
Table of Contents
 Introduction and Motivation
 Theoretical Foundations
 Distributed Programming Languages
 Distributed Operating Systems
 Distributed Communication
 Distributed Data Management
 Reliability
 Applications
 Conclusions
 Appendix

Distributed Data Management

 Data objects
 Files
 Directories

 Data objects are dispersed and replicated
 Unreplicated
 Fully replicated
 Partially replicated

Serializability Theory

Atomic execution
 A transaction is an "all or nothing" operation.
 The concurrent execution of several transactions affects the

database as if executed serially in some order.
 The interleaved order of the actions of a set of concurrent

transactions is called a schedule.

Example 22: Concurrent Transactions

T1 begin
1 read A (obtaining A_balance)
2 read B (obtaining B_balance)
3 write A_balance-$10 to A
4 write B_balance+$10 to B
end

T2 begin
1 read B (obtaining B balance)
2 write B_balance-$5 to B
end

 Three types of conflict: r-w (read-write), w-r (write-read),
and w-w (write-write).

 rj[x] reads from wi[x] iff
 wi[x] < rj[x].
 There is no wk[x] such that wi[x] < wk[x] < rj[x].

 Two schedules are equivalent iff
 Every read operation reads from the same write operation in both

schedules.
 Both schedules have the same final writes.

 When a non-serial schedule is equivalent to a serial schedule,
it is called serializable schedule.

Concepts

A nonserializable schedule (a) and serializable schedule (b) for Example 22.

Transaction (step) Action
T1(1) read A(obtaining

A_balance)
T1(2) read B(obtaining

B_balance)

T1(3) write A_balance-
$10 to A

T2(1) read B(obtaining
B_balance)

T2(1) write B_balance-
$5 to B

T2(4) write
B_balance+$10
to B

(a)

Transaction (step) Action
T1(1) read A(obtaining

A_balance)
T2(1) read B(obtaining

B_balance)

T2(1) write B_balance-
$5 to B

T1(2) read B(obtaining
B_balance)

T1(3) write A_balance-
$10 to A

T1(4) write
B_balance+$10
to B

(b)

Concurrency Control

Optimistic (assuming conflicts are less frequent)
 Optimistic concurrency control

First tentatively perform updates locally
Then are made permanent and propagated if there are no conflicts

Conservative (assuming conflicts are frequent)
 Locking scheme
 Timestamp-based scheme

Focus 18: Two-Phase Locking

 A transaction is well-formed if it
 locks an object before accessing it,
 does not lock an object that is already locked, and
 before it completes, unlocks each object it has locked.

 A schedule is two-phase if no object is unlocked before all
needed objects are locked.

Two-phase locking

Example 23: Well-Formed, Two-Phase
Transactions

T1: begin
lock A
read A (obtaining A balance)
lock B
read B (obtaining B balance)
write A_balance-$10 to A
unlock A
write B_balance+$10 to B
unlock B
end

T2: begin
lock B
read B (obtaining B balance)
write B_balance-$5 to B
unlock B
end

Different Looking Schemes
 Centralized locking algorithm: distributed

transactions, but centralized lock management.
 Primary-site locking algorithm: each object has a

single site designated as its primary site (as in
INGRES).

 Decentralized locking: The lock management duty is
shared by all the sites.

Focus 19: Timestamp-based Concurrency
Control

Each request (transaction) is associated with timestamp: ts

Timer(x) (Timew(x)): the largest timestamp of any read (write)
processed thus far for object x.

Timestamp-based concurrency control:
 (Read) If ts < Timew(x) then the read request is rejected and

the corresponding transaction is aborted; otherwise, it is
executed and Timer(x) is set to max{Timer(x), ts}.

 (Write) If ts < Timew(x) or ts < Timer(x), then the write
request is rejected; otherwise, it is executed and Timew(x) is
set to ts.

Example 24

 Timer(x) = 4 and Timew(x) = 6 initially.
 Sample:

read(x,5), write(x,7), read(x,9), read(x, 8), write(x,8)
 First and last are rejected and Timer(x) = 7, Timew(x)

= 9 when completed.

Conservative Timestamp Ordering

 Each site keeps a write queue (W-queue) and a read
queue (R-queue).
 A read (x, ts) request is executed if all W-queues are

nonempty and the first write on each queue has a
timestamp greater than ts; otherwise, the read request is
buffered in the R-queue.

 A write (x, ts) request is executed if all R-queues and W–
queues are nonempty and the first read (write) on each R-
queue (W-queue) has a timestamp greater than ts;
otherwise, the write request is buffered in the W-queue.

