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The Structure of Classnotes
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Development of Computer Technology

 1950s: serial processors 
 1960s: batch processing 
 1970s: time-sharing 
 1980s: personal computing
 1990s: parallel, network, and distributed processing
 2000s: wireless networks 
 2010s: mobile and cloud (edge, fog) computing
 2020s: IoT, big data (AI), and  blockchain (security)



Application 1: Cloud
Cloud computing
Ubiquitous access to shared pools of configurable system resources that can be 
rapidly provisioned with minimal management effort, often over the Internet

Characteristics (by NIST)
On-demand self-service, broad network access, resource pooling, rapid 
elasticity, and measured service

Types
 Public cloud and private cloud

Products
 Amazon EC 2 and Microsoft Azure



Fog: distributed cloud
Edge: devices at the edge network (e.g., Internet of Things IoT)

Fog: distributed cloud (e.g. cloud + IoT)
 Reduce data communication and process demands
 Data storage and processing outside the cloud

Products
 Cisco
 Cloudlets (CMU)
 Micro datacenter in Azure 



Application 2: Hadoop
Apache Hadoop is built for Big Data processing
 MapReduce: map, shuffle, and reduce

• Pipeline
• Data parallelism 

 HDFS (Hadoop distributed file systems)

Apache HIVE 
• Data warehouse
• SQL-like interface (distributed database)



SPARK: beyond Hadoop
Apache Spark is built for speed, mainly for ML

• Speed (10x to 100x compared to Hadoop)
• Data in memory (Hadoop in hard disk)
• RDD: resilient distributed dataset (extension from distributed shared 

memory, DSM and fault tolerance)
• Streaming
• Better API

New paradigm for reinforcement learning (RL)
• Stanford DAWN
• Berkeley Ray

* gray color: concepts to be covered in this class



Shuffle

TeraSort: map-shuffle-reduce

Map-Shuffle-Reduce
Map and Reduce: CPU-intensive
Shuffle: I/O-intensive

TeraSort
Map: sample & partition data
Shuffle: partitioned data

Reduce: locally sort data

Data 
partition

Map Reduce

Local 
sort

Data 
partition

Local 
sort



Application 3: Bitcoin

Bitcoin: crytocurrency and worldwide payment system
 First decentralized digital currency without a central bank or 

single administrator
 Transactions: use of cryptograph and is recorded  in a 

distributed ledger called blockchain

Most crowded trade in 2017: prices go higher not by 
percentages but multiples



Blockchain: building block

Blockchain: distributed database on a set of 
communicating nodes

A continuously growing list of records (transactions), called 
blocks.
 Transactions: input node(s) to output node(s)
 Mining: distributed book-keeping to ensure consistency, 

complete, and unalterable (using linear cryptograph hash 
chain)

Byzantine fault tolerance and decentralized consensus 



Decentralized ledger in P2P: block chain

User: broadcast transfer

Miner: complete through a random process to get bitcoin

(1) validate, (2) find a key (puzzle solving), and (3) broadcast result

Security: digital signature, hash of previous data

Money transfer: ledger and minor

A B

C

A=$5

$3:A->B

$1:B->C

$3

miner: copy of ledger
(invalid)

$3 $1

miner



 A distributed system is a collection of independent 
computers that appear to the users of the system as a single 
computer.

 Distributed systems are "seamless": the interfaces among 
functional units on the network are for the most part invisible 
to the user.

System structure from the physical (a) or logical point of view (b).

A Simple Definition



Motivation

 People are distributed, information is distributed (Internet and 
Intranet)

 Performance/cost 
 Information exchange and resource sharing (WWW and 

CSCW)
 Flexibility and extensibility
 Dependability

Two Main Stimuli
 Technological change 
 User needs



Goals
 Transparency: hide the fact that its processes and resources 

are physically distributed across multiple computers.
 Access 
 Location
 Migration
 Replication 
 Concurrency 
 Failure 
 Persistence

 Scalability: in three dimensions
 Size 
 Geographical distance
 Administrative structure



Goals (Cont’d.)

 Heterogeneity (mobile code and mobile agent)
 Networks 
 Hardware 
 Operating systems and middleware 
 Program languages

 Openness
 Security
 Fault Tolerance
 Concurrency



Scaling Techniques

 Latency hiding (pipelining and interleaving execution) 
 Distribution (spreading parts across the system) 
 Replication (caching)



Example 1: (Scaling Through Distribution)

URL searching based on hierarchical DNS name space 
(partitioned into zones).

DNS name space.



Design Requirements
 Performance Issues

 Responsiveness
 Throughput
 Load Balancing

 Quality of Service
 Reliability
 Security
 Performance

 Dependability
 Correctness 
 Security 
 Fault tolerance



Similar and Related Concepts

 Distributed
 Network
 Parallel
 Concurrent 
 Decentralized



Schroeder's Definition

 A list of symptoms of a distributed system
 Multiple processing elements (PEs) 
 Interconnection hardware 
 PEs fail independently 
 Shared states



Focus 1: Enslow's Definition

Distributed system = distributed hardware + distributed control + 
distributed data

A system could be classified as a distributed system if all three 
categories (hardware, control, data) reach a certain degree of 
decentralization.



Focus 1 (Cont’d.)

Enslow's model of distributed systems.



Hardware

 A single CPU with one control unit.
 A single CPU with multiple ALUs (arithmetic and logic 

units).There is only one control unit.
 Separate specialized functional units, such as one CPU with 

one floating-point co-processor.
 Multiprocessors with multiple CPUs but only one single I/O 

system and one global memory.
 Multicomputers with multiple CPUs, multiple I/O systems 

and local memories.



Control
 Single fixed control point. Note that physically the system 

may or may not have multiple CPUs.
 Single dynamic control point. In multiple CPU cases the 

controller changes from time to time among CPUs.
 A fixed master/slave structure. For example, in a system with 

one CPU and one co-processor, the CPU is a fixed master and 
the co-processor is a fixed slave.

 A dynamic master/slave structure. The role of master/slave is 
modifiable by software.

 Multiple homogeneous control points where copies of the 
same controller are used.

 Multiple heterogeneous control points where different 
controllers are used.



Data
 Centralized databases with a single copy of both files and 

directory.
 Distributed files with a single centralized directory and no 

local directory.
 Replicated database with a copy of files and a directory at 

each site.
 Partitioned database with a master that keeps a complete 

duplicate copy of all files.
 Partitioned database with a master that keeps only a complete 

directory.
 Partitioned database with no master file or directory.



Network Systems

 Performance scales on throughput (transaction response time 
or number of transactions per second) versus load.

 Work on burst mode.
 Suitable for small transaction-oriented programs (collections 

of small, quick, distributed applets).
 Handle uncoordinated processes.



Parallel Systems

 Performance scales on elapsed execution times versus 
number of processors (subject to either Amdahl or Gustafson 
law).

 Works on bulk mode. 
 Suitable for numerical applications (such as SIMD or SPMD 

vector and matrix problems).
 Deal with one single application divided into a set of 

coordinated processes.



Distributed Systems

A compromise of network and parallel 
systems.



Comparison

Comparison of three different systems.

Item Network sys. Distributed sys. Multiprocessors

Like a virtual 
uniprocessor

No Yes Yes

Run the same operating 
system

No Yes Yes

Copies of the operating 
system

N copies N copies 1 copy

Means of 
communication 

Shared files Messages Shared files

Agreed up network 
protocols?

Yes Yes No

A single run queue No Yes Yes

Well defined file 
sharing

Usually no Yes Yes



Focus 2: Different Viewpoints

 Architecture viewpoint
 Interconnection network viewpoint
 Memory viewpoint
 Software viewpoint
 System viewpoint



Architecture Viewpoint

 Multiprocessor: physically shared memory structure
 Multicomputer: physically distributed memory structure.



Interconnection Network Viewpoint

 static (point-to-point) vs. dynamics (ones with switches).
 bus-based (Fast Ethernet) vs. switch-based (routed instead of 

broadcast).



Interconnection Network Viewpoint (Cont’d.)

Examples of dynamic interconnection 
networks: (a) shuffle-exchange, (b) 
crossbar, (c) baseline, and (d) Benes.



Interconnection Network Viewpoint (Cont’d.)

Examples of static interconnection 
networks: (a) linear array, (b) ring, (c) 
binary tree, (d) star, (e) 2-d torus, (f ) 2-d 
mesh, (g) completely connected, and (h) 
3-cube.



Measurements for Interconnection Networks

 Node degree. The number of edges incident on a node.
 Diameter. The maximum shortest path between any two 

nodes. 
 Bisection width. The minimum number of edges along a cut 

which divides a given network into equal halves.



What's the Best Choice? (Siegel 1994)
 A compiler-writer prefers a network where the transfer time 

from any source to any destination is the same to simplify the 
data distribution.

 A fault-tolerant researcher does not care about the type of 
network as long as there are three copies for redundancy.

 A European researcher prefers a network with a node 
degree no more than four to connect Transputers.



What's the Best Choice? (Cont’d.)

 A college professor prefers hypercubes and 
multistage networks because they are theoretically 
wonderful.

 A university computing center official prefers 
whatever network is least expensive.

 A NSF director wants a network which can best 
help deliver health care in an environmentally safe 
way.

 A Farmer prefers a wormhole-routed network 
because the worms can break up the soil and help the 
crops!



Memory Viewpoint

Physically versus logically shared/distributed 
memory.



Software Viewpoint

 Distributed systems as resource managers like traditional 
operating systems.
 Multiprocessor/Multicomputer OS 
 Network OS 
 Middleware (on top of network OS)



Service Common to Many Middleware Systems

 High level communication facilities (access 
transparency)

 Naming 
 Special facilities for storage (integrated database)

Middleware



System Viewpoint

 The division of responsibilities between system components 
and placement of the components.



Client-Server Model

 multiple servers
 proxy servers and caches

(a) Client and server and (b) proxy server.



Peer Processes

Peer processes.

Peer-to-Peer: P2P



Mobile Code and Mobile Agents

Mobile code (web applets).



