
Table of Contents
 Introduction and Motivation
 Theoretical Foundations
 Distributed Programming Languages
 Distributed Operating Systems
 Distributed Communication
 Distributed Data Management
 Reliability
 Applications
 Conclusions
 Appendix

Three Issues

 Use of multiple PEs
 Cooperation among the PEs
 Potential for survival to partial failure

Control Mechanisms

Four basic sequential control mechanisms with
their parallel counterparts.

Statement type \
Control type

Sequential control Parallel Control

Sequential/parallel
statement

Begin S1, S2

end
Parbegin S1, S2

Parend
Fork/join

Alternative statement goto, case if C then
S1 else S2

Guarded commands:
G →C

Repetitive statement for … do doall, for all

Subprogram procedure
Subroutine

procedure
subroutine

Focus 6: Expressing Parallelism

A precedence graph of eight statements.

parbegin/parend statement
S1;[[S2;[S3||S4];S5;S6]||S7];S8

Focus 6 (Cont’d.)

fork/join statement
s1;
c1:= 2;
fork L1;
s2;
c2:=2;
fork L2;
s4;
go to L3;

L1: s3;
L2: join c1;

s5;
L3: join c2;

s6;

A precedence graph.

Dijkstra's Semaphore + Parbegin/Parend
S(i): A sequence of P operations; Si; a sequence of V
operations

s: a binary semaphore initialized to 0.

S(1): S1;V(s12);V(s13)
S(2): P(s12);S2;V(s24);V(s25)
S(3): P(s13);S3;V(s35)
S(4): P(s24);S4;V(s46)
S(5): P(s25);P(s35);S5;V(s56)
S(6): P (s46); P (s56); S6

Focus 7: Concurrent Execution

 R(Si), the read set for Si, is the set of all variables whose
values are referenced in Si.

 W(Si), the write set for Si, is the set of all variables whose
values are changed in Si.

 Bernstein conditions:
 R(S1) ∩ W(S2) = φ
 W(S1) ∩ R(S2) = φ
 W(S1) ∩ W(S2) = φ

Example 7

S1 : a := x + y,
S2 : b := x × z,
S3 : c := y - 1, and
S4 : x := y + z.
S1||S2, S1||S3, S2||S3, and S3||S4.

Then, S1||S2||S3 forms a largest complete subgraph.

Example 7 (Cont’d.)

A graph model for Bernstein's conditions.

Alternative statement in DCDL (CSP like distributed control
description language)

[G1 → C1 G2 → C2 … Gn → Cn].

Alternative Statement

Calculate m = max{x, y}:
[x ≥ y → m := x y ≥ x → m := y]

Example 8

Repetitive Statement

*[G1 → C1 G2 → C2 … Gn → Cn].

Example 9

meeting-time-scheduling ::= t := 0;

*[t := a(t) t := b(t) t := c(t)]

Non-deterministic schedule brings the issue of
fairness

Fairness

A scheduler that allows all possible schedules is unfair
Unconditional fairness: every process (enabled or not) gets its

turn infinitely often.

*[true → x:=0 x=0 → x:=1 x=1 → x:=2]

Unfair: x = 0, 0, 0, 0, 0, 0,…
Unfair: x = 0, 1, 0, 0, 0, 1, …
Fair: x = 0, 1, 2, 0, 1, 0, …

Fairness (cond’t)

Weak fairness: every process that is continuously enabled from a
certain time, gets its turn (infinitely) often.

Strong fairness: every process enabled infinitely often gets its turn
(infinitely) often.

x = T
* [x → y:=T x → y:=F y → x:=F y → y:=not y]

Weakly fair scheduler: termination is not guaranteed
Strongly fair scheduler: termination is guaranteed

Communication and Synchronization

 One-way communication: send and receive
 Two -way communication: RPC(Sun), RMI(Java and

CORBA), and rendezvous (Ada)
 Several design decisions:

 One-to one or one-to-many
 Synchronous or asynchronous
 One-way or two-way communication
 Direct or indirect communication
 Automatic or explicit buffering
 Implicit or explicit receiving

Primitives Example Languages

PARALLELISM
Expressing parallelism

Processes
Objects
Statements
Expressions
Clauses

Mapping
Static
Dynamic
Migration

Ada, Concurrent C, Lina, NIL Emerald,
Concurrent Smalltalk
Occam
Par Alfl, FX-87
Concurrent PROLOG, PARLOG

