
Table of Contents
 Introduction and Motivation
 Theoretical Foundations
 Distributed Programming Languages
 Distributed Operating Systems
 Distributed Communication
 Distributed Data Management
 Reliability
 Applications
 Conclusions
 Appendix

State Model

 A process executes three types of events: internal actions,
send actions, and receive actions.

 A global state (also configuration): a collection of local
states and the state of all the communication channels.

 Global state evolves by
means of transitions

 Initiator: first event
 Distributed algorithm:

multiple initiators
System structure from logical point of view.

Thread

 lightweight process (maintain minimum information in its
context)

 multiple threads of control per process
 multithreaded servers (vs. single-threaded process)

A multithreaded server in a dispatcher/worker model.

Preliminary
Assertions: a predicate on the configurations of an algorithm

Invariant, such as loop invariant, is an assertion

e.g., {I} while c body {¬c ˄ I} (under Floyd-Hoare logic)
calculate sum: 1+2+…+n, two assertions I: 1+2+…+k and c: k < n

Safety property: if it is true in each reachable configuration
i.e., something bad will never happen (e.g., absence of deadlock, mutual
exclusion, partial correctness)

Liveness property: if executions, from some point on, contain a
configuration in which the assertion holds

i.e., something good will eventually happen (e.g., fairness, termination)

Fair: if every event that can happen in infinitely many times is performed
infinitely often

Complexity: time, space, message (bit) complexity

Happened-Before Relation

The happened-before relation (denoted by →) is
defined as follows:

 Rule 1 : If a and b are events in the same process and a was
executed before b, then a → b.

 Rule 2 : If a is the event of sending a message by one process
and b is the event of receiving that message by another
process, then a → b.

 Rule 3 : If a → b and b → c, then a → c.

Relationship Between Two Events

 Two events a and b are causally related if a → b or b → a.

 Two distinct events a and b are said to be concurrent if a →
b and b → a (denoted as a || b).

Example 2

A time-space view of a distributed system.

Example 2 (Cont’d.)

 Rule 1:
a0 → a1 → a2 → a3

b0 → b1 → b2 → b3

c0 → c1 → c2 → c3

 Rule 2:
a0 → b3

b1 → a3, b2 → c1, b0 → c2

Example 3

An example of a network of a bank system.

Example 3 (Cont’d.)

A sequence of global states.

Consistent Global State

Four types of cut that cross
a message transmission line.

Consistent Global State (Cont’d.)

A cut is consistent iff no two cut events are causally
related.
 Strongly consistent: no (c) and (d).
 Consistent: no (d) (orphan message).
 Inconsistent: with (d).

Focus 3: Snapshot of Global States

A simple distribute algorithm to capture a consistent global
state.

Many key concepts: asynchronous computation, global state,
information propagation and gathering, …

A system with three processes Pi, Pj , and Pk.

Chandy and Lamport's Solution
 Rule for sender P :

[P records its local state
||P sends a marker along all the channels on which a marker has not been sent.
]

 Rule for receiver Q:
/* on receipt of a marker along a channel chan */
[Q has not recorded its state →

[record the state of chan as an empty sequence and
follow the "Rule for sender"

]
Q has recorded its state →

[record the state of chan as the sequence of messages received along chan
after the latest state recording but before receiving the marker

]
]

Chandy and Lamport's Solution (Cont’d.)

 It can be applied in any system with FIFO channels (but with
variable communication delays).

 The initiator for each process becomes the parent of the
process, forming a spanning tree for result collection.

 It can be applied when more than one process initiates the
process at the same time.

Chandy and Lamport's Solution (Cont’d.)

 Distributed algorithm: message-passing
 Distributed snapshot
 Dynamic spanning tree
 Asynchronous systems
 Message dissemination
 Progress termination
 Program debugging

 Breakpoint

 Simulation
 Physical and logical processes (event-driven)

Synchronous vs. Asynchronous Systems

Asynchronous Systems:
 Each node is driven by its own (independent) local clock.
 The transmission delay is finite but unpredictable.