 Theoretical foundations 
 Reliability 
 Privacy and security 
 Design tools and methodology 
 Distribution and sharing 
 Accessing resources and services 
 User environment 
 Distributed databases 
 Network research

Key Issues (Stankovic's list)



Wu's Book

 Distributed Programming Languages
 Basic structures

 Theoretical Foundations
 Global state and event ordering
 Clock synchronization

 Distributed Operating Systems
 Mutual exclusion and election
 Detection and resolution of deadlock 
 self-stabilization 
 Task scheduling and load balancing

 Distributed Communication
 One-to-one communication
 Collective communication



Wu's Book (Cont’d.)

 Reliability
 Agreement 
 Error recovery
 Reliable communication

 Distributed Data Management
 Consistency of duplicated data
 Distributed concurrency control

 Applications
 Distributed operating systems 
 Distributed file systems
 Distributed database systems 
 Distributed shared memory 
 Distributed heterogeneous systems



Wu's Book (Cont’d.)

 Part 1: Foundations and Distributed Algorithms 
 Part 2: System infrastructure
 Part 3: Applications



What is Distributed Algorithms 

 Parallel Computing: efficiency
 Real-Time: On-time computing
 Distributed Computing: uncertainty

 Simplicity, elegance, and beauty are first-class citizens
(Michel Raynal, 2013)



Distributed Message-Passing Algorithms 

 Termination
 In a social network, each person exchanges his/her friend 

list with friends. What is the stoppage condition?

 Global State
 How to design an observation algorithm by observing an 

execution without modifying its behavior?

 Distributed Consensus
 How to reach distributed consensus (e.g., binary 

decisions) in the presence of traitors?



Distributed Message-Passing Algorithms 

 Logical Clock
 How to order events in different systems with 

asynchronous clocks? How to discard obsolete data?

 Data
 How to replicate data and keep them consistent?

 Load
 How to distribute load in a load balanced way?

 Routing
 How to perform efficient routing that is deadlock-free 

and fault-tolerant?
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Exercise 1

1. In your opinion, what is the future of the computing and 
the field of distributed systems? 

2. Use your own words to explain the differences between 
distributed systems, multiprocessors, and network systems.

3. Calculate (a) node degree, (b) diameter, (c) bisection width, 
and (d) the number of links for an n x n 2-d mesh, an n x n 2-
d torus, and an n-dimensional hypercube.
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State Model

 A process executes three types of events: internal actions, 
send actions, and receive actions.

 A global state (also configuration): a collection of local 
states and the state of all the communication channels.

 Global state evolves by
means of transitions

 Initiator: first event
 Distributed algorithm:

multiple initiators
System structure from logical point of view.



Thread

 lightweight process (maintain minimum information in its 
context)

 multiple threads of control per process 
 multithreaded servers (vs. single-threaded process)

A multithreaded server in a dispatcher/worker model.



Preliminary
Assertions: a predicate on the configurations of an algorithm

Invariant, such as loop invariant, is an assertion

e.g., {I} while c body {¬c ˄ I} (under Floyd-Hoare logic)
calculate sum: 1+2+…+n,  two assertions I: 1+2+…+k and c: k < n

Safety property: if it is true in each reachable configuration 
i.e., something bad will never happen (e.g., deadlock)

Liveness property: if executions, from some point on, contain a 
configuration in which the assertion holds

i.e.,  something good will eventually happen (e.g., program terminates)

Fair: if every event that can happen in infinitely many times is performed 
infinitely often

Complexity: time, space, message (bit) complexity



Happened-Before Relation

The happened-before relation (denoted by ) is 
defined as follows:

 Rule 1 : If a and b are events in the same process and a was 
executed before b, then a  b.

 Rule 2 : If a is the event of sending a message by one process 
and b is the event of receiving that message by another 
process, then a  b.

 Rule 3 : If a  b and b  c, then a  c.



Relationship Between Two Events

 Two events a and b are causally related if a  b or b  a.

 Two distinct events a and b are said to be concurrent if a 
b and b  a (denoted as a || b).



Example 2

A time-space view of a distributed system.



Example 2 (Cont’d.)

 Rule 1:
a0  a1  a2  a3

b0  b1  b2  b3

c0  c1  c2  c3

 Rule 2:
a0  b3

b1  a3, b2  c1, b0  c2



Example 3

An example of a network of a bank system.



Example 3 (Cont’d.)

A sequence of global states.



Consistent Global State

Four types of cut that cross 
a message transmission line.



Consistent Global State (Cont’d.)

A cut is consistent iff no two cut events are causally 
related.
 Strongly consistent: no (c) and (d). 
 Consistent: no (d) (orphan message). 
 Inconsistent: with (d).



Focus 3: Snapshot of Global States

A simple distribute algorithm to capture a consistent global 
state.

A system with three processes Pi, Pj , and Pk.



Chandy and Lamport's Solution

 Rule for sender P : 
[ P records its local state 
||P sends a marker along all the channels on which a marker has not been 

sent. 
] 



Chandy and Lamport's Solution (Cont’d.)

 Rule for receiver Q: 
/* on receipt of a marker along a channel chan */ 
[ Q has not recorded its state 

[ record the state of chan as an empty sequence and 
follow the "Rule for sender" 

] 
Q has recorded its state 

[ record the state of chan as the sequence of messages received 
along chan after the latest state recording but before receiving the 
marker 

] 
]



Chandy and Lamport's Solution (Cont’d.)

 It can be applied in any system with FIFO channels (but with 
variable communication delays).

 The initiator for each process becomes the parent of the 
process, forming a spanning tree for result collection.

 It can be applied when more than one process initiates the 
process at the same time.



Focus 4: Lamport's Logical Clocks

Based on a “happen-before” relation that defines a 
partial order on events

 Rule1. Before producing an event (an external send 
or internal event), we update LC :

LCi = LCi + d (d > 0) 
(d can have a different value at each application of 
Rule1)

 Rule2. When it receives the time-stamped message 
(m, LCj , j), Pi executes the update

LCi = max{Lci, LCj} + d (d > 0)



Focus 4 (Cont’d.)

A total order based on the partial order derived 
from the happen-before relation

a ( in Pi )  b ( in Pj )
iff
(1) LC(a) < LC(b) or (2) LC(a) = LC(b) and Pi < Pj
where < is an arbitrary total ordering of the process 
set, e.g., <can be defined as Pi < Pj iff i < j.

A total order of events in the table for Example 2:
a0 b0 c0 a1 b1 a2 b2 a3 b3 c1 c2 c3



Example 4: Totally-Ordered Multicasting

 Two copies of the account at A and B (with balance of 
$10,000). 

 Update 1: add $1,000 at A.
 Update 2: add interests (based on 1% interest rate) at B. 
 Update 1 followed by Update 2: $11,110. 
 Update 2 followed by Update 1: $11,100.



Vector and Matrix Logical Clock

Linear clock: if a  b then LCa < LCb

Vector clock: a  b iff LCa < LCb

Each Pi is associated with a vector LCi[1..n], where
 LCi[i] describes the progress of Pi, i.e., its own process.
 LCi [j] represents Pi’s knowledge of Pj's progress. 
 The LCi[1..n] constitutes Pi’s local view of the logical global time.



Vector and Matrix Logical Clock (Cont’d.)

When d = 1 and init = 0

 LCi[i] counts the number of internal events 
 LCi[j] corresponds to the number of events produced by Pj

that causally precede the current event at Pi.



Vector and Matrix Logical Clock (Cont’d.)

 Rule1. Before producing an event (an external send or internal 
event ), we update LCi[i]:

LCi[i] := LCi[i] + d (d > 0)

 Rule2. Each message piggybacks the vector clock of the 
sender at sending time. When receiving a message (m, LCj , 
j), Pi executes the update.

LCi[k] := max (LCi[k]; LCj[k]), 1 k n
LCi[i] := LCi[i] + d



Example 5

An example of vector clocks.



Example 6: Application of Vector Clock

Internet electronic bulletin board service

When receiving m with vector clock LCj from process j, Pi
inspects timestamp LCj and will postpone delivery until all 
messages that causally precede m have been received.

Network News.



Matrix Logical Clock

Each Pi is associated with a matrix LCi[1..n, 1..n] 
where
 LCi[i, i] is the local logical clock.
 LCi[k, l] represents the view (or knowledge) Pi has about 

Pk's knowledge about the local logical clock of Pl.

If
min(LCi[k, i])  t

then Pi knows that every other process knows its 
progress until its local time t.



Physical Clock

 Correct rate condition:
i |dPCi(t)/ dt - 1 | < 

 Clock synchronization condition:
i j |PCi(t) - PCj(t)| < 



Lamport's Logical Clock Rules for 
Physical Clock
 For each i, if Pi does not receive a message at physical time t, 

then PCi is differentiable at t and dPC(t)/dt > 0.
 If Pi sends a message m at physical time t, then m contains 

PCi(t).
 Upon receiving a message (m, PCj) at time t, process Pi sets 

PCi to maximum (PCi(t - 0), PCj + m) where m is a 
predetermined minimum delay to send message m from one 
process to another process.



Focus 5: Clock Synchronization

 UNIX make program:
 Re-compile when file.c's time is large than file.o's.
 Problem occurs when source and object files are generated at different 

machines with no global agreement on time.

 Maximum drift rate  : 1-  dPC/dt   1+
 Two clocks (with opposite drift rate  ) may be 2t apart at a time 

after last synchronization.
 Clocks must be resynchronized at least every /2 seconds in order to 

guarantee that they will be differ by no more than .



Cristian's Algorithm

 Each machine sends a request every /2 seconds. 
 Time server returns its current time PCUTC (UTC: Universal 

Coordinate Time).
 Each machines changes its clock (normally set forward or 

slow down its rate).
 Delay estimation: (Tr - Ts - I)/2, where Tr is receive time, Ts

send time, and I interrupt handling time.



Cristian's Algorithm (Cont’d.)

Getting correct time from a time server.