Strict Consistency

 Any read returns the result of the most recent write.
 Impossible to enforce, unless

 All writes are instantaneously visible to all processes.
 All reads get the then-current values, no matter how

quickly next writes are done.
 An absolute global time order is maintained.

Weak Consistency

 Sequential consistency: All processes see all shared
accesses in the same order.

 Causal consistency: All processes see causually-
related shared accesses in the same order.

 FIFO consistency: All process see writes from each
process in the order they were issued.

Example 25: Sample Consistent Models

Linearizable: sequentially-consistent, but taking ordering based on synchronized clocks

sequentially-consistent

P1 W(x,a)

P2 W(x,b)

P3 R(x,b) R(x,a)

P4 R(x, b) R(x,a)

P1 W(x,a)

P2 W(x,b)

P3 R(x, b) R(x,a)

P4 R(x, a) R(x,b)

non-sequentially-consistent

Example 25: Sample Consistent Models

causally-consistent

P1 W(x,a) W(x,c)

P2 R(x,a) W(x,b)

P3 R(x,a) R(x,c) R(x,b)

P4 R(x,a) R(x,b) R(x,c)

P1 W(x,a)

P2 R(x,a) W(x,b)

P3 R(x,b) R(x,a)

P4 R(x,a) R(x,b)

non-causally-consistent

Example 25 (Cont’d)

FIFO-consistent

P1 W(x,a)

P2 R(x,a) W(x,b) W(x,c)

P3 R(x,b) R(x,a) R(x,c)

P4 R(x,a) R(x,b) R(x,c)

 Weak consistency: Enforces consistency on a group
of operations, not on individual reads and writes.

 Release consistency: Enforces consistency on a
group of operations enclosed by acquire and release
operations.

 Eventual consistency: All replicas will gradually
become consistent. (Web pages with dominated read
operations.)

Weak Consistency (Cont’d)

Update Propagation for Multiple Copies
 State versus Operations

 Propagate a notification of an update (such as invalidate signal)
 Propagate data
 Propagate the update operation

 Pull versus Push
 Push-based approach (server-based)
 Pull-based approach (client-based)
 Lease-based approach (hybrid of push and pull)

 Consistency of duplicated data
 Write-invalidate vs. write-through
 Quorum-voting as an extension of single-write/multiple-read

Focus 20: Quorum-Voting

w > v/2 and r + w > v

where w and r are write and read quorum and v is the total
number of votes.

E.g., suppose v=9, there are the following possibilities:

(r, w): (5, 5), (4, 6), (3, 7), (2, 8), (1, 9)

Hierarchical Quorum Voting

A 3-level tree in the hierarchical quorum voting with read quorum= 2 and
write quorum = 3.

Network Partition

Optimistic approaches:
version vectors used in
LOCUS

V=(v1, v2, …, vn), where n
is the number of sites at
which the file is stored.
Version number v increases
at each update.

Network Partition (cont’d)

Pessimistic approaches: Each site maintains a pair of
(version number, cardinality)

Majority-based dynamic voting: a majority of the most recent update

Example: {A: (6, 5), B: (6, 5), C: (6, 5), D: (6, 5), E: (6, 5)} before partition

A partition: {A, B, C} and {D, E} and two updates at majority {A, B, C}

Another partition: {A: (8,3), D: (6,5)}, {B: (8,3), C: (8,3), E: (6,5)}

{B, C, E} has majority, but E needs a catch up (which is a new update)

Use dynamic vote reassignment to find a majority: different weights

CAP Theorem

Brewer’s CAP Theorem (2000):
It is impossible for a web service to provide all three: consistency,
availability, and partition tolerance (CAP)

Consistency: atomicity of transactions
Availability: any request to a non-faulty service leads to a response
Partition tolerance: service will be available during a partition

Distributed Atomic Transactions

The finite state machine model for the
two-phase commit protocol.

Two-step commit for one transaction:
(1) violate to stable and (2) stable
(2) to database

If an error occurs in (1), T is aborted;
or in (2), it is rewritten to database
and T is committed.

Jim Gray’s Distributed Two-Phase Commitment:
One coordination with multiple participants

Phase 1
At the coordinator:

/*prec: initiate state (q) */
1. The coordinator sends a commit_request message to every participant
and waits for replies from all the participants.

/*postc: waiting state (w) */

At participants:

/*prec: initiate state (q)*/
1. On receiving the commit_request message, a participant takes the

following actions. If the transaction executing at the participant is
successful, it writes undo and redo log, and sends a yes message to the
coordinator; otherwise, it sends a no message.

