Table of Contents

Introduction and Motivation
Theoretical Foundations

Distributed Programming Languages
Distributed Operating Systems
Distributed Communication
Distributed Data Management
Reliability

Applications

Conclusions

Appendix

State Model

m A process executes three types of events: internal actions,
send actions, and receive actions.

m A global state (also configuration): a collection of local
states and the state of all the communication channels.

receive sen
m Global state evolves by @' @
means of transitions
m Initiator: first event /3
m Distributed algorithm: Pf® \Pr@

multiple 1nitiators

System structure from logical point of view.

Thread

m lightweight process (maintain minimum information in its
context)

m multiple threads of control per process
m multithreaded servers (vs. single-threaded process)

dispatcher worker worker worker

request

server

A multithreaded server in a dispatcher/worker model.

Preliminary

Assertions: a predicate on the configurations of an algorithm

Invariant, such as loop invariant, is an assertion

e.g., {I} while ¢ body {—c A I} (under Floyd-Hoare logic)
calculate sum: 1+2+...+n, two assertions I: 1+2+...+kand c: k<n

Safety property: if it is true in each reachable configuration

1.e., something bad will never happen (e.g., absence of deadlock, mutual
exclusion, partial correctness)

Liveness property: if executions, from some point on, contain a
configuration in which the assertion holds

1.e., something good will eventually happen (e.g., fairness, termination)

Fair: if every event that can happen in infinitely many times is performed
infinitely often

Complexity: time, space, message (bit) complexity

Happened-Before Relation

The happened-before relation (denoted by —) 1s
defined as follows:

m Rule 1 : If g and b are events in the same process and a was
executed before b, then a — b.

m Rule 2 : If a 1s the event of sending a message by one process
and b 1s the event of receiving that message by another
process, then a — b.

m Rule3:Ifa— band b — c,thena — c.

Relationship Between Two Events

m Two events a and b are causally related ifa —> b or b — a.

m Two distinct events a and b are said to be concurrent if a -4
b and b » a (denoted as a || b).

Example 2

L P, Py

A time-space view of a distributed system.

Example 2 (Cont’d.)

m Rule 1:
a,—> a; > a, > a,
b, > b; > b, > b;
Co—> C; > C > C;

m Rule 2:
a, = b;
b, > a3, b, > ¢, by —>c,

Example 3

120

20

30

An example of a network of a bank system.

20

100

space

Example 3 (Cont’d.)

120

A sequence of global states.

20

100

G

130

Consistent Global State

Cut Cut
P1 | P1 |
\ ’ \
P2 ! P2 !
@ ®)
Cut F:t
Pl ; Pl 8 1
P2 \ P2 \ . T
©)

Four types of cut that cross
a message transmission line.

Consistent Global State (Cont’d.)

A cut 1s consistent 1ff no two cut events are causally
related.
= Strongly consistent: no (c¢) and (d).
m Consistent: no (d) (orphan message).
= Inconsistent: with (d).

Focus 3: Snapshot of Global States

A simple distribute algorithm to capture a consistent global
state.

Chang;

Chanj,- Chanik

Chang;

pJ

Chcmjk

A system with three processes P;, P; , and P,.

Many key concepts: asynchronous computation, global state,
information propagation and gathering, ...

Chandy and Lamport's Solution

m Rule for sender P :

[P records its local state

||P sends a marker along all the channels on which a marker has not been sent.

]

m Rule for receiver Q:
/* on receipt of a marker along a channel chan */
[O has not recorded its state —
[record the state of chan as an empty sequence and
follow the "Rule for sender"
|
O has recorded its state —

[record the state of chan as the sequence of messages received along chan
after the latest state recording but before receiving the marker

]

Chandy and Lamport's Solution (Cont’d.)

m [t can be applied in any system with FIFO channels (but with
variable communication delays).

m The initiator for each process becomes the parent of the
process, forming a spanning tree for result collection.

m [t can be applied when more than one process 1nitiates the
process at the same time.

Chandy and Lamport's Solution (Cont’d.)