Synchronous Systems:
 All nodes are driven by the global clock, which generates intervals

(also rounds) of fixed, nonzero duration.
 The transmission delay is nonzero, but strictly less than the duration

of an interval.

Distributed Algorithms: Traversal

Tarry’s algorithm:

 A process forwards the token through the same channel once.
 A process forwards the token to its parent only when there is no other option.
Complexity: 2E messages and at most 2E time units.

Distributed Algorithms: Traversal (cont’d)

Depth-first search (DFS) algorithm:

 Same as Tarry’s algorithm, with the following constraint
 Whenever the token is forwarded to a process has hold the token before, it is

sent back to its sender.
Complexity: same as Tarry’s algorithm

Distributed Algorithms: Traversal (cont’d)

Extensions to avoid visited nodes:

 Include the IDs of visited nodes
Complexity: 2(N-1) in time and in messages, but O(N log N) in bit complexity

 Awerbuch’s extension: the first-time process with the token informs its neighbors
Complexity: 4N-2 in time and 4E in messages

 Cidon’s extension: improves on Awerbuch’s extension
Complexity: 2(N-1) in time and 4E in messages

Distributed Algorithms: Wave-and-Echo

Wave-and-Echo algorithm (also for counting connected nodes)
 Initiator starts by sending a token to all its neighbors.
 When a node receives a token for the first time, it makes the sender its

parent, and sends the token to all its neighbors.
 When a node has received messages from all its neighbors, it sends a

message to its parent.
 When the initiator has received messages from all its neighbors, it stops.

General wave (-and-echo) algorithm (also for information propagation)
 A process often needs to gather information from all other processes.
 Usually the process starts with an initiator and ends with the same imitator

(after collecting all data/results from all other processes).
 When the wave algorithm is issued at multiple nodes. Many waves, except

one, will fail

Distributed Algorithms: Termination

Dijkstra-Scholten (tree-based):
 The initiator of the root of the tree.
 Upon receiving a message:

 If the receiving process is currently not in the tree: the process joins the tree by
becoming a child of the sender.

 If the receiving process is already in the computation: the process immediately
sends an acknowledgment message to the sender.

 When a process has no more children and has become idle, the process detaches itself
from the tree by sending an acknowledgment to its tree parent.

 Termination occurs when the initiator has no children and has become idle.

Example: global snapshot (with one king)

Distributed Algorithms: Termination (cont’d)

Shavit-Francez (forest-based):
 Same as Dijkstra-Scholten, except with multiple initiators.
 Each non-initiator joining one tree.
 Termination detection initiated by multiple initiators through a wave algorithm
Example: global snapshot (with multiple kings)

Other termination algorithms:
 Weight-throwing algorithm: dividing a fixed weight over the active processes
 Rana’s algorithm: waves tagged with logical clocks
 Safra’s algorithm: token-based traversal

Other Algorithms: Parallel Algorithms

PRAM model
 Parallel random access memory
 EREW, ERCW, CREW, CRCW models
 Chap. 2 of JaJa’s

“an introduction to parallel algorithms”

BSP model by L. Valiant (1990)
 Bulk synchronous parallel (BSP)
 Sequential composition of “supersteps”

 Local computation
 Process communication
 Barrier synchronization

Virtual Processors

Local
Computation

Global
Communication

Barrier
Synchronization

Parallel Algorithm: Bitonic sorter by K. Batcher

 Sorting network based on Bitonic sequence
 Up-then-Down or Down-then-Up
 O(n log2(n)) comparators
 O(log2(n)) latency

 Also Batcher’s odd-even sort (small -> large)

Barrier Synchronization

 Sequential: One process p (leader, through leader election if needed)
 Process p issues wave-and-echo to all nodes
 Process p indicates next round to all nodes

