Chapter 5
Divide and Conquer
Divide-and-Conquer

Divide-and-conquer.

Break up problem into several parts.
Solve each part recursively.
Combine solutions to sub-problems into overall solution.

Most common usage.
Break up problem of size \(n\) into two equal parts of size \(\frac{1}{2}n\).
Solve two parts recursively.
Combine two solutions into overall solution in linear time.

Consequence.
Brute force: \(n^2\).
Divide-and-conquer: \(n \log n\).
5.1 Mergesort
Sorting

Given n elements, rearrange in ascending order.

Applications.
- Sort a list of names.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.
- Find the median.
- Find the closest pair.
- Binary search in a database.
- Identify statistical outliers.
- Find duplicates in a mailing list.
- Data compression.
- Computer graphics.
- Computational biology.
- Supply chain management.
- Book recommendations on Amazon.
- Load balancing on a parallel computer.

obvious applications
problems become easy once items are in sorted order
non-obvious applications
Mergesort

Divide array into two halves.
Recursively sort each half.
Merge two halves to make sorted whole.

Jon von Neumann (1945)

```
A L G O R I T H M S
daive                    O(1)
A L G O R                I T H M S
sort  2T(n/2)
A G L O R                H I M S T
merge  O(n)
A G H I L M O R S T
```
Merging. Combine two pre-sorted lists into a sorted whole.

How to merge efficiently?
Linear number of comparisons.
Use temporary array.

Challenge for the bored. In-place merge. [Kronrud, 1969]

using only a constant amount of extra storage
A Useful Recurrence Relation

Def. \(T(n) = \) number of comparisons to mergesort an input of size \(n \).

Mergesort recurrence.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T\left(\left\lceil \frac{n}{2} \right\rceil \right) + T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + n & \text{otherwise}
\end{cases}
\]

Solution. \(T(n) = O(n \log_2 n) \).

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume \(n \) is a power of 2 and replace \(\leq \) with \(= \).
Proof by Recursion Tree

\[T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + n & \text{otherwise}
\end{cases} \]

\[T(n / 2^k) \]

\[\begin{array}{c}
T(2) \\
\end{array} \]

\[n \log_2 n \]
Proof by Telescoping

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + \frac{n}{2} & \text{otherwise}
\end{cases}
\]

assuming \(n \) is a power of 2

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2T(n/2) + \frac{n}{2} & \text{otherwise}
\end{cases}
\]

\[
\begin{align*}
\frac{T(n)}{n} &= \frac{2T(n/2)}{n} + 1 \\
&= \frac{T(n/2)}{n/2} + 1 \\
&= \frac{T(n/4)}{n/4} + 1 + 1 \\
&\vdots \\
&= \frac{T(n/n)}{n/n} + 1 + \cdots + 1 \\
&= \log_2 n
\end{align*}
\]

Pf. For \(n > 1 \):
Proof by Induction

Claim. If \(T(n) \) satisfies this recurrence, then \(T(n) = n \log_2 n \).

\[T(n) = \begin{cases} 0 & \text{if } n = 1 \\ 2T(n/2) + n & \text{otherwise} \\ \text{sorting both halves} \\ \text{merging} \end{cases} \]

\(\uparrow \)

assumes \(n \) is a power of 2

Pf. (by induction on \(n \))

Base case: \(n = 1 \).

Inductive hypothesis: \(T(n) = n \log_2 n \).

Goal: show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n(\log_2 (2n) - 1) + 2n \\
= 2n \log_2 (2n)
\]
Analysis of Mergesort Recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \lg n \rceil$.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ \frac{T(\lceil n/2 \rceil)}{\text{solve left half}} + \frac{T(\lfloor n/2 \rfloor)}{\text{solve right half}} + n & \text{otherwise} \end{cases}$$

Pf. (by induction on n)

Base case: $n = 1$.
Define $n_1 = \lfloor n/2 \rfloor$, $n_2 = \lceil n/2 \rceil$.
Induction step: assume true for 1, 2, ... , $n-1$.