/*postc: wait state (w) if yes or abort state (a) if no*/

Phase 2
At the coordinator

/*prec: wait state (w)*/
1. If all the participants reply yes then the coordinator writes a commit record

into the log and then sends a commit message to all the participants.
Otherwise, the coordinator sends an abort message to all the participants.

/*postc: commit state (c) if commit or abort state (a) if abort */

2. If all the acknowledgments are received within a timeout period, the
coordinator writes a complete record to the log; otherwise, it resends the
commit/abort message to those participants from which no
acknowledgments were received.

Phase 2 (Cont’d)

At the participants

/*prec: wait state (w) */
1. On receiving a commit message, a participant releases all the resources and

locks held for executing the transaction and sends an acknowledgment.

/*postc: commit state (c) */
/*prec: abort state (a) or wait state (w) */

2. On receiving an abort message, a participant undoes the transaction using
the undo log record, releases all the resources and locks held by it, and
sends an acknowledgment.

/*postc: abort state (a) */

Site/Message Failures and Recovery Actions

Location Time of failure Actions at coordi. Actions at parti.
Coordi. Before commit Broadcasts abort

on recovery
Committed
parti. Undo the
trans.

Coordi. Before complete
after commit

Broadcasts
commit on
recovery

__

Coordi. After complete -- --
Parti. In Phase 1 Coordi. aborts the

transaction
__

Parti. In Phase 2 __ Commit/abort
on recovery

Two Types of Logs

 undo log allows an uncommitted transaction to record in
stable storage values it wrote. (T1, T4, and T5 in the example)

 redo log allows a transaction to commit before all the values
written have been recorded in stable storage. (T2 and T7)

A recovery example.

 If a participant fails in state w and its vote is yes, it can be
either commit or abort, waiting is needed to contact
coordinator. Therefore, two-phase commitment is blocking.

 Three-phase (non-blocking) commitment inserts a new state
(precommit) to avoid a state containing both abort and
commit options.

Concepts

Skeen's Three-Phase Commitment Protocol

Exercise 6
1. For the following two transactions:

T1 begin
1 read A (obtaining A balance)
2 write A balance- $10 to A
3 read B (obtaining B balance)
4 write B balance+$10 to B

end

T2 begin
1 read A (obtaining A balance)
2 write A balance+$5 to A
end

(a) Provide all the interleaved executions (or schedules).
(b) Find all the serializable schedules among the schedules obtained in (a).

Exercise 6 (Cont’d)

2. Point out serializable schedules in the following

L1 = w2(y)w1(y)r3(y)r1(y)w2(x)r3(x)r3(z)r2(z)
L2 = r3(z)r3(x)w2(x)r2(z)w1(y)r3(y)w2(y)r1(y)
L3 = r3(z)w2(y)w2(x)r1(y)r3(y)r2(z)r3(x)w1(y)
L4 = r2(z)w2(y)w2(x)w1(y)r1(y)r3(y)r3(z)r3(x)

3. A voting method called voting-with-witness replaces some of the replicas
by witnesses. Witnesses are copies that contain only the version number
but no data. The witnesses are assigned votes and will cast them when
they receive voting requests. Although the witnesses do not maintain data,
they can testify to the validity of the value provided by some other replica.
How should a witness react when it receives a read quorum request? What
about a write quorum request? Discuss the pros and cons of this method.

	Table of Contents
	Distributed Data Management
	Serializability Theory
	Example 22: Concurrent Transactions	
	Slide Number 5
	Slide Number 6
	Concurrency Control
	Focus 18: Two-Phase Locking
	Example 23: Well-Formed, Two-Phase Transactions	
	Different Looking Schemes
	Focus 19: Timestamp-based Concurrency Control	
	Example 24
	Conservative Timestamp Ordering
	Strict Consistency
	Weak Consistency
	Example 25: Sample Consistent Models
	Example 25: Sample Consistent Models
	Example 25 (Cont’d)
	Weak Consistency (Cont’d)
	Update Propagation for Multiple Copies
	Focus 20: Quorum-Voting
	Hierarchical Quorum Voting
	Network Partition
	Network Partition (cont’d)
	CAP Theorem
	Distributed Atomic Transactions
	Phase 1
	Phase 2
	Phase 2 (Cont’d)
	Site/Message Failures and Recovery Actions
	Two Types of Logs
	Slide Number 32
	Skeen's Three-Phase Commitment Protocol
	Exercise 6
	Exercise 6 (Cont’d)	