 Parallel: Processes p0, p1, …, pN-1, n starts from 0 until log2N -1
 Notifies process p(i+2

n
) mod N,

 Waits for notification by process P(i-2
n

) mod N, and
 Processes to round n+1

Focus 4: Lamport's Logical Clocks

Based on a “happen-before” relation that defines a
partial order on events

 Rule1. Before producing an event (an external send
or internal event), we update LC :

LCi = LCi + d (d > 0)
(d can have a different value at each application of
Rule1)

 Rule2. When it receives the time-stamped message
(m, LCj , j), Pi executes the update

LCi = max{Lci, LCj} + d (d > 0)

Focus 4 (Cont’d.)

A total order based on the partial order derived
from the happen-before relation

a (in Pi) ⇒ b (in Pj)
iff
(1) LC(a) < LC(b) or (2) LC(a) = LC(b) and Pi < Pj
where < is an arbitrary total ordering of the process
set, e.g., <can be defined as Pi < Pj iff i < j.

A total order of events in the table for Example 2:
a0 b0 c0 a1 b1 a2 b2 a3 b3 c1 c2 c3

Vector and Matrix Logical Clock

Linear clock: if a → b then LCa < LCb

Vector clock: a → b iff LCa < LCb

Each Pi is associated with a vector LCi[1..n], where
 LCi[i] describes the progress of Pi, i.e., its own process.
 LCi [j] represents Pi’s knowledge of Pj's progress.
 The LCi[1..n] constitutes Pi’s local view of the logical global time.

Vector and Matrix Logical Clock (Cont’d.)

When d = 1 and init = 0

 LCi[i] counts the number of internal events
 LCi[j] corresponds to the number of events produced by Pj

that causally precede the current event at Pi.

Knowledge and implicitly knowledge

Vector and Matrix Logical Clock (Cont’d.)

 Rule1. Before producing an event (an external send or internal
event), we update LCi[i]:

LCi[i] := LCi[i] + d (d > 0)

 Rule2. Each message piggybacks the vector clock of the
sender at sending time. When receiving a message (m, LCj ,
j), Pi executes the update.

LCi[k] := max (LCi[k]; LCj[k]), 1≤ k≤ n
LCi[i] := LCi[i] + d

Example 4

An example of vector clocks.

Example 5: Totally-Ordered Multicasting

 Two copies of the account at A and B (with balance of
$10,000).

 Update 1: add $1,000 at A.
 Update 2: add interests (based on 1% interest rate) at B.
 Update 1 followed by Update 2: $11,110.
 Update 2 followed by Update 1: $11,100.

Example 6: Application of Vector Clock

Internet electronic bulletin board service

When receiving m with vector clock LCj from process j, Pi
inspects timestamp LCj and will postpone delivery until all
messages that causally precede m have been received.

Network News.

Matrix Logical Clock

Each Pi is associated with a matrix LCi[1..n, 1..n]
where
 LCi[i, i] is the local logical clock.
 LCi[k, l] represents the view (or knowledge) Pi has about

Pk's knowledge about the local logical clock of Pl.

If
min(LCi[k, i]) ≥ t

then Pi knows that every other process knows its
progress until its local time t.

Physical Clock

 Correct rate condition:
∀i |dPCi(t)/ dt - 1 | < α

 Clock synchronization condition:
∀i ∀j |PCi(t) - PCj(t)| < β

Lamport's Logical Clock Rules for
Physical Clock
 For each i, if Pi does not receive a message at physical time t,

then PCi is differentiable at t and dPC(t)/dt > 0.
 If Pi sends a message m at physical time t, then m contains

PCi(t).
 Upon receiving a message (m, PCj) at time t, process Pi sets

PCi to maximum (PCi(t - 0), PCj + µm) where µm is a
predetermined minimum delay to send message m from one
process to another process.