Three Ways to Demonstrate the Properties

 Testing and debugging (run the program and see what 
happens)

 Operational reasoning (exhaustive case analysis) 
 Assertional reasoning (abstract analysis)



Synchronous vs. Asynchronous Systems

Synchronous Distributed Systems:

 The time to each step of a process (program) has known 
bounds. 

 Each message will be received within a known bound. 
 Each process has a local clock whose drift rate from real time 

has a known bound.



Distributed Algorithms: Traversal

Tarry’s algorithm:

 A process forwards the token through the same channel once.
 A process forwards the token to its parent only when there is no other option.

Complexity: 2E messages and at most 2E time units.



Distributed Algorithms: Traversal (cont’d)

Depth-first search algorithm:

 Whenever possible, the token is forwarded to a process that did not hold the 
token yet; otherwise, it is sent back to its parent.

Complexity: same as Tarry’s algorithm



Distributed Algorithms: Traversal (cont’d)

Extensions to avoid visited nodes:

 Include the IDs of visited nodes
Complexity: 2(N-1) in time and in messages, but O(N log N) in bit complexity

 Awerbuch’s extension: the first-time process with the token informs its neighbors
Complexity: 4N-2 in time and 4E in messages

 Cidon’s extension: improves on Awerbuch’s extension
Complexity: 2(N-1) in time and 4E in messages



Distributed Algorithms: Echo

Echo algorithm
 Initiator starts by sending a token to all its neighbors.
 When a node receives a token for the first time, it makes the sender its 

parent, and sends the token to all its neighbors.
 When a node has received messages from all its neighbors, it sends a 

message to its parent.
 When the initiator has received messages from all its neighbors, it stops.

General wave algorithm
 A process often needs to gather information from all other processes. 
 Usually the process starts with an initiator and ends with the same imitator 

(after collecting all data/results from all other processes).
 When the wave algorithm is issued at multiple nodes. Many waves, except 

one, will fail (as some processes refuse to participate)



Distributed Algorithms: Termination

Dijkstra-Scholten (tree-based):
 The initiator of the root of the tree.
 Upon receiving a message:

 If the receiving process is currently not in the tree: the process joins the tree by 
becoming a child of the sender. 

 If the receiving process is already in the computation: the process immediately 
sends an acknowledgment message to the sender.

 When a process has no more children and has become idle, the process detaches itself 
from the tree by sending an acknowledgment to its tree parent.

 Termination occurs when the initiator has no children and has become idle.

Example: global snapshot (with one king)



Distributed Algorithms: Termination

Dijkstra-Scholten (tree-based):
 The initiator of the root of the tree.
 Upon receiving a message:

 If the receiving process is currently not in the tree: the process joins the tree by 
becoming a child of the sender. 

 If the receiving process is already in the computation: the process immediately 
sends an acknowledgment message to the sender.

 When a process has no more children and has become idle, the process detaches itself 
from the tree by sending an acknowledgment to its tree parent.

 Termination occurs when the initiator has no children and has become idle.

Example: global snapshot (with one king)



Distributed Algorithms: Termination (cont’d)

Shavit-Francez (forest-based):
 Same as Dijkstra-Scholten, except with multiple initiators.
 Each non-initiator joining one tree.
 Termination detection initiated by multiple initiators through a wave algorithm
Example: global snapshot (with multiple kings)

Other termination algorithms:
 Weight-throwing algorithm: dividing a fixed weight over the active processes
 Rana’s algorithm: waves tagged with logical clocks
 Safra’s algorithm: token-based traversal



Other Algorithms: Parallel Algorithms

PRAM model
 Parallel random access memory
 EREW, ERCW, CREW, CRCW models
 Chap. 2 of JaJa’s

“an introduction to parallel algorithms”

BSP model by L. Valiant (1990)
 Bulk synchronous parallel (BSP)
 Sequential composition of  “supersteps”

 Local computation
 Process communication
 Barrier synchronization

Virtual Processors

Local
Computation

Global
Communication

Barrier 
Synchronization



Parallel Algorithm: Bitonic sorter by K. Batcher

 Sorting network based on Bitonic sequence
 Up-then-Down or Down-then-Up
 O(n log2(n)) comparators
 O(log2(n)) latency

 Also Batcher’s odd-even sort



Barrier: dissemination barrier

 Processes p0, p1, …, pN-1, n starts from 0 until log2N -1
 Notifies process p(i+2

n
) mod N,

 Waits for notification by process P(i-2
n
) mod N, and 

 Processes to round n+1



Exercise 2
1.Consider a system where processes can be dynamically created or 

terminated. A process can generate a new process. For example, P1
generates both P2 and P3. Modify the happened-before relation and the 
linear logical clock scheme for events in such a dynamic set of processes.

2. For the distributed system shown in the figure below.



Exercise 2 (Cont’d)

 Provide all the pairs of events that are related. 
 Provide logical time for all the events using

 linear time, and
 vector time
 Assume that each LCi is initialized to zero and d = 1.

3. Provide linear logical clocks for all the events in the system given in 
Problem 2. Assume that all LC's are initialized to zero and the d's for Pa, 
Pb, and Pc are 1, 2, 3, respectively. Does condition a  b  LC(a) < 
LC(b) still hold? For any other set of d's? and why?
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Three Issues

 Use of multiple PEs 
 Cooperation among the PEs 
 Potential for survival to partial failure



Control Mechanisms

Four basic sequential control mechanisms with
their parallel counterparts.

Statement type \
Control type

Sequential control Parallel Control

Sequential/parallel 
statement

Begin S1, S2

end
Parbegin S1, S2

Parend
Fork/join

Alternative statement goto, case if C then
S1 else S2

Guarded commands: 
G C

Repetitive statement for … do doall, for all

Subprogram procedure
Subroutine

procedure
subroutine



Focus 6: Expressing Parallelism

A precedence graph of eight statements.

parbegin/parend statement
S1;[[S2;[S3||S4];S5;S6]||S7];S8



Focus 6 (Cont’d.)

fork/join statement
s1;
c1:= 2;
fork L1; 
s2; 
c2:=2; 
fork L2;
s4; 
go to L3; 

L1: s3; 
L2: join c1;

s5; 
L3: join c2;

s6;

A precedence graph.



Dijkstra's Semaphore + Parbegin/Parend
S(i): A sequence of P operations; Si; a sequence of V
operations 

s: a binary semaphore initialized to 0.

S(1): S1;V(s12);V(s13) 
S(2): P(s12);S2;V(s24);V(s25) 
S(3): P(s13);S3;V(s35) 
S(4): P(s24);S4;V(s46) 
S(5): P(s25);P(s35);S5;V(s56) 
S(6): P (s46); P (s56); S6



Focus 7: Concurrent Execution

 R(Si), the read set for Si, is the set of all variables whose 
values are referenced in Si.

 W(Si), the write set for Si, is the set of all variables whose 
values are changed in Si.

 Bernstein conditions:
 R(S1)  W(S2) = 
 W(S1)  R(S2) = 
 W(S1)  W(S2) = 



Example 7

S1 : a := x + y, 
S2 : b := x  z, 
S3 : c := y - 1, and 
S4 : x := y + z. 
S1||S2, S1||S3, S2||S3, and S3||S4.

Then, S1||S2||S3 forms a largest complete subgraph.



Example 7 (Cont’d.)

A graph model for Bernstein's conditions.



Alternative statement in DCDL (CSP like distributed control 
description language)

[ G1  C1 G2  C2 …    Gn  Cn ]. 

Alternative Statement



Calculate m = max{x, y}:
[x  y  m := x y  x  m := y] 

Example 8



Repetitive Statement

*[ G1  C1 G2  C2 …    Gn  Cn ].



Example 9

meeting-time-scheduling ::= t := 0;

*[ t := a(t)     t := b(t)      t := c(t) ]



Communication and Synchronization

 One-way communication: send and receive
 Two -way communication: RPC(Sun), RMI(Java and 

CORBA), and rendezvous (Ada)
 Several design decisions:

 One-to one or one-to-many 
 Synchronous or asynchronous 
 One-way or two-way communication 
 Direct or indirect communication
 Automatic or explicit buffering
 Implicit or explicit receiving



Primitives Example Languages

PARALLELISM
Expressing parallelism

Processes
Objects
Statements
Expressions
Clauses

Mapping
Static
Dynamic
Migration

Ada, Concurrent C, Lina, NIL Emerald, 
Concurrent Smalltalk
Occam
Par Alfl, FX-87
Concurrent PROLOG, PARLOG

Occam, Star Mod
Concurrent PROLOG, ParAlfl
Emerald

COMMUNICATION
Message Passing

Point-to-point messages
Rendezvous
Remote procedure call
One-to-many messages

Data Sharing
Distributed data Structures
Shared logical variables

Nondeterminism
Select statement
Guarded Horn clauses

CSP, Occam, NIL
Ada, Concurrent C
DP, Concurrent CLU, LYNX
BSP, StarMod

Lina, Orca
Concurrent PROLOG, PARLOG

CSP, Occam, Ada, Concurrent C, SR
Concurrent PROLOG, PARLOG

PARTIAL FILURES
Failure detection
Atomic transactions
NIL

Ada, SR
Argus, Aeolus, Avalon



Message-Passing Library for Cluster 
Machines (e.g., Beowulf clusters)

 Parallel Virtual Machine (PVM):
www.epm.ornl/pvm/pvm_home.html

 Message Passing Interface (MPI):
www.mpi.nd.edu/lam/
www-unix.mcs.anl.gov/mpi/mpich/

 Java multithread programming:
www.mcs.drexel.edu/~shartley/ConcProjJava 
www.ora.com/catalog/jenut

 Beowulf clusters:
www.beowulf.org



Message-Passing (Cont’d.)