Occam, Star Mod
Concurrent PROLOG, ParAlfl
Emerald

COMMUNICATION
Message Passing

Point-to-point messages
Rendezvous
Remote procedure call
One-to-many messages

Data Sharing
Distributed data Structures
Shared logical variables

Nondeterminism
Select statement
Guarded Horn clauses

CSP, Occam, NIL
Ada, Concurrent C
DP, Concurrent CLU, LYNX
BSP, StarMod

Lina, Orca
Concurrent PROLOG, PARLOG

CSP, Occam, Ada, Concurrent C, SR
Concurrent PROLOG, PARLOG

PARTIAL FILURES
Failure detection
Atomic transactions
NIL

Ada, SR
Argus, Aeolus, Avalon

Message-Passing Library for Cluster
Machines (e.g., Beowulf clusters)

 Parallel Virtual Machine (PVM):
www.epm.ornl/pvm/pvm_home.html

 Message Passing Interface (MPI):
www.mpi.nd.edu/lam/
www-unix.mcs.anl.gov/mpi/mpich/

 Java multithread programming:
www.mcs.drexel.edu/~shartley/ConcProjJava
www.ora.com/catalog/jenut

 Beowulf clusters:
www.beowulf.org

http://www.epm.ornl/pvm/pvm_home.html
http://www.mpi.nd.edu/lam/
http://www.mcs.drexel.edu/%7Eshartley/ConcProjJava
http://www.ora.com/catalog/jenut
http://www.beowulf.org/

Message-Passing (Cont’d.)

 Asynchronous point-to-point message passing:
 send message list to destination
 receive message list {from source}

 Synchronous point-to-point message passing:
 send message list to destination
 receive empty signal from destination
 receive message list from sender
 send empty signal to sender

Relationships Between Models

 Stronger model: a model with more constraints
 Strong: synchronous systems, Weak: asynchronous systems
 Strong: bounded-delay channels, Weak: unbounded-delay channels

 Can model A be simulated using model B: layers of abstraction
 FIFO channel for Non-FIFO channel

sequence number
ack with bounded buffer

 Asynchronous systems for synchronous systems
ABD synchronizer (for asynchronous bounded delay)
Awerbuch’s three synchronizers (for asynchronous unbounded delay)

Relationships Between Models (cont’d)
 Message Passing for Shared Memory: circular buffer

 Shared Memory for Message Passing: (total order) multicast

x

x x

• x

…
tail

head

Example 10

The squash program replaces every pair of consecutive
asterisks "**" by an upward arrow “↑”.

input::= * [send c to squash]
output::= * [receive c from squash]

Example 10 (Cont’d.)

squash::=
*[receive c from input →

[c ≠ *→ send c to output
[c = *→ receive c from input;

[c ≠ *→ send * to output;
send c to output

c = *→ send ↑ to output
]

]
]

]

Partial Correctness

Focus 8: Fibonacci Numbers

 F(i) = F(i-1) + F (i - 2) for i > 1, with initial values F(0) = 0
and F(1) = 1.

 F(i) = (φ i -φ’i)/(φ -φ’) ,where φ = (1+50.5)/2 (golden ratio)
and φ’ = (1-50.5)/2.

0, 1, 2, 3, 5, 8, 13, 21, 35, 54, …

Focus 8 (Cont’d.)

A solution for F (n).

Focus 8 (Cont’d.)

 f(0) ::=
send n to f(1);
receive p from f(2);
receive q from f(1);
ans := q

 f(-1) ::=
receive p from f(1)

Focus 8 (Cont’d.)

 f(i) ::=
receive n from f(i - 1);
[n > 1 → [send n - 1 to f(i + 1);

receive p from f(i + 2);
receive q from f(i + 1);
send p + q to f(i - 1);
send p + q to f(i - 2)]

n = 1 → [send 1 to f(i - 1);
send 1 to f(i - 2)]

n = 0 → [send 0 to f(i - 1);
send 0 to f(i - 2)]

]

Another solution for F (n).

Focus 8 (Cont’d.)

 f(0)::=
[n > 1 → [send n to f(1);

receive p from f(1);
receive q from f(1);
ans := p
]

n = 1 → ans := 1
n = 0 → ans := 0

]

Focus 8 (Cont’d.)

 f(i)::=
receive n from f(i - 1);
[n > 1 → [send n - 1 to f(i + 1);

receive p from f(i + 1);
receive q from f(i + 1);
send p + q to f(i - 1);
send p to f(i - 1)
]

n = 1 → [send 1 to f(i - 1);
send 0 to f(i - 1)

]
]

Focus 8 (Cont’d.)