$$T(n) \leq T(n_1) + T(n_2) + n$$
$$\leq n_1 \lceil \lg n_1 \rceil + n_2 \lfloor \lg n_2 \rfloor + n$$
$$\leq n_1 \lceil \lg n_2 \rceil + n_2 \lfloor \lg n_2 \rfloor + n$$
$$= n \lfloor \lg n_2 \rfloor + n$$
$$\leq n(\lceil \lg n \rceil - 1) + n$$
$$= n \lceil \lg n \rceil$$

$$n_2 = \lfloor n/2 \rfloor$$
$$\leq 2 \lfloor \lg n \rfloor / 2$$
$$= 2 \lfloor \lg n \rfloor / 2$$
$$\Rightarrow \lg n_2 \leq \lceil \lg n \rceil - 1$$
Two Exercises

- Using recursion tree to guess a result, and then, applying induction to prove.

(1) \(T(n) = 3 \ T\left(\frac{n}{4}\right) + \Theta(n^2) \)

Use \(cn^2 \) to replace \(\Theta(n^2) \) for \(c > 0 \) in recursion tree
Apply \(T(n) \leq dn^2 \) for \(d > 0 \), the guess result, in induction prove
Determine the constraint associated with \(d \) and \(c \)

(2) \(T(n) = T(n/3) + T(2n/3) + O(n) \)

Use \(c \) to represent the constant factor in \(O(n) \) in recursion tree
Apply \(T(n) \leq dn \log n \) for \(d > 0 \), the guess result, in induction prove
Determine the constraint associated with \(d \) and \(c \)
Master Theorem

The master theorem

Let $a \geq 1$ and $b > 1$ be constants, let $f(n)$ be a function, and let $T(n)$ be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n),$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then $T(n)$ has the following asymptotic bounds:

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq cf(n)$ for some constant $c < 1$ and all sufficiently large n, then $T(n) = \Theta(f(n))$.

$T(n) = 9 \ T(n/3) + n, \ T(n) = \Theta(n^2);$ \hspace{2cm} $T(n) = 3T(n/4) + n \log n, \ T(n) = \Theta(n \log n)$

$T(n) = T(2n/3) + 1, \ T(n) = \Theta(\log n);$ \hspace{2cm} $T(n) = 2T(n/2) + \Theta(n), \ T(n) = \Theta(n \log n)$

$T(n) = 8T(n/2) + \Theta(n^2), \ T(n) = \Theta(n^3);$ \hspace{2cm} $T(n) = 7T(n/2) + \Theta(n^2), \ T(n) = \Theta(n \log^7)$
Parallel Merge Sort

Merge sort with parallel recursion: $O(n)$, still slow

Parallel multiway merge sort

Merge sort with parallel merge

Merge sort with two layers
 Bottom layer: slow but efficient
 Top layer: fast but inefficient

Multisequence selection
Parallel Multiway Merge Sort

Map-Shuffle-Reduce in Hadoop

Partition data and assign to m processors
Each processor sorts data based on n samples

Data access: message passing
Parallel Merge (Sort)

Merge two sorted subsequences: $O(\log^2 n)$ with $O(n / \log^2 n)$ processors: switch to sequence merge sort with sizes are reduced to $O(\log^2 n)$

Data access: PRAM
Parallel random-access memory
EREW or CRCW

Speedup: seq. time / para. time, Efficiency: # of processors (k)/speed up
Cost: # of processors x parallel time, Cost-optimal: efficiency = 1

Other parallel sorts: bitonic, quick, radix, and sample sort

J. Wu and S. Olariu, On Cost-Optimal Merge of Two Intransitive Sorted Sequence, 2003
Searching

Systematically search the “space” for a solution.

Key: how to divide (-and-eliminate) the solution space.

1. A person is L distance away from a long wall with no end on both sides. A diamond is placed on the wall which can be identified through touching. Design a searching method with a constant bound in moving distance.