 Asynchronous point-to-point message passing:
 send message list to destination 
 receive message list {from source}

 Synchronous point-to-point message passing:
 send message list to destination
 receive empty signal from destination
 receive message list from sender
 send empty signal to sender



Example 10

The squash program replaces every pair of consecutive 
asterisks "**" by an upward arrow “”.

input::= * [ send c to squash ]
output::= * [ receive c from squash ]



Example 10 (Cont’d.)

squash::=
*[ receive c from input 

[ c  * send c to output 
[ c = * receive c from input;

[ c  * send * to output;
send c to output

c = * send  to output 
] 

] 
]

] 



Focus 8: Fibonacci Numbers

 F(i) = F(i-1) + F (i - 2) for i > 1, with initial values F(0) = 0 
and F(1) = 1.

 F(i) = ( i -’i )/( -’) ,where  = (1+50.5)/2 (golden ratio) 
and ’ = (1-50.5)/2. 

0, 1, 2, 3, 5, 8, 13, 21, 35, 54, …



Focus 8 (Cont’d.)

A solution for F (n).



Focus 8 (Cont’d.)

 f(0) ::= 
send n to f(1);
receive p from f(2); 
receive q from f(1); 
ans := q

 f(-1) ::= 
receive p from f(1)



Focus 8 (Cont’d.)

 f(i) ::= 
receive n from f(i - 1);
[ n > 1  [ send n - 1 to f(i + 1);

receive p from f(i + 2);
receive q from f(i + 1);
send p + q to f(i - 1);
send p + q to f(i - 2) ]

n = 1  [ send 1 to f(i - 1);
send 1 to f(i - 2) ] 

n = 0  [ send 0 to f(i - 1);
send 0 to f(i - 2) ]

]



Another solution for F (n).

Focus 8 (Cont’d.)



 f(0)::= 
[ n > 1  [ send n to f(1);

receive p from f(1); 
receive q from f(1); 
ans := p
]

n = 1  ans := 1 
n = 0  ans := 0 

] 

Focus 8 (Cont’d.)



 f(i)::= 
receive n from f(i - 1);
[ n > 1  [ send n - 1 to f(i + 1);

receive p from f(i + 1);
receive q from f(i + 1);
send p + q to f(i - 1);
send p to f(i - 1)
]

n = 1  [ send 1 to f(i - 1);
send 0 to f(i - 1)

] 
]

Focus 8 (Cont’d.)



Focus 9: Message-Passing Primitives of MPI

 MPI_Isend: asynchronous communication 
 MPI_send: receipt-based synchronous communication
 MPI_ssend: delivery-based synchronous communication
 MPI_sendrecv: response-based synchronous communication



Focus 9 (Cont’d.)

Message-passing primitives of MPI: Isend, send, ssend, sendrecv.



Focus 10: Interprocess Communication in UNIX

 Socket: int socket (int domain, int type, int protocol).
 domain: normally internet.
 type: datagram or stream.
 protocol: TCP (Transport Control Protocol) or UDP (User Datagram 

Protocol)

 Socket address: an Internet address and a local port number.



Focus 10 (Cont’d.)

Sockets used for datagrams



High-Level (Middleware) Communication 
Services

 Achieve access transparency in distributed systems 
 Remote procedure call (RPC)
 Remote method invocation (RMI)



Remote Procedure Call (RPC)

 Allow programs to call procedures located on other machines.
 Traditional (synchronous) RPC and asynchronous RPC.

RPC.



Remove Method Invocation (RMI)

RMI.



Robustness

 Exception handling in high level languages (Ada and 
PL/1)

 Four Types of Communication Faults
 A message transmitted from a node does not reach its 

intended destinations
 Messages are not received in the same order as they were 

sent 
 A message gets corrupted during its transmission 
 A message gets replicated during its transmission



If a remote procedure call terminates abnormally 
(the time out expires) there are four possibilities.
 The receiver did not receive the call message. 
 The reply message did not reach the sender. 
 The receiver crashed during the call execution and either 

has remained crashed or is not resuming the execution 
after crash recovery.

 The receiver is still executing the call, in which case the 
execution could interfere with subsequent activities of the 
client.

Failures in RPC



Exercise 3

1.(The Welfare Crook by W. Feijen) Suppose we have three 
long magnetic tapes each containing a list of names in 
alphabetical order. The first list contains the names of people 
working at IBM Yorktown, the second the names of students 
at Columbia University and the third the names of all people 
on welfare in New York City. All three lists are endless so no 
upper bounds are given. It is known that at least one person is 
on all three lists. Write a program to locate the first such 
person (the one with the alphabetically smallest name). Your 
solution should use three processes, one for each tape.



Exercise 3 (Cont’d.)

2.Convert the following DCDL expression to a precedence 
graph.

[ S1  || [ [ S2 || S3 ]; S4 ] ] 

Use fork and join to express this expression. 

3.Convert the following program to a precedence graph:

S1;[[S2;S3||S4;S5||S6]||S7];S8



Exercise 3 (Cont’d.)

4.G is a sequence of integers defined by the recurrence Gi = Gi-1
+ Gi-3 for i > 1, with initial values G0 = 0, G1 = 1, and G2 = 1. 
Provide a DCDL implementation of Gi and use one process 
for each Gi.

5.Using DCDL to write a program that replaces a*b by a  b
and a**b by a  b, where a and b are any characters other 
than *. For example, if a1a2*a3**a4***a5 is the input string 
then a1a2  a3  a4***a5 will be the output string.
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Distributed Operating Systems

 Operating Systems: provide problem-oriented abstractions of 
the underlying physical resources.

 Files (rather than disk blocks) and sockets (rather than raw 
network access).



Selected Issues
 Mutual exclusion and election

 Non-token-based vs. token-based
 Election and bidding 

 Detection and resolution of deadlock
 Four conditions for deadlock: mutual exclusion, hold and wait, no 

preemption, and circular wait.
 Graph-theoretic model: wait-for graph 
 Two situations: AND model (process deadlock) and OR model 

(communication deadlock)

 Task scheduling and load balancing
 Static scheduling vs. dynamic scheduling



Mutual Exclusion and Election

 Requirements: 
 Freedom from deadlock. 
 Freedom from starvation.
 Fairness.

 Measurements: 
 Number of messages per request.
 Synchronization delay.
 Response time.



Non-Token-Based Solutions: 
Lamport's Algorithm
 To request the resource process Pi sends its timestamped 

message to all the processes (including itself ).
 When a process receives the request resource message, it 

places it on its local request queue and sends back a 
timestamped acknowledgment.

 To release the resource, Pi sends a timestamped release 
resource message to all the processes (including itself ).

 When a process receives a release resource message from Pi, 
it removes any requests from Pi from its local request queue. 
A process Pj is granted the resource when
 Its request r is at the top of its request queue, and, 
 It has received messages with timestamps larger than the timestamp of 

r from all the other processes.



Example for Lamport’s Algorithm



Extension

 There is no need to send an acknowledgement when process 
Pj receives a request from process Pi after it has sent its own 
request with a timestamp larger than the one of Pi's request.

 An example for Extended Lamport’s Algorithm



Ricart and Agrawala's Algorithm

It merges acknowledge and release messages into one 
message reply.

An example using Ricart and Agrawala's algorithm.



Token-Based Solutions: Ricart and 
Agrawala's Second Algorithm

 When token holder Pi exits CS, it searches other processes in 
the order i + 1,i + 2,…,n,1,2,…,i - 1 for the first j such that 
the timestamp of Pj 's last request for the token is larger than 
the value recorded in the token for the timestamp of Pj 's last 
holding of the token.



Token-based Solutions (Cont’d)

Ricart and Agrawala's second algorithm.



P(i)::=*[ request-resource
consume 
release-resource 
treat-request-message 
others 
]

distributed-mutual-exclusion ::= ||P(i:1..n) 

clock: 0,1,…, (initialized to 0) 
token-present: Boolean (F for all except one process)
token-held: Boolean (F) 
token: array (1..n) of clock (initialized 0) 
request: array (1..n) of clock (initialized 0)

Pseudo Code



 others::= all the other actions that do not request to enter the 
critical section.

 consume::= consumes the resource after entering the critical 
section 

 request-resource::=
[ token present = F
 [ send (request-signal, clock, i) to all;

receive (access-signal, token); 
token-present:= T; 
token-held:= T 

]
]

Pseudo Code (Cont’d)



release-resource::=
[ token (i):=clock;

token-held:= F;
min j in the order [i + 1,… n,1,2,…,i – 2, i – 1]

 (request(j) > token(j)) 
 [ token-present:= F;

send (access-signal, token) to Pj

]
]

Pseudo Code (Cont’d)



treat-request-message::=
[ receive (request-signal, clock; j)

[request(j):=max(request(j),clock);
token-present   token-held  release-resource 

] 
]

Pseudo Code (Cont’d)



Ring-Based Algorithm

P(i:0..n-1)::=
[ receive token from P((i-1) mod n);

consume the resource if needed; 
send token to P ((i + 1) mod n) 

]

distributed-mutual-exclusion::= ||P(i:0..n-1)



Ring-Based Algorithm (Cont’d)

The simple token-ring-based algorithm (a) and the
fault-tolerant token-ring-based algorithm (b).



Tree-Based Algorithm

A tree-based mutual exclusion algorithm.



Maekawa's Algorithm

 Permission from every other process but only from a 
subset of processes.

 If Ri and Rj are the request sets for processes Pi and 
Pj , then Ri  Rj  .



Example 11

R1 : {P1; P3; P4} 
R2 : {P2; P4; P5} 
R3 : {P3; P5; P6} 
R4 : {P4; P6; P7} 
R5 : {P5; P7; P1} 
R6 : {P6; P1; P2} 
R7 : {P7; P2; P3} 



Related Issues

 Election: After a failure occurs in a distributed system, it is 
often necessary to reorganize the active nodes so that they can 
continue to perform a useful task.

 Bidding: Each competitor selects a bid value out of a given set 
and sends its bid to every other competitor in the system. Every 
competitor recognizes the same winner.

 Self-stabilization: A system is self-stabilizing if, regardless of 
its initial state, it is guaranteed to arrive at a legitimate state in a 
finite number of steps.