Focus 5: Clock Synchronization

 UNIX make program:
 Re-compile when file.c's time is large than file.o's.
 Problem occurs when source and object files are generated at different

machines with no global agreement on time.

 Maximum drift rate ρ : 1-ρ ≤ dPC/dt ≤ 1+ρ
 Two clocks (with opposite drift rate ρ) may be 2ρ∆t apart at a time ∆

after last synchronization.
 Clocks must be resynchronized at least every δ/2ρ seconds in order to

guarantee that they will be differ by no more than δ.

Cristian's Algorithm

 Each machine sends a request every δ/2ρ seconds.
 Time server returns its current time PCUTC (UTC: Universal

Coordinate Time).
 Each machines changes its clock (normally set forward or

slow down its rate).
 Delay estimation: (Tr - Ts - I)/2, where Tr is receive time, Ts

send time, and I interrupt handling time.

Cristian's Algorithm (Cont’d.)

Getting correct time from a time server.

Three Ways to Demonstrate the Properties

 Testing and debugging (run the program and see what
happens)

 Operational reasoning (exhaustive case analysis)
 Assertional reasoning (abstract analysis)

Exercise 2
1.Consider a system where processes can be dynamically created or

terminated. A process can generate a new process. For example, P1
generates both P2 and P3. Modify the happened-before relation and the
linear logical clock scheme for events in such a dynamic set of processes.

2. For the distributed system shown in the figure below.

Exercise 2 (Cont’d)

 Provide all the pairs of events that are related.
 Provide logical time for all the events using

 linear time, and
 vector time
 Assume that each LCi is initialized to zero and d = 1.

3. Provide linear logical clocks for all the events in the system given in
Problem 2. Assume that all LC's are initialized to zero and the d's for Pa,
Pb, and Pc are 1, 2, 3, respectively. Does condition a → b ⇒ LC(a) <
LC(b) still hold? For any other set of d's? and why?

4. Traversal on graph {(a, b), (b, c), (b, d), (c, e), (d, e), (e, f)} using Terry’s
solution, DFS solution, and Awerbuch’s extension.

5. Show details of sorting (4, 6, 1, 3, 8, 5, 7, 2) and (1, 4, 7, 8, 2, 6, 5, 3) on
an 8-input-and-8-output Batcher’s Even-Odd sorting network.

	Table of Contents
	State Model
	Thread
	Preliminary
	Happened-Before Relation
	Relationship Between Two Events
	Example 2
	Example 2 (Cont’d.)
	Example 3
	Example 3 (Cont’d.)
	Consistent Global State
	Consistent Global State (Cont’d.)
	Focus 3: Snapshot of Global States
	Chandy and Lamport's Solution
	Chandy and Lamport's Solution (Cont’d.)
	Chandy and Lamport's Solution (Cont’d.)
	Synchronous vs. Asynchronous Systems
	Distributed Algorithms: Traversal
	Distributed Algorithms: Traversal (cont’d)
	Distributed Algorithms: Traversal (cont’d)
	Distributed Algorithms: Wave-and-Echo
	Distributed Algorithms: Termination
	Distributed Algorithms: Termination (cont’d)
	Other Algorithms: Parallel Algorithms
	Parallel Algorithm: Bitonic sorter by K. Batcher
	Barrier Synchronization
	Focus 4: Lamport's Logical Clocks
	Focus 4 (Cont’d.)
	Vector and Matrix Logical Clock
	Vector and Matrix Logical Clock (Cont’d.)
	Vector and Matrix Logical Clock (Cont’d.)
	Example 4
	Example 5: Totally-Ordered Multicasting
	Example 6: Application of Vector Clock
	Matrix Logical Clock
	Physical Clock
	Lamport's Logical Clock Rules for Physical Clock
	Focus 5: Clock Synchronization
	Cristian's Algorithm
	Cristian's Algorithm (Cont’d.)
	Three Ways to Demonstrate the Properties
	Exercise 2
	Exercise 2 (Cont’d)