Focus 9: Message-Passing Primitives of MPI

 MPI_Isend: asynchronous communication
 MPI_send: receipt-based synchronous communication
 MPI_ssend: delivery-based synchronous communication
 MPI_sendrecv: response-based synchronous communication

Focus 9 (Cont’d.)

Message-passing primitives of MPI: Isend, send, ssend, sendrecv.

Focus 10: Interprocess Communication in UNIX

 Socket: int socket (int domain, int type, int protocol).
 domain: normally internet.
 type: datagram or stream.
 protocol: TCP (Transport Control Protocol) or UDP (User Datagram

Protocol)

 Socket address: an Internet address and a local port number.

Focus 10 (Cont’d.)

Sockets used for datagrams

High-Level (Middleware) Communication
Services

 Achieve access transparency in distributed systems
 Remote procedure call (RPC)
 Remote method invocation (RMI)

Remote Procedure Call (RPC)

 Allow programs to call procedures located on other machines.
 Traditional (synchronous) RPC and asynchronous RPC.

RPC.

Remove Method Invocation (RMI)

RMI is a generalization of RPC in an object-oriented system

RMI.

Robustness

 Exception handling in high level languages (Ada and
PL/1)

 Four Types of Communication Faults
 A message transmitted from a node does not reach its

intended destinations
 Messages are not received in the same order as they were

sent
 A message gets corrupted during its transmission
 A message gets replicated during its transmission

If a remote procedure call terminates abnormally
(the time out expires) there are four possibilities.
 The receiver did not receive the call message.
 The reply message did not reach the sender.
 The receiver crashed during the call execution and either

has remained crashed or is not resuming the execution
after crash recovery.

 The receiver is still executing the call, in which case the
execution could interfere with subsequent activities of the
client.

Failures in RPC

Exercise 3

1.(The Welfare Crook by W. Feijen) Suppose we have three
long magnetic tapes each containing a list of names in
alphabetical order. The first list contains the names of people
working at IBM Yorktown, the second the names of students
at Columbia University and the third the names of all people
on welfare in New York City. All three lists are endless so no
upper bounds are given. It is known that at least one person is
on all three lists. Write a program to locate the first such
person (the one with the alphabetically smallest name). Your
solution should use three processes, one for each tape.

Exercise 3 (Cont’d.)

2.Convert the following DCDL expression to a precedence
graph.

[S1 || [[S2 || S3]; S4]]

Use fork and join to express this expression.

3.Convert the following program to a precedence graph:

S1;[[S2;S3||S4;S5||S6]||S7];S8

Exercise 3 (Cont’d.)

4.G is a sequence of integers defined by the recurrence Gi = Gi-1
+ Gi-3 for i > 1, with initial values G0 = 0, G1 = 1, and G2 = 1.
Provide a DCDL implementation of Gi and use one process
for each Gi.

5.Using DCDL to write a program that replaces a*b by a ↑ b
and a**b by a ↓ b, where a and b are any characters other
than *. For example, if a1a2*a3**a4***a5 is the input string
then a1a2 ↑ a3 ↓ a4***a5 will be the output string.

	Table of Contents
	Three Issues
	Control Mechanisms
	Focus 6: Expressing Parallelism
	Focus 6 (Cont’d.)
	Dijkstra's Semaphore + Parbegin/Parend
	Focus 7: Concurrent Execution
	Example 7
	Example 7 (Cont’d.)
	Alternative Statement
	Example 8
	Repetitive Statement
	Example 9
	Fairness
	Fairness (cond’t)
	Communication and Synchronization
	Slide Number 17
	Message-Passing Library for Cluster Machines (e.g., Beowulf clusters)
	Message-Passing (Cont’d.)
	Relationships Between Models
	Relationships Between Models (cont’d)
	Example 10
	Example 10 (Cont’d.)
	Partial Correctness
	Focus 8: Fibonacci Numbers
	Focus 8 (Cont’d.)
	Focus 8 (Cont’d.)
	Focus 8 (Cont’d.)
	Focus 8 (Cont’d.)
	Focus 8 (Cont’d.)
	Focus 8 (Cont’d.)
	Focus 9: Message-Passing Primitives of MPI
	Focus 9 (Cont’d.)
	Focus 10: Interprocess Communication in UNIX
	Focus 10 (Cont’d.)
	High-Level (Middleware) Communication Services
	Remote Procedure Call (RPC)
	Remove Method Invocation (RMI)
	Robustness
	Failures in RPC
	Exercise 3
	Exercise 3 (Cont’d.)
	Exercise 3 (Cont’d.)