Focus 11: Chang and Robert’s algorithm

Election on a ring
 Election and elected signals
 Smallest ID is the winner
 Two rounds of circulation
 O(n log n) messages



Garcia-Molina's Bully Algorithm for 
Election

 When P detects the failure of the coordinator or receives an 
ELECTION packet, it sends an ELECTION packet to all 
processes with higher priorities.

 If no one responds (with packet ACK), P wins the election 
and broadcast the ELECTED packet to all.

 If one of the higher processes responds, it takes over. P's job 
is done.



Focus 11 (Cont’d)

Bully algorithm.



Lynch's Non-Comparison-Based Election 
Algorithms

 Process id is tied to time in terms of rounds.
 Time-slice algorithm: (n, the total number of 

processes, is known)
 Process Pi (with its id(i)) sends its id in round id(i)2n, i.e., at most one 

process sends its id in every 2n consecutive rounds. 
 Once an id returns to its original sender, that sender is elected. It sends 

a signal around the ring to inform other processes of its winning 
status.

 message complexity: O(n) 
 time complexity: min{id(i)} n



 Variable-speed algorithm: (n is unknown) 
 When a process Pi sends its id (id(i)), this id travels at 

the rate of one transmission for every 2id(i) rounds.
 If an id returns to its original sender, that sender is 

elected.

 message complexity: n + n/2 + n/22 + … + n/2(n-1)

< 2n = O(n) 
 time complexity: 2 min{id(i)}n

Lynch's Algorithms (Cont’d)



Dijkstra's Self-Stabilization

 Legitimate state P : A system is in a legitimate state P if and 
only if one process has a privilege.

 Convergence: Starting from an arbitrary global state, S is 
guaranteed to reach a global state satisfying P within a finite 
number of state transitions.



Example 12

 A ring of finite-state machines with three states. A privileged 
process is the one that can perform state transition.

 For Pi, 0 < i  n - 1,
 PiPi-1  Pi := Pi-1,  
 P0=Pn-1  P0:=(P0+1) mod k

Theorem: If k > n, then Dijkstra’s token ring for mutual 
exclusion always eventually reaches a correct configuration.

For n > 2, theorem also hold if k = n-1.



Table 1: Dijkstra’s self-stabilization algorithm (n =3 and k =4).

P0 P1 P2 Privileged 
processes

Process to make 
move

2 1 2 P0,P1,P2 P0

3 1 2 P1,P2 P1

3 3 2 P2 P2

3 3 3 P0 P0

0 3 3 P1 P1

0 0 3 P2 P2

0 0 0 P0 P0

1 0 0 P1 P1

1 1 0 P2 P2

1 1 1 P0 P0

2 1 1 P1 P1

2 2 1 P2 P2

2 2 2 P0 P0

3 2 2 P1 P1

3 3 2 P2 P2

3 3 3 P0 P0



Non-Convergence Example
When n > 3, k = n-2. 

Infinite computation exists in which always n-1 processes are privileged



Extensions

 The role of demon (that selects one privileged process) 
 The role of asymmetry. 
 The role of topology.
 The role of the number of states



Detection and Resolution of Deadlock

 Mutual exclusion. No resource can be shared by more than 
one process at a time.

 Hold and wait. There must exist a process that is holding at 
least one resource and is waiting to acquire additional 
resources that are currently being held by other processes.

 No preemption. A resource cannot be preempted. 
 Circular wait. There is a cycle in the wait-for graph.



Detection and Resolution of Deadlock (Cont’d)

Two cities connected by (a) one bridge and by (b) two bridges.



Strategies for Handling Deadlocks

 Deadlock prevention 
 Deadlock avoidance (based on "safe state") 
 Deadlock detection and recovery
 Different Models

 AND condition 
 OR condition



Types of Deadlock

 Resource deadlock 
 Communication deadlock

An example of communication deadlock



Conditions for Deadlock

 AND model: a cycle in the wait-for graph. 
 OR model: a knot in the wait-for graph.



Conditions for Deadlock (Cont’d)

A knot (K) consists of a set of nodes such that for every node 
a in K , all nodes in K and only the nodes in K are reachable 
from node a.

Two systems under the OR condition with 
(a) no deadlock and without (b) deadlock.



Focus 12: Rosenkrantz' Dynamic Priority 
Scheme (using timestamps)

T1:
lock A;
lock B;
transaction starts;
unlock A; 
unlock B;

wait-die (non-preemptive method)
[ LCi < LCj  halt Pi (wait)

LCi  LCj  kill Pi (die) 
]

wound-wait (preemptive method)
[ LCi <  LCj  kill Pj (wound)

LCi  LCj  halt Pi (wait)
]



Example 13

A system consisting of five processes.

Process id Priority 1st request time Length Retry interval

P1 2 1 1 1

P2 1 1.5 2 1

P3 4 2.1 2 2

P4 5 3.3 1 1
P5 3 4.0 2 3



Example 13 (Cont’d)

wound-wait:

wait-die:



Load Distribution

A taxonomy of load distribution algorithms.



Static Load Distribution (task scheduling)

 Processor interconnections
 Task partition

 Horizontal or vertical partitioning. 
 Communication delay minimization partition. 
 Task duplication.

 Task allocation



Models

 Task precedence graph: each link defines the precedence 
order among tasks.

 Task interaction graph: each link defines task interactions 
between two tasks.

(a) Task precedence graph and (b) task interaction graph.



Example 14

Mapping a task interaction graph (a) 
to a processor graph (b).



Example 14 (Cont’d)

 The dilation of an edge of Gt is defined as the length 
of the path in Gp onto which an edge of Gt is 
mapped. The dilation of the embedding is the 
maximum edge dilation of Gt.

 The expansion of the embedding is the ratio of the 
number of nodes in Gt to the number of nodes in Gp.

 The congestion of the embedding is the maximum 
number of paths containing an edge in Gp where 
every path represents an edge in Gt.

 The load of an embedding is the maximum number 
of processes of Gt assigned to any processor of Gt.



Periodic Tasks With Real-time Constraints

 Task Ti has request period ti and run time ci. 
 Each task has to be completed before its next request. 
 All tasks are independent without communication.



Liu and Layland's Solutions (priority-driven 
and preemptive)

 Rate monotonic scheduling (fixed priority 
assignment). Tasks with higher request rates will 
have higher priorities.

 Deadline driven scheduling (dynamic priority 
assignment). A task will be assigned the highest 
priority if the deadline of its current request is the 
nearest.



Schedulability
 Deadline driven schedule: iff

n

 ci/ti  1
i=0

 Rate monotonic schedule: if
n

 ci/ti  n(21/n - 1);
i=0

may or may be not when 
n

n(21/n - 1) <  ci/ti  1
i=0



Example 15 (schedulable)

 T1: c1 = 3, t1 = 5 and T2: c2 = 2, t2 = 7 (with the same initial 
request time).

 The overall utilization is 0:887 > 0:828 (bound for n = 2).



Example 16 (un-schedulable under rate 
monotonic scheduling)

 T1: c1 = 3, t1 = 5 and T2: c2 = 3, t2 = 8 (with the same initial 
request time).

 The overall utilization is 0:975 > 0:828

An example of periodic tasks that is not schedulable.



Example 16 (Cont’d)

 If each task meets its first deadline when all tasks are started 
at the same time then the deadlines for all tasks will always 
be met for any combination of starting times.

 scheduling points for task T : T 's first deadline and the ends 
of periods of higher priority tasks prior to T 's first deadline.

 If the task set is schedulable for one of scheduling points of 
the lowest priority task, the task set is schedulable; otherwise, 
the task set is not schedulable.



Example 17 (schedulable under rate 
monotonic schedule)

 c1 = 40, t1 = 100, c2 = 50, t2 = 150, and c3 = 80, t3 = 350. 
 The overall utilization is 0:2 + 0:333 + 0:229 = 0:762 < 0:779 

(the bound for n > 3).
 c1 is doubled to 40. The overall utilization is 

0:4+0:333+0:229 = 0:962 > 0:779.
 The scheduling points for T3: 350 (for T3), 300 (for T1 and 

T2), 200 (for T1), 150 (for T2), 100 (for T1).



Example 17 (Cont’d)

c1 + c2 + c3  t1,
40 + 50 + 80 > 100;
2c1 + c2 + c3  t2,
80 + 50 + 80 > 150;
2c1 + 2c2 + c3  2t1,
80 + 100 + 80 > 200;
3c1 + 2c2 + c3  2t2,
120 + 100 + 80 = 300;
4c1 + 3c2 + c3  t3,
160 + 150 + 80 > 350.



Example 17 (Cont’d)

A schedulable periodic task.



Dynamic Load Distribution (load balancing)

A state-space traversal example.



Dynamic Load Distribution (Cont’d)

A dynamic load distribution algorithm has six policies:
 Initiation 
 Transfer 
 Selection
 Profitability 
 Location 
 Information



Focus 13: Initiation

Sender-initiated approach:

Sender-initiated load balancing.



Focus 13 (Cont’d)

/* a new task arrives */
queue length  HWM 

* [ poll_set :=  ;

[| poll_set | < poll_limit 
[ select a new node u randomly;

poll_set := poll_set  node u; 
queue_length at u < HWM 

transfer a task to node u and stop
] 

]
]



Receiver-Initiated Approach

Receiver-initiated load balancing.



Receiver-Initiated Approach (Cont’d)

/* a task departs */ 
queue length < LWM 
[ poll limit:= ;

*  [ | poll_set | < poll limit 
[ select a new node u randomly;
poll_set := poll set  node u;
queue_length at u > HWM 

transfer a task from node u and stop
]

] 
]



Bidding Approach

Bidding algorithm.



Focus 14: Sample Nearest Neighbor Algorithms

Diffusion
 At round t + 1 each node u exchanges its load Lu(t) with its neighbors' 

Lv(t).
 Lu(t + 1) should also include new incoming load u(t) between rounds 

t and t + 1.
 Load at time t + 1:

Lu(t + 1) = Lu(t) +   u,v(Lv(t)- Lu(t)) + u(t)
v  A(u)

where 0   u,v  1 is called the diffusion parameter of nodes u and v.