Distributed algorithm: message-passing
Distributed snapshot

Dynamic spanning tree

Asynchronous systems

Message dissemination

Progress termination

Program debugging

m Breakpoint

m Simulation

m Physical and logical processes (event-driven)

Synchronous vs. Asynchronous Systems

Asynchronous Systems:

m FEach node is driven by its own (independent) local clock.
m The transmission delay is finite but unpredictable.

Synchronous Systems:

m All nodes are driven by the global clock, which generates intervals
(also rounds) of fixed, nonzero duration.

m The transmission delay is nonzero, but strictly less than the duration
of an interval.

Distributed Algorithms: Traversal

Tarry’s algorithm:

m A process forwards the token through the same channel once.

m A process forwards the token to its parent only when there is no other option.
Complexity: 2E messages and at most 2E time units.

Distributed Algorithms: Traversal (cont’d)

Depth-first search (DFS) algorithm:

m Same as Tarry’s algorithm, with the following constraint

m Whenever the token is forwarded to a process has hold the token before, it is
sent back to its sender.

Complexity: same as Tarry’s algorithm

Distributed Algorithms: Traversal (cont’d)

Extensions to avoid visited nodes:
m Include the IDs of visited nodes

Complexity: 2(N-1) in time and in messages, but O(N log N) in bit complexity

m Awerbuch’s extension: the first-time process with the token informs its neighbors
Complexity: 4N-2 in time and 4E in messages

m Cidon’s extension: improves on Awerbuch’s extension
Complexity: 2(N-1) in time and 4E in messages

Distributed Algorithms: Wave-and-Echo

Wave-and-Echo algorithm (also for counting connected nodes)
m Initiator starts by sending a token to all its neighbors.

m When a node receives a token for the first time, it makes the sender its
parent, and sends the token to all its neighbors.

m When a node has received messages from all its neighbors, it sends a
message to its parent.

m When the initiator has received messages from all its neighbors, it stops.

General wave (-and-echo) algorithm (also for information propagation)
m A process often needs to gather information from all other processes.

m Usually the process starts with an initiator and ends with the same imitator
(after collecting all data/results from all other processes).

m When the wave algorithm is issued at multiple nodes. Many waves, except
one, will fail

Distributed Algorithms: Termination

Dijkstra-Scholten (tree-based):

® The initiator of the root of the tree.
m Upon receiving a message:

m [f the receiving process is currently not in the tree: the process joins the tree by
becoming a child of the sender.

m [f the receiving process is already in the computation: the process immediately
sends an acknowledgment message to the sender.

m When a process has no more children and has become idle, the process detaches itself
from the tree by sending an acknowledgment to its tree parent.

m Termination occurs when the initiator has no children and has become idle.

Example: global snapshot (with one king)

Distributed Algorithms: Termination (cont’d)

Shavit-Francez (forest-based):

m Same as Dijkstra-Scholten, except with multiple initiators.

m Each non-initiator joining one tree.

m Termination detection initiated by multiple initiators through a wave algorithm
Example: global snapshot (with multiple kings)

Other termination algorithms:

m Weight-throwing algorithm: dividing a fixed weight over the active processes
m Rana’s algorithm: waves tagged with logical clocks

m Safra’s algorithm: token-based traversal

Other Algorithms: Parallel Algorithms

PRAM model

m Parallel random access memory

m EREW, ERCW, CREW, CRCW models
m Chap. 2 of JaJa’s

“an introduction to parallel algorithms”

BSP model by L. Valiant (1990)
m Bulk synchronous parallel (BSP)

m Sequential composition of “supersteps”
m Local computation
m Process communication

m Barrier synchronization

program

=

] 2] [B]

?‘U

shared memory

V|rtual Processors

Local
Computation

Global
Communication

Barrier
Synchronization

Parallel Algorithm: Bitonic sorter by K. Batcher

m Sorting network based on Bitonic sequence
m Up-then-Down or Down-then-Up

m O(n log?(n)) comparators
m O(log?(n)) latency
m Also Batcher’s odd-even sort (small -> large)