2. A fish needs to be steamed between 5 to 18 minutes. Design a fast-searching method to find the best cooking time. Under- and over-cook can be compared via tasting, but not during cooking. (1 minute is the basic unit of time duration. Quality of fish is a quadratic function.)

\[
\begin{align*}
\text{min max problem:} & \quad \text{check golden-section search} \\
\text{adversary arguments} & \quad \text{person} \\
1. & \quad \text{wall}
\end{align*}
\]
Fibonacci Sequence and Golden Ratio

\[F_n = F_{n-1} + F_{n-2}, \quad F_0 = 0, \quad F_1 = 1: \quad 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \]

\[\frac{a+b}{b} = \frac{b}{a} = 1.618\ldots \]

In music, human body, nature, ...

Eye of god
Fibonacci Puzzle

Extended Fibonacci sequence:
2, 4, 6, 10, 16, 26, ...
4, 8, 12, 20, 32, 52, ...
8, 16, 24, 40, 64, 104, ...

Fibonacci sequence in Last Super
1, 2, 3, 5, 8, 13

21 x 21 = 34 x 13 (?)

Mathematics is the language in which God has written the universe - Galileo Galilei
5.3 Counting Inversions
Counting Inversions

Music site tries to match your song preferences with others.

You rank \(n \) songs.

Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

My rank: 1, 2, ..., \(n \).

Your rank: \(a_1, a_2, ..., a_n \).

Songs \(i \) and \(j \) *inverted* if \(i < j \), but \(a_i > a_j \).

Songs

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>You</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

Inversions

3-2, 4-2

Brute force: check all \(\Theta(n^2) \) pairs \(i \) and \(j \).
Applications

Voting theory (Arrow's impossibility theorem on voting).
Collaborative filtering.
Measuring the "sortedness" of an array.
Sensitivity analysis of Google's ranking function.
Rank aggregation for meta-searching on the Web.
Nonparametric statistics (e.g., Kendall's Tau distance).

3-party voting (Condorcet paradox)

1: A>B>T Based on 1 and 3: A beats B
2: B>T>A Based on 2 and 3: T beats A
3: T>A>B Based on 1 and 2: B beats T

(A: Anderson, B: Biden, T: Trump)
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

- **Divide**: separate list into two pieces.

```
1  5  4  8  10  2  6  9  12  11  3  7
```

Divide: $O(1)$.
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Divide: separate list into two pieces.

Conquer: recursively count inversions in each half.

\[
\begin{array}{cccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7
\end{array}
\]

Divide: \(O(1)\).

\[
\begin{array}{cccccccccc}
1 & 5 & 4 & 8 & 10 & 2 & 6 & 9 & 12 & 11 & 3 & 7
\end{array}
\]

5 blue-blue inversions 8 green-green inversions

5-4, 5-2, 4-2, 8-2, 10-2 6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

Conquer: \(2T(n / 2)\)
Counting Inversions: Divide-and-Conquer

Divide-and-conquer.

Divide: separate list into two pieces.
Conquer: recursively count inversions in each half.
Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |

Divide: O(1).

Conquer: $2T(n/2)$

| 1 | 5 | 4 | 8 | 10 | 2 | 6 | 9 | 12 | 11 | 3 | 7 |

5 blue-blue inversions
8 green-green inversions

9 blue-green inversions
5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Combine: ???

Total = 5 + 8 + 9 = 22.
Counting Inversions: Combine

Combine: count blue-green inversions
Assume each half is sorted.
Count inversions where \(a_i\) and \(a_j\) are in different halves.
Merge two sorted halves into sorted whole.

13 blue-green inversions: \(6 + 3 + 2 + 2 + 0 + 0\)

Count: \(O(n)\)

Merge: \(O(n)\)

\[
T(n) \leq T\left(\lfloor n/2 \rfloor \right) + T\left(\lceil n/2 \rceil \right) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)
\]
Pre-condition. [Merge-and-Count] A and B are sorted.
Post-condition. [Sort-and-Count] L is sorted.

Sort-and-Count(L) {
 if list L has one element
 return 0 and the list L

 Divide the list into two halves A and B
 (r_A, A) ← Sort-and-Count(A)
 (r_B, B) ← Sort-and-Count(B)
 (r, L) ← Merge-and-Count(A, B)

 return r = r_A + r_B + r and the sorted list L
}
5.4 Closest Pair of Points
Closest Pair of Points

Closest pair. Given \(n \) points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

\[
\text{Brute force. Check all pairs of points } p \text{ and } q \text{ with } \Theta(n^2) \text{ comparisons.}
\]

1-D version. \(O(n \log n) \) easy if points are on a line.