Gradient

 Maintain a contour of the gradients formed by the differences 
in load in the system.

 Load in high points (overloaded nodes) of the contour will 
flow to the lower regions (underloaded nodes) following the 
gradients.

 The propagated pressure of a processor u, p(u), is defined as 
p(u) = 
 0 (if u is lightly loaded) 
 1 + min{p(v)|v  A(u)} (otherwise)



Gradient (Cont’d)

(a) A 4 x 4 mesh with loads. (b) The corresponding propagated 
pressure of each node (a node is lightly loaded if its load is less than 3).



Dimension Exchange: Hypercubes

 A sweep of dimensions (rounds) in the n-cube is applied. 
 In the ith round neighboring nodes along the ith dimension 

compare and exchange their loads.



Dimension Exchange: Hypercubes (Cont’d)

Load balancing on a healthy 3-cube.



Extended Dimension Exchange: 
Edge-Coloring

Extended dimension exchange model through edge-coloring.



Exercise 4

1. Apply wound-wait and wait-die schemes to the example shown in Table 2.
2. Show the state transition sequence for the following system with n = 3 and 

k = 5 using Dijkstra's self-stabilizing algorithm. Assume that P0 = 3, P1 = 
1, and P2 = 4.

3. Determine if there is a deadlock in each of the following wait-for graphs 
assuming the OR model is used.



Exercise 4 (Cont’d)

Table 2: A system consisting of four processes.

Process id Priority 1st request time Length Retry 
interval

Resource(s)

P1 3 1 1 1 A

P2 4 1.5 2 1 B

P3 1 2.5 2 2 A,B

P4 2 3 1 1 B,A

4. Consider the following two periodic tasks (with the same request time)

 Task T1: c1 = 4, t1 = 9 

 Task T2: c2 = 6, t2 = 14

(a) Determine the total utilization of these two tasks and compare it with Liu 
and Layland's least upper bound for the fixed priority schedule. What 
conclusion can you derive?



Exercise 4 (Cont’d)

(b) Show that these two tasks are schedulable using the rate-monotonic 
priority assignment. You are required to provide such a schedule.

(c) Determine the schedulability of these two tasks if task T2 has a higher 
priority than task T1 in the fixed priority schedule.

(d) Split task T2 into two parts of 3 units computation each and show that 
these two tasks are schedulable using the rate-monotonic priority 
assignment.

(e) Provide a schedule (from time unit 0 to time unit 30) based on deadline 
driven scheduling algorithm. Assume that the smallest preemptive 
element is one unit.



Exercise 4 (Cont’d)

5. For the following 4 x 4 mesh find the corresponding propagated pressure 
of each node.  Assume that a node is considered lightly loaded if its 
load is less than 2.
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Distributed Communication

One-to-all (broadcast)

Different types of communication

One-to-one (unicast)

One-to-many (multicast)



Classification

 Special purpose vs. general purpose.
 Minimal vs. nonminimal. 
 Deterministic vs. adaptive. 
 Source routing vs. distributed routing.
 Fault-tolerant vs. non fault-tolerant.
 Redundant vs. non redundant. 
 Deadlock-free vs. non deadlock-free.



A general PE with a separate router.

Router Architecture



 Topology. The topology of a network, typically 
modeled as a graph, defines how PEs are connected.

 Routing. Routing determines the path selected to 
forward a message to its destination(s).

 Flow control. A network consists of channels and 
buffers. Flow control decides the allocation of these 
resources as a message travels along a path.

 Switching. Switching is the actual mechanism that 
decides how a message travels from an input channel 
to an output channel: store-and-forward and cut-
through (wormhole routing).

Four Factors for Communication Delay



General-Purpose Routing

Source routing: link state (Dijkstra's algorithm)

A sample source routing



General-Purpose Routing (Cont’d)

Distributed routing: distance vector (Bellman-Ford algorithm)

A sample distributed routing



Distributed Bellman-Ford Routing Algorithm

 Initialization. With node d being the destination 
node, set D(d) = 0 and label all other nodes (.,  ).

 Shortest-distance labeling of all nodes. For each 
node v  d do the following: Update D(v) using the 
current value D(w) for each neighboring node w to 
calculate D(w) + l(w, v) and perform the following 
update:

D(v) := min{D(v), D(w) + l(w; v)}



Distributed Bellman-Ford Algorithm
(Cont’d)



Example 18

A sample network.



Example 18 (Cont’d)

Bellman-Ford algorithm applied to the network with P5 being the destination.

Round P1 P2 P3 P4

Initial (.,  ) (.,  ) (.,  ) (.,  )

1 (.,  ) (.,  ) (5,20) (5,2)

2 (3,25) (4,3) (4,4) (5,2)
3 (2,7) (4,3) (4,4) (5,2)



Looping Problem

Time next 
node

0 1 2 3 K, 4<k<15 16 17 18 19 (20, )

P2 7 7 9 9 2n/2 +7 23 23 25 25 27

P3 9 9 11 11 2n/2+9 25 25 25 25 25*

Time next 
node

0 1 2 3 K, 
4<k<15

16 17 18 19 (20, 
)

P1 11 11 13 13 2n/2 +9 25 27 27 29 29

P3 7 7 9 9 2n/2 +7 23 23 23 23 23

P3 3 5 5 7 2n/2+3 19 21 21 23* 23

(a) Network delay table of P1

(b) Network delay table of P2

Link (P4; P5) fails at the destination P5.



Time next 
node

0 1 2 3 K, 4<k<15 16 17 18 19 (20, )

P1 12 12 12 14 2n/2 +10 26 28 28 30 30

P2 6 6 8 8 2n/2 +5 22 22 24 24 26

P4 4 6 6 8 2n/2 +4 20 22 22 24 24

P5 20 20 20 20 20 20 20* 20 20 20

Time next 
node

0 1 2 3 K, 
4<k<15

16 17 18 19 (20, )

P2 4 4 6 6 2n/2 +4 20 20 22 22 24

P3 6 6 8 8 2n/2 +5 22 22 22 22 22*

P5          

(c) Network delay table of P3

(d) Network delay table of P4

Looping Problem (Cont’d)



Special-Purpose Routing

E-cube routing in n-cube: u  w as a navigation vector.

A routing in a 3-cube with source 000 and destination 110: 
(a)Single path. (b) Three node-disjoint paths.



Binomial-Tree-Based Broadcasting in 
N-Cubes

The construction of binomial trees.



Hamiltonian-Cycle-Based 
Broadcasting in N-Cubes

(a) A broadcasting initiated from 000 with coordinated sequence 
(CS): {3, 2, 1}. 

(b) A Hamiltonian cycle in a 3-cube.



Edge-disjointed Multiple Binomial Trees



Cut-through: recursive doubling

(L) one-port and (R) all-port on ring One-port on mesh with minimum total distance using 
eyes: (a) 2x2, (b) 4x4, and (c) 2k x 2k meshes



Parameterized Communication Model

Postal model:
  = l/s, where l is the communication latency and s is the 

latnecy for a node to send the next message.
 Under the one-port model the binomial tree is optimal when 

 = 1.

N (t) = N (t-1) + N (t- ), if t ≥ ; 1, otherwise



Example 19: Broadcast Tree

Comparison with  = 6: (a) binomial tree and (b) optimal spanning tree.



Multicasting

 Multicast path
 Minimum spanning tree (for a graph)
 Shortest path tree (for a graph)
 Steiner tree (without a graph): a minimum tree 

that includes all destinations.

Three-points Steiner tree
with the Fermat point S

(e.g., all angles ≤ 120o )



Focus 15: Fault-Tolerant Routing

Wu's safety level:
 The safety level associated with a node is an approximated measure of the 

number of faulty nodes in the neighborhood.
 Initially all faulty nodes have 0 as safety levels and all non-faulty nodes 

have n.
 Let (S0,S1,S2,…,Sn-1), 0  Si  n, be the non-descending safety status 

sequence of node a's neighboring nodes in an n-cube.
 Iteratively do the following: If (S0,S1,S2,…,Sn-1)  (0,1,2,…,n-1) then S(a) 

= n else if (S0,S1,S2,…Sk-1)  (0,1,2,…,k-1) ^ (Sk = k-1) then S(a) = k.

Insight: Embedding of  Bn in terms of Bn-1, Bn-2, …, B1, and B0 in any 
orientation.



Focus 15: Fault-Tolerant Routing (Cont’d)

Distributed algorithms: iterative exchanges (maximum n 
rounds) with neighbors’ safety levels

A node a is called safe if its level is n, i.e., S(a) =n



Fault-Tolerant Routing (Cont’d)

If the safety level of a node is k, there is at least one Hamming 
distance path from this node to any node within k-hop.
If there are at most n faults, every unsafe node has a safe 
neighbor.

A fault-tolerant routing using safety levels. 



Fault-Tolerant Broadcasting

If the source node is n-safe, there exists an n-level injured 
spanning binomial tree in an n-cube: source can reach all non-
faulty nodes through a Hamming distance path.

Broadcasting in a faulty 4-cube.



Wu's Extended Safety Level in 2-D Meshes

A sample region of minimal paths.



Safety Block
Safety block: (1) All faulty nodes are unsafe. All nonfaulty nodes are initially safe. 

(2) If a nonfaulty node has two or more faculty/unsafe neighbors, it is unsafe.
Extended safety block: (1). (2) …has a faulty/unsafe neighbor in both dimensions…
Wu’s orthogonal convex region: All safe nodes are enabled. A unsafe node is 

initially disabled, but it is changed to the enabled status if it  has two or more 
enabled neighbors.

(L) Regular and (R) extended safe/unsafe Enabled/disabled for (L) regular and (R) for extended 



Deadlock-Free Routing

Virtual channels and virtual networks:

(a) A ring with two virtual channels, (b) channel dependency 
graph of (a), and (c) two virtual rings vr1 and vr0.



Focus 16: Deadlock-Free Routing Without 
Virtual Channels

 XY-routing in 2-D meshes: X dimension followed by Y 
dimension.