= e e s | e e e e

o 1

B BB B e

Bl B e b B e

Barrier Synchronization

m Sequential: One process p (leader, through leader election if needed)

m Process p issues wave-and-echo to all nodes

m Process p indicates next round to all nodes

m Parallel: Processes py, pys ---» Pn.g» 1 Starts from O until log,N -1

= Notifies process p(;,") mod N,
= Waits for notification by process P;,") mod N, and

m Processes to round n+1

po g . _‘ . 4 4
viTe. A
e - d
% \\f‘\: L -x‘ of
.
p2 % & T A s
TR TR A Y)
3 N ——— L
7\ s ek
. e e N

round 0 round 1 round 2

Focus 4: Lamport's Logical Clocks

Based on a “happen-before” relation that defines a
partial order on events

m Rule,. Before producing an event (an external send
or internal event), we update LC :

LC,=LC,+d (d>0)

(d can have a different value at each application of
Rule,)

m Rule,. When it receives the time-stamped message
(m, LC;, j), P; executes the update

LC;=max{Lc, LC;} +d (d>0)

Focus 4 (Cont’d.)

A total order based on the partial order derived
from the happen-before relation

a(inP;)=b(mP;)
iff
(1) LC(a) < LC(D) or (2) LC(a) = LC(b) and P; < P,
where < 1s an arbitrary total ordering of the process
set, e.g., <can be defined as P, < P; ift i <.

A total order of events in the table for Example 2:
a,bycya, bya,b,ay;bycc,cy

Vector and Matrix Logical Clock

Linear clock: ifa — b then LC, < LC,
Vector clock: a > bift LC < LC,

Each P, 1s associated with a vector LC/[1..n], where
m L(C[i] describes the progress of P,, i.e., its own process.
m LC,[j] represents P;’s knowledge of P/'s progress.
m The LC[1..n] constitutes P,’s local view of the logical global time.

Vector and Matrix Logical Clock (Cont’d.)
When d =1 and init =0

m LCJ[i] counts the number of internal events

m LC[j] corresponds to the number of events produced by P,
that causally precede the current event at P,.

Knowledge and implicitly knowledge

Vector and Matrix Logical Clock (Cont’d.)

m Rule,. Before producing an event (an external send or internal
event), we update LC/[i]:

LC[i]:=LC[i]+d (d>0)

m Rule,. Each message piggybacks the vector clock of the
sender at sending time. When receiving a message (m, LC,,
j), P; executes the update.

LC[k] == max (LC[K]; LC[k]), 1< k< n
LC[i] =LC[i] +d

Example 4

(1,0,0)

2.0.0)

(3.0,0

(4.2,0)

space

time

©03.49 @

An example of vector clocks.

Example 5: Totally-Ordered Multicasting

m Two copies of the account at A and B (with balance of
$10,000).

Update 1: add $1,000 at A.

Update 2: add interests (based on 1% interest rate) at B.
Update 1 followed by Update 2: $11,110.

Update 2 followed by Update 1: $11,100.

Example 6: Application of Vector Clock

Internet electronic bulletin board service

Pi will wait for a

message from Pk

Network News.

When receiving m with vector clock LC; from process j, P,
inspects timestamp LC; and will postpone delivery until all
messages that causally precede m have been received.

Matrix Logical Clock

Each P, 1s associated with a matrix LC[1..n, 1..x]
where
m LCJi, i] 1s the local logical clock.

m LCJ[k, [] represents the view (or knowledge) P, has about
P/'s knowledge about the local logical clock of P,.

It
min(LCJlk, i]) = ¢
then P, knows that every other process knows its
progress until its local time ¢.

Physical Clock

m Correct rate condition:
V. |[dPC(t)/dt- 1 | <a

m Clock synchronization condition:
ViV [PCy(1) - PCy(D)] < B

Lamport's Logical Clock Rules for
Physical Clock

m For each i, if P; does not receive a message at physical time z,
then PC. 1s differentiable at # and dPC(¢)/dt > 0.

m If P, sends a message m at physical time ¢, then m contains
PC(2).

m Upon receiving a message (m, PC)) at time ¢, process P; sets
PC; to maximum (PC(¢ - 0), PC; + p,) where p,, 1s a
predetermined minimum delay to send message m from one
process to another process.

