW or CRCW

Speedup: seq. time / para. time, Efficiency: # of processors (k)/speed up
Cost: # of processors x parallel time, Cost-optimal: efficiency = 1

Other parallel sorts: bitonic, quick, radix, and sample sort

R. Cole, Parallel Merge Sort, SIAM Journal on Computing, 1988
J. Wu and S. Olariu, On Cost-Optimal Merge of Two Intransitive Sorted Sequence, 2003

17

Searching

Systematically search the “space” for a solution.

Key: how to divide (-and-eliminate) the solution space.

1. A person is L distance away from a long wall with no end on both sides. A
diamond is placed on the wall which can be identified through touching.
Design a searching method with a constant bound in moving distance.

2. A fish needs to be steamed between 5 to 18 minutes. Design a fast-
searching method to find the best cooking time. Under- and over-cook
can be compared via tasting, but not during cooking. (1 minute is the
basic unit of time duration. Quality of fish is a quadratic function.)

min max problem: check golden-section search
adversary arguments person

L
1. wall

Fibonacci Sequence and Golden Ratio

Fn=Fn-1+Fn-2, F0=0, F1=1: 0, 1, 1, 2, 3, 5, 8, 13, 21, …,

(a+b)/b = b/a = 1.618…

In music, human body, nature, …

Eye of god

18

Fibonacci Puzzle

Extended Fibonacci sequence:
2, 4, 6, 10, 16, 26, …
4, 8, 12, 20, 32, 52, …
8, 16, 24, 40, 64, 104, …

Fibonacci sequence in Last Super
1, 2, 3, 5, 8, 13

21 x 21 = 34 X 13 (?)

Mathematics is the language in which God has written the universe -Galileo Galilei
19

5.3 Counting Inversions

21

Music site tries to match your song preferences with others.
You rank n songs.
Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.
My rank: 1, 2, …, n.
Your rank: a1, a2, …, an.
Songs i and j inverted if i < j, but ai > aj.

Brute force: check all Θ(n2) pairs i and j.

You

Me

1 43 2 5

1 32 4 5
A B C D E

Songs

Counting Inversions

Inversions
3-2, 4-2

22

Applications

Applications.
Voting theory (Arrow’s impossibility theorem on voting).
Collaborative filtering.
Measuring the "sortedness" of an array.
Sensitivity analysis of Google's ranking function.
Rank aggregation for meta-searching on the Web.
Nonparametric statistics (e.g., Kendall's Tau distance).

3-party voting (Condorcet paradox)

1: A>B>T Based on 1 and 3: A beats B
2: B>T>A Based on 2 and 3: T beats A
3: T>A>B Based on 1 and 2: B beats T

(A: Anderson, B: Biden, T: Trump)

23

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

4 8 10 21 5 12 11 3 76 9

24

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

Divide: O(1).

25

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

26

Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.
Combine: count inversions where ai and aj are in different halves,
and return sum of three quantities.

4 8 10 21 5 12 11 3 76 9

4 8 10 21 5 12 11 3 76 9

5 blue-blue inversions 8 green-green inversions

Divide: O(1).

Conquer: 2T(n / 2)

Combine: ???9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

27

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Counting Inversions: Combine

Combine: count blue-green inversions
Assume each half is sorted.
Count inversions where ai and aj are in different halves.
Merge two sorted halves into sorted whole.

Count: O(n)

Merge: O(n)

10 14 18 193 7 16 17 23 252 11

7 10 11 142 3 18 19 23 2516 17

T(n) ≤ T n /2 ()+ T n /2 ()+ O(n) ⇒ T(n) = O(n log n)

6 3 2 2 0 0

to maintain sorted invariant

28

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
if list L has one element

return 0 and the list L

Divide the list into two halves A and B
(rA, A) ← Sort-and-Count(A)
(rB, B) ← Sort-and-Count(B)
(rB, L) ← Merge-and-Count(A, B)

return r = rA + rB + r and the sorted list L
}

5.4 Closest Pair of Points

30

Closest Pair of Points

Closest pair. Given n points in the plane, find a pair with smallest
Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems,
molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with Θ(n2) comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

fast closest pair inspired fast algorithms for these problems

31

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

L

32

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.