Assumption. No two points have same \(x \) coordinate.

\[
\text{fast closest pair inspired fast algorithms for these problems}
\]

\[
\text{to make presentation cleaner}
\]
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure n/4 points in each piece.
Closest Pair of Points

Algorithm.

Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Algorithm.

Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.

Conquer: find closest pair in each side recursively.
Algorithm.
Divide: draw vertical line L so that roughly $\frac{1}{2}n$ points on each side.
Conquer: find closest pair in each side recursively.
Combine: find closest pair with one point in each side. ← seems like $\Theta(n^2)$
Return best of 3 solutions.
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

$\delta = \min(12, 21)$
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: only need to consider points within δ of line L.

\[\delta = \min(12, 21) \]
Closest Pair of Points

Find closest pair with one point in each side, assuming that distance $< \delta$.

Observation: only need to consider points within δ of line L.

Sort points in 2δ-strip by their y coordinate.
Closest Pair of Points

Find closest pair with one point in each side, **assuming that distance < \(\delta \).**

Observation: only need to consider points within \(\delta \) of line \(L \).

Sort points in \(2\delta \)-strip by their \(y \) coordinate.

Only check distances of those within 11 positions in sorted list!

\[\delta = \min(12, 21) \]
Closest Pair of Points

Def. Let s_i be the point in the 2δ-strip, with the i^{th} smallest y-coordinate.

Claim. If $|i - j| \geq 12$, then the distance between s_i and s_j is at least δ.

Pf.

No two points lie in same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box.

Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$. □

Fact. Still true if we replace 12 with 7. (This is independent of δ calculated at each recursive call.)
Closest Pair Algorithm

Closest-Pair(p₁, …, pₙ) {
 Compute separation line L such that half the points are on one side and half on the other side.

 δ₁ = Closest-Pair(left half)
 δ₂ = Closest-Pair(right half)
 δ = min(δ₁, δ₂)

 Delete all points further than δ from separation line L

 Sort remaining points by y-coordinate.

 Scan points in y-order and compare distance between each point and next 11 neighbors. If any of these distances is less than δ, update δ.

 return δ.
}
Running time.

$$T(n) \leq 2T(n/2) + O(n \log n) \quad \Rightarrow \quad T(n) = O(n \log^2 n)$$

Q. Can we achieve $O(n \log n)$?

A. Yes. Don't sort points in strip from scratch each time. Each recursive returns two lists: all points sorted by y coordinate, and all points sorted by x coordinate. Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \quad \Rightarrow \quad T(n) = O(n \log n)$$

Q. Can we do better?

A. Yes, $O(n)$ using randomized solution (Chapter 13)
Integer Multiplication

X times Y: half-and-half, but still $O(n^2)$

$$xy = (x_1 \cdot 2^{n/2} + x_0)(y_1 \cdot 2^{n/2} + y_0)$$
$$= x_1y_1 \cdot 2^n + (x_1y_0 + x_0y_1) \cdot 2^{n/2} + x_0y_0.$$

Complexity:
$$T(n) \leq 4T(n/2) + cn$$

Reduce 4 calls to 3:

New complexity:
$$T(n) \leq 3T(n/2) + cn$$

Hence,

$$O(n^{\log_2 3}) = O(n^{1.59})$$

Recursive-Multiply(x, y):
Write $x = x_1 \cdot 2^{n/2} + x_0$
$y = y_1 \cdot 2^{n/2} + y_0$
Compute $x_1 + x_0$ and $y_1 + y_0$
$p = \text{Recursive-Multiply}(x_1 + x_0, y_1 + y_0)$
$x_1y_1 = \text{Recursive-Multiply}(x_1, y_1)$
$x_0y_0 = \text{Recursive-Multiply}(x_0, y_0)$
Return $x_1y_1 \cdot 2^n + (p - x_1y_1 - x_0y_0) \cdot 2^{n/2} + x_0y_0$