 Glass and Ni's Turn model: Certain turns are forbidden.

(a) Abstract cycles in 2-d meshes, (b) four turns (solid arrows) allowed in XY-
routing, (c) six turns allowed in positive-first routing, and (d) six turns allowed 
in negative-first routing.



Planar-Adaptive Routing

For general k-ary n-cubes, select n+1 2-D planes A0, A1, …, An. 
Ai spans dimension di and di+1.

Three virtual channels are used: one for di and two for di+1: di,2, 
di+1,0, and di+1, 1. (Second subscript is virtual channel number.)

Each plane has one positive and one negative subnetworks.  

Positive and negative
Networks in di and di+1



Escape channels

 Regular channels: non-waiting
 Escape channels: waiting

 Strongly connected requirement
 Strictly decreasing path requirement: for any pair of nodes, a 

decreasing (labelled) path exist.

Theorem: The minimum number of channels needed to meet the 
above two conditions is 2n-1, where n is the number of nodes.

L. Sheng and J. Wu, “A Note on “A Tight Lower Bound on the Number of Channels 
Required for Deadlock-Free Wormhole Routing.



Exercise 5
1. Provide an addressing scheme for the following extended mesh (EM) 

which is a regular 2-D mesh with additional diagonal links. Provide a 
general shortest routing algorithm for EMs.

2. Repeat Example 18 after changing (P1, P3) to 4 and (P3, P5) to 12.

3. Suppose the postal model is used for broadcasting and  = 8. What is the 
maximum number of nodes that can be reached in time unit 10. Derive the 
corresponding broadcast tree.



Exercise 5 (Cont’d)

4. Consider the following turn models:
 West-first routing. Route a message first west, if necessary, and then 

adaptively south, east, and north.
 North-last routing. First adaptively route a message south, east, and west; 

route the message north last.
 Negative-first routing. First adaptively route a message along the negative X 

or Y axis; that is, south or west, then adaptively route the message along the 
positive X or Y axis.

(a) Show all the turns allowed in each of the above three routings.
(b) Show the corresponding routing paths using (1) positive-first, (2) west-
first, (3) north-last, and (4) negative-first routing for the following 
unicasting: (2,1) to (5,9), (7,1) to (5,3), (6,4) to (3,1), and (1,7) to (5,2).

5. Wu and Fernandez (1992) gave the following safe and unsafe node 
definition: A nonfaulty node is unsafe if and only if either of the following 
conditions is true: (a) There are two faulty neighbors, or (b) there are at 
least three unsafe or faulty neighbors. Consider a 4-cube with faulty nodes 
0100, 0011, 0101, 1110, and 1111. Find out the safety status (safe or 
unsafe) of each node



Exercise 5 (Cont’d)

Repeat the above using Wu’s safety vector. Critically compare safety node, 
safety level, and safety vector in terms of fault-tolerance capability and 
complexity. (J. Wu, Reliable communication in cube-based multipcomputers
using safety vectors, IEEE TPDS, 9, (4), April 1998, 321-334.)

6. To support fault-tolerant routing in 2-D meshes, D. J. Wang (1999) 
proposed the following new model of faulty block: Suppose the destination is 
in the first quadrant of the source. Initially, label all faulty nodes as faulty and 
all non-faulty nodes as fault-free. If node u is fault-free, but its north neighbor 
and east neighbor are faulty or useless, u is labeled useless. If node u is fault-
free, but its south neighbor and west neighbor are faulty or can't-reach, u is 
labeled can't-reach. The nodes are recursively labeled until there are no new 
useless or can't-reach nodes.

(a) Give an intuitive explanation of useless and can't-reach. 
(b) Re-write the definition when the destination is in the second quadrant of the 
source.



Exercise 5 (Cont’d)

7. Chiu proposed an odd-even turn model, which is an extension to Glass and 
Ni's turn model. The odd-even turn model tries to prevent the formation of 
the rightmost column segment of a cycle. Two rules for turn are given in:
 Rule 1: Any packet is not allowed to take an EN (east-north) turn at 

any nodes located in an even column, and it is not allowed to take an 
NW turn at any nodes located in an odd column.

 Rule 2: Any packet is not allowed to take an ES turn at any nodes 
located in an even column, and it is not allowed to take a SW turn at 
any nodes located in an odd column.

(a) Use your own word to explain that the odd-even turn model is deadlock-
free.

(b) Show all the shortest paths (permissible under the extended odd-even turn 
model) for

(a) s1:(0, 0) and d1:(2,2) and (b) s2:(0,0) and d2:(3,2)
(c) Prove Properties 1, 2, and 3 of Wu and Li's marking process for ad hoc 

wireless networks.
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Distributed Data Management

 Data objects
 Files 
 Directories

 Data objects are dispersed and replicated
 Unreplicated 
 Fully replicated 
 Partially replicated



Serializability Theory

Atomic execution
 A transaction is an "all or nothing" operation. 
 The concurrent execution of several transactions affects the 

database as if executed serially in some order. The interleaved 
order of the actions of a set of concurrent transactions is 
called a schedule.



Example 22: Concurrent Transactions

T1 begin
1 read A (obtaining A_balance) 
2 read B (obtaining B_balance)
3 write A_balance-$10 to A
4 write B_balance+$10 to B
end

T2 begin
1 read B (obtaining B balance)
2 write B_balance-$5 to B
end



 Three types of conflict: r-w (read-write), w-r (write-read), 
and w-w (write-write).

 rj[x] reads from wi[x] iff
 wi[x] < rj[x]. 
 There is no wk[x] such that wi[x] < wk[x] < rj[x].

 Two schedules are equivalent iff
 Every read operation reads from the same write operation in both 

schedules.
 Both schedules have the same final writes.

 When a non-serial schedule is equivalent to a serial schedule, 
it is called serializable schedule.

Concepts



A nonserializable schedule (a) and serializable
schedule (b) for Example 22.

Transaction (step) Action

T1(1) read A(obtaining 
A_balance)

T1(2) read B(obtaining 
B_balance)

T1(3) write A_balance-
$10 to A

T2(1) read B(obtaining 
B_balance)

T2(1) write B_balance-
$5 to B

T2(4) write
B_balance+$10
to B

(a)

Transaction (step) Action

T1(1) read A(obtaining 
A_balance)

T2(1) read B(obtaining 
B_balance)

T2(1) write B_balance-
$5 to B

T1(2) read B(obtaining 
B_balance)

T1(3) write A_balance-
$10 to A

T1(4) write
B_balance+$10
to B

(b)



Concurrency Control

 Locking scheme
 Timestamp-based scheme
 Optimistic concurrency control



Focus 18: Two-Phase Locking

 A transaction is well-formed if it
 locks an object before accessing it,
 does not lock an object that is already locked, and 
 before it completes, unlocks each object it has locked.

 A schedule is two-phase if no object is unlocked before all 
needed objects are locked.

Two-phase locking



Example 23: Well-Formed, Two-Phase 
Transactions

T1: begin
lock A 
read A (obtaining A balance) 
lock B 
read B (obtaining B balance) 
write A_balance-$10 to A 
unlock A 
write B_balance+$10 to B 
unlock B
end

T2: begin
lock B 
read B (obtaining B balance) 
write B_balance-$5 to B 
unlock B 
end



Different Looking Schemes
 Centralized locking algorithm: distributed 

transactions, but centralized lock management.
 Primary-site locking algorithm: each object has a 

single site designated as its primary site (as in 
INGRES).

 Decentralized locking: The lock management duty is 
shared by all the sites.



Focus 19: Timestamp-based Concurrency 
Control

 Timer(x) (Timew(x)): the largest timestamp of any 
read (write) processed thus far for object x.
 (Read) If ts < Timew(x) then the read request is rejected 

and the corresponding transaction is aborted; otherwise, it 
is executed and Timer(x) is set to max{Timer(x), ts}.

 (Write) If ts < Timew(x) or ts < Timer(x), then the write 
request is rejected; otherwise, it is executed and Timew(x) 
is set to ts.



Example 24

 Timer(x) = 4 and Timew(x) = 6 initially. 
 Sample:

read(x,5), write(x,7), read(x,9), read(x, 8), write(x,8)
 First and last are rejected and Timer(x) = 7, Timew(x) 

= 9 when completed.



Conservative Timestamp Ordering

 Each site keeps a write queue (W-queue) and a read 
queue (R-queue).
 A read (x, ts) request is executed if all W-queues are 

nonempty and the first write on each queue has a 
timestamp greater than ts; otherwise, the read request is 
buffered in the R-queue.

 A write (x, ts) request is executed if all R-queues and W–
queues are nonempty and the first read (write) on each R-
queue (W-queue) has a timestamp greater than ts; 
otherwise, the write request is buffered in the W-queue.



Strict Consistency

 Any read returns the result of the most recent write.
 Impossible to enforce, unless

 All writes are instantaneously visible to all processes. 
 All reads get the then-current values, no matter how 

quickly next writes are done.
 An absolute global time order is maintained.



Weak Consistency

 Sequential consistency: All processes see all shared 
accesses in the same order.

 Causal consistency: All processes see causually-
related shared accesses in the same order.

 FIFO consistency: All process see writes from each 
process in the order they were issued.



 Weak consistency: Enforces consistency on a group 
of operations, not on individual reads and writes.

 Release consistency: Enforces consistency on a 
group of operations enclosed by acquire and release 
operations.

 Eventual consistency: All replicas will gradually 
become consistent. (Web pages with dominated read 
operations.)