Focus 5: Clock Synchronization

m UNIX make program:
m Re-compile when file.c's time is large than file.o's.

m Problem occurs when source and object files are generated at different
machines with no global agreement on time.

m Maximum drift rate p : 1-p < dPC/dt < 1+p

m Two clocks (with opposite drift rate p) may be 2pAt apart at a time A
after last synchronization.

m Clocks must be resynchronized at least every 0/2p seconds in order to
guarantee that they will be differ by no more than 0.

Cristian's Algorithm

m Each machine sends a request every o/2p seconds.

m Time server returns its current time PC,~ (UTC: Universal
Coordinate Time).

m Each machines changes its clock (normally set forward or
slow down its rate).

m Delay estimation: (7, - 7T - [)/2, where T, 1s receive time, T
send time, and / interrupt handling time.

Cristian's Algorithm (Cont’d.)

TO (send) T1 (receive)

Machine

Request

Time server

I (interrupt handling time)

Getting correct time from a time server.

Three Ways to Demonstrate the Properties

m Testing and debugging (run the program and see what
happens)

m Operational reasoning (exhaustive case analysis)
m Assertional reasoning (abstract analysis)

Exercise 2

1.Consider a system where processes can be dynamically created or
terminated. A process can generate a new process. For example, P,
generates both P, and P;. Modify the happened-before relation and the
linear logical clock scheme for events in such a dynamic set of processes.

2. For the distributed system shown in the figure below.

space

Exercise 2 (Cont’d)

m Provide all the pairs of events that are related.
m Provide logical time for all the events using

m linear time, and
m vector time
m Assume that each LC, is initialized to zero and d = 1.

3. Provide linear logical clocks for all the events in the system given in
Problem 2. Assume that all LC's are initialized to zero and the d's for P,,
P,,and P_are 1, 2, 3, respectively. Does conditiona — b = L((a) <
LC(b) still hold? For any other set of d's? and why?

4. Traversal on graph {(a, b), (b, ¢), (b, d), (c, €), (d,), (e, f)} using Terry’s
solution, DFS solution, and Awerbuch’s extension.

5. Show details of sorting (4,6, 1,3,8,5,7,2)and (1,4,7,8,2,6,5,3)on
an 8-input-and-8-output Batcher’s Even-Odd sorting network.

	Table of Contents
	State Model
	Thread
	Preliminary
	Happened-Before Relation
	Relationship Between Two Events
	Example 2
	Example 2 (Cont’d.)
	Example 3
	Example 3 (Cont’d.)
	Consistent Global State
	Consistent Global State (Cont’d.)
	Focus 3: Snapshot of Global States
	Chandy and Lamport's Solution
	Chandy and Lamport's Solution (Cont’d.)
	Chandy and Lamport's Solution (Cont’d.)
	Synchronous vs. Asynchronous Systems
	Distributed Algorithms: Traversal
	Distributed Algorithms: Traversal (cont’d)
	Distributed Algorithms: Traversal (cont’d)
	Distributed Algorithms: Wave-and-Echo
	Distributed Algorithms: Termination
	Distributed Algorithms: Termination (cont’d)
	Other Algorithms: Parallel Algorithms
	Parallel Algorithm: Bitonic sorter by K. Batcher
	Barrier Synchronization
	Focus 4: Lamport's Logical Clocks
	Focus 4 (Cont’d.)
	Vector and Matrix Logical Clock
	Vector and Matrix Logical Clock (Cont’d.)
	Vector and Matrix Logical Clock (Cont’d.)
	Example 4
	Example 5: Totally-Ordered Multicasting
	Example 6: Application of Vector Clock
	Matrix Logical Clock
	Physical Clock
	Lamport's Logical Clock Rules for Physical Clock
	Focus 5: Clock Synchronization
	Cristian's Algorithm
	Cristian's Algorithm (Cont’d.)
	Three Ways to Demonstrate the Properties
	Exercise 2
	Exercise 2 (Cont’d)