L

33

Closest Pair of Points

Algorithm.
Divide: draw vertical line L so that roughly ½n points on each side.

L

34

Closest Pair of Points

Algorithm.
Divide: draw vertical line L so that roughly ½n points on each side.
Conquer: find closest pair in each side recursively.

12

21

L

35

Closest Pair of Points

Algorithm.
Divide: draw vertical line L so that roughly ½n points on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side.
Return best of 3 solutions.

12

21
8

L

seems like Θ(n2)

36

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.

12

21

δ = min(12, 21)

L

37

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
Observation: only need to consider points within δ of line L.

12

21

δ

L

δ = min(12, 21)

38

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
Observation: only need to consider points within δ of line L.
Sort points in 2δ-strip by their y coordinate.

L

δ = min(12, 21)

39

12

21

1

2

3

4
5

6

7

δ

Closest Pair of Points

Find closest pair with one point in each side, assuming that distance < δ.
Observation: only need to consider points within δ of line L.
Sort points in 2δ-strip by their y coordinate.
Only check distances of those within 11 positions in sorted list!

L

δ = min(12, 21)

40

Closest Pair of Points

Def. Let si be the point in the 2δ-strip, with
the ith smallest y-coordinate.

Claim. If |i – j| ≥ 12, then the distance between
si and sj is at least δ.
Pf.

No two points lie in same ½δ-by-½δ box.
Two points at least 2 rows apart
have distance ≥ 2(½δ). ▪

Fact. Still true if we replace 12 with 7.
(This is independent of δ calculated
at each recursive call.)

δ

27

29
30

31

28

26

25

δ

½δ

2 rows
½δ

½δ

39

i

j

41

Closest Pair Algorithm

Closest-Pair(p1, …, pn) {
Compute separation line L such that half the points
are on one side and half on the other side.

δ1 = Closest-Pair(left half)
δ2 = Closest-Pair(right half)
δ = min(δ1, δ2)

Delete all points further than δ from separation line L

Sort remaining points by y-coordinate.

Scan points in y-order and compare distance between
each point and next 11 neighbors. If any of these
distances is less than δ, update δ.

return δ.
}

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

42

Closest Pair of Points: Analysis

Running time.

Q. Can we achieve O(n log n)?

A. Yes. Don't sort points in strip from scratch each time.
Each recursive returns two lists: all points sorted by y coordinate,
and all points sorted by x coordinate.
Sort by merging two pre-sorted lists.

Q. Can we do better?

A. Yes, O(n) using randomized solution (Chapter 13)

T(n) ≤ 2T n /2() + O(n) ⇒ T(n) = O(n log n)

T(n) ≤ 2T n /2() + O(n log n) ⇒ T(n) = O(n log2 n)

43

Integer Multiplication

X times Y: half-and-half, but still O(n2)

Complexity:

Reduce 4 calls to 3:

New complexity:

Hence,

	Chapter 5��Divide and Conquer
	Divide-and-Conquer
	5.1 Mergesort
	Sorting
	Mergesort
	Merging
	A Useful Recurrence Relation
	Proof by Recursion Tree
	Proof by Telescoping
	Proof by Induction
	Analysis of Mergesort Recurrence
	Two Exercises
	Master Theorem
	Parallel Merge Sort
	Parallel Multiway Merge Sort�
	Parallel Merge (Sort)
	Searching
	Fibonacci Sequence and Golden Ratio
	Fibonacci Puzzle
	5.3 Counting Inversions
	Counting Inversions
	Applications
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Divide-and-Conquer
	Counting Inversions: Combine
	Counting Inversions: Implementation
	5.4 Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points: First Attempt
	Closest Pair of Points: First Attempt
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair of Points
	Closest Pair Algorithm
	Closest Pair of Points: Analysis
	Integer Multiplication