Weak Consistency (Cont’d)



Example 25: Sample Consistent Models

causally-consistent

P1 W(x,a) W(x,c)

P2 R(x,a) W(x,b)

P3 R(x,a) R(x,c) R(x,b)

P4 R(x,a) R(x,b) R(x,c)

P1 W(x,a)

P2 R(x,a) W(x,b)

P3 R(x,b) R(x,a)

P4 R(x,a) R(x,b)

non-causally-consistent



Example 25: Sample Consistent Models

Linearizable: sequentially-consistent, but taking ordering based on synchronized clocks 

sequentially-consistent

P1 W(x,a)

P2 W(x,b)

P3 R(x,b) R(x,a)

P4 R(x, b) R(x,a)

P1 W(x,a)

P2 W(x,b)

P3 R(x, b) R(x,a)

P4 R(x, a) R(x,b)

non-sequentially-consistent



Example 25 (Cont’d)

FIFO-consistent

P1 W(x,a)

P2 R(x,a) W(x,b) W(x,c)

P3 R(x,b) R(x,a) R(x,c)

P4 R(x,a) R(x,b) R(x,c)



Update Propagation for Multiple Copies
 State versus Operations

 Propagate a notification of an update (such as invalidate signal) 
 Propagate data 
 Propagate the update operation

 Pull versus Push
 Push-based approach (server-based) 
 Pull-based approach (client-based)
 Lease-based approach (hybrid of push and pull)

 Consistency of duplicated data
 Write-invalidate vs. write-through
 Quorum-voting as an extension of single-write/multiple-read



Focus 20: Quorum-Voting

w > v/2 and r + w > v

where w and r are write and read quorum and v is the total 
number of votes.



Hierarchical Quorum Voting

A 3-level tree in the hierarchical quorum voting with read quorum= 2 and 
write quorum = 3.



Jim Gray's Two-Phase Commitment Protocol

The finite state machine model for the 
two-phase commit protocol.



Phase 1
At the coordinator:

/*prec: initiate state (q) */ 
1. The coordinator sends a commit_request message to every participant
and waits for replies from all the participants.

/*postc: waiting state (w) */

At participants:

/*prec: initiate state (q)*/ 
1. On receiving the commit_request message, a participant takes the 

following actions. If the transaction executing at the participant is 
successful, it writes undo and redo log, and sends a yes message to the 
coordinator; otherwise, it sends a no message.

/*postc: wait state (w) if yes or abort state (a) if no*/



Phase 2
At the coordinator

/*prec: wait state (w)*/
1. If all the participants reply yes then the coordinator writes a commit record 

into the log and then sends a commit message to all the participants. 
Otherwise, the coordinator sends an abort message to all the participants.

/*postc: commit state (c) if commit or abort state (a) if abort */

2. If all the acknowledgments are received within a timeout period, the 
coordinator writes a complete record to the log; otherwise, it resends the 
commit/abort message to those participants from which no 
acknowledgments were received.



Phase 2 (Cont’d)

At the participants

/*prec: wait state (w) */ 
1. On receiving a commit message, a participant releases all the resources and 

locks held for executing the transaction and sends an acknowledgment.

/*postc: commit state (c) */
/*prec: abort state (a) or wait state (w) */

2. On receiving an abort message, a participant undoes the transaction using 
the undo log record, releases all the resources and locks held by it, and 
sends an acknowledgment.

/*postc: abort state (a) */



Site Failures and Recovery Actions

Location Time of failure Actions at coordi. Actions at parti.

Coordi. Before commit Broadcasts abort on 
recovery

Committed parti. 
Undo the trans.

Coordi. Before complete 
after commit

Broadcasts commit 
on recovery

__

Coordi. After complete -- --

Parti. In Phase 1 Coordi. aborts the 
transaction

__

Parti. In Phase 2 __ Commit/abort on 
recovery



Two Types of Logs

 undo log allows an uncommitted transaction to record in 
stable storage values it wrote. (T1, T4, and T5 in the example)

 redo log allows a transaction to commit before all the values 
written have been recorded in stable storage. (T2 and T7)

A recovery example.



 A protocol is synchronous within one state transition if one 
site never leads another site by more than one state transition.

 concurrent set C(s): the set of all states of every site that may 
be concurrent with state s.

 In two-phase commitment: C (w(c)) = {c(p), a(p), w(p)} and 
C (q(p)) = {q(c), w(c)} (w(c) is the w state of coordinator and 
q(p) is the q state of participant).

 In three-phase commitment: C (w(c)) = {q(p), w(p), a(p)} and 
C (w(p)) = {a(c), p(c), w(c)}.

Concepts



Skeen's Three-Phase Commitment Protocol



Exercise 6
1. For the following two transactions:

T1 begin
1 read A (obtaining A balance) 
2 write A balance- $10 to A 
3 read B (obtaining B balance)
4 write B balance+$10 to B

end

T2 begin
1 read A (obtaining A balance)
2 write A balance+$5 to A
end

(a) Provide all the interleaved executions (or schedules). 
(b) Find all the serializable schedules among the schedules obtained in (a).



Exercise 6 (Cont’d)

2. Point out serializable schedules in the following

L1 = w2(y)w1(y)r3(y)r1(y)w2(x)r3(x)r3(z)r2(z) 
L2 = r3(z)r3(x)w2(x)r2(z)w1(y)r3(y)w2(y)r1(y) 
L3 = r3(z)w2(y)w2(x)r1(y)r3(y)r2(z)r3(x)w1(y) 
L4 = r2(z)w2(y)w2(x)w1(y)r1(y)r3(y)r3(z)r3(x)

3. A voting method called voting-with-witness replaces some of the replicas 
by witnesses. Witnesses are copies that contain only the version number 
but no data. The witnesses are assigned votes and will cast them when 
they receive voting requests. Although the witnesses do not maintain data, 
they can testify to the validity of the value provided by some other replica. 
How should a witness react when it receives a read quorum request? What 
about a write quorum request? Discuss the pros and cons of this method.
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Type of Faults

 Types of faults:
 Hardware faults 
 Software faults 
 Communication faults 
 Timing faults

 Schneider’s classification:
 Omission failure 
 Failstop failure (detectable)
 Crash failure (undetectable)
 Crash and link failure
 Byzantine failure



Redundancy

 Hardware redundancy: extra PE's, I/O's 
 Software redundancy: extra version of software modules 
 Information redundancy: error detecting code
 Time redundancy: additional time used to perform a 

function



Fault Handling Methods

 Active replication 
 Passive replication
 Semi-active replication



Building Blocks of Fault-Tolerant Design

 Stable storage is a logical abstraction for a special storage 
that can survive system failure.

 Fail-stop processors do not perform any incorrect action and 
simply cease to function.

 An atomic action is a set of operations which are executed 
indivisibly by hardware. That is, either operations are 
completed successfully and fully or the state of the system 
remains unchanged (operations are not executed at all).



 Storage of checkpoints 
 Checkpointing methods

An example of domino effect.

Domino Effect



Focus 21: Byzantine Faults

 Several divisions of the Byzantine army camp outside an 
enemy city. Each division commanded by its own general. 
Generals from different divisions communicate only through 
messengers. Some of the generals may be traitors. After 
observing the enemy, the generals must decide upon a 
common battle plan.



Two Requirements

 All loyal generals decide upon the same plan of action 
 A small number of traitors cannot cause the loyal generals to 

adopt a wrong plan

Note 
 Loyal generals may start with different decisions, but end up 

the same decision.
 The final decision must come from at least one loyal 

general’s initial decision.



Focus 21 (Cont’d)

 Theoretical result  
 Consensus is reachable if n  3m + 1, where n is the total number of 

generals and m is the number of traitors.

 (m+1)-round of consensus algorithm
 At the first round, each node, including traitors, broadcasts its initial 

decision
 At the (i+1)th round, each node broadcasts all messages received at ith 

round



Agreement Protocol

An algorithm for reaching agreement.

P1* P2 P3 P4
First round:
(-,v2,v3,v4) (v1

2, -,v3, v4) (v1
1,v2,- v4) (v1

3,v2, v3,-)
Second round:
(v1

2, -, v3, v4)
(v1

1, v2, -, v4)
(v1

3, v2, v3, -)

(v1
1, v2, -, v4)

(v1
3, v2, v3, -)

(-, v2
4, v3

4, v4
4)

(v1
1, -, v3, v4)

(v1
3, v2, v3, -)

(-, v2
5, v3

5, v4
5)

(v1
2, -, v3, v4)

(v1
1, v2, -, v4)

(-, v2
6, v3

6, v4
6)

(d1, d2,d3, d4) (v1
7, v2, v3, v4) (v1

7, v2, v3, v4) (v1
7, v2, v3, v4)



No-Agreement Among Three Processes

Cases leading to failure of the Byzantine agreement.



Extended Agreement Protocols
 Boolean values or arbitrary real values for the decisions. 
 Unauthenticated or authenticated messages. 
 Synchronous or asynchronous.
 Completely connected network or partially connected 

networks. 
 Deterministic or randomized. 
 Byzantine faults or fail-stop faults. 
 Non-totally decentralized control system and, in particular, 

hierarchical control systems.



Reliable Communication

 Acknowledgement: acknowledge the receipt of each packet. 
 TCP: transport protocol for reliable point-to-point comm.
 Negative acknowledgement

 Signal for a missing packet.
 Pros: better scalability (without positive acknowledgement).
 Cons: sender is forced to keep each packet in the buffer forever.



Reliable Group Communication

 Feedback suppression: multicast or broadcast each positive 
(or negative) acknowledge.

 Combination of positive and negative acknowledgements



Example 26: Combination of Positive and 
Negative Acknowledgements in Broadcasting.

Let A be a packet and a (a) the positive (negative) 
acknowledgement for A.

A,Ba,Cb,Db,Ec,F cd,Cb,Gdef

1.Message A is sent first, acknowledged by the sender of B, which is in 
turn acknowledged by the senders of C and D.

2. The sender of E acknowledges C and the sender of F acknowledges 
the receipt of D but a negative acknowledgment of C .

3. Some node (not necessarily the original sender) retransmits C . 

4. The sender of G acknowledges both E and F but sends a negative 
acknowledgment of D (after receiving F ).



Different Types of Reliable Multicasting

 Reliable multicast: no message ordering 
 FIFO multicast: FIFO-ordered delivery 
 Causal multicast: causal-ordered delivery 
 Atomic multicast: reliable multicast + total-ordered delivery 
 FIFO atomic multicast: FIFO multicast + total-ordered 

delivery 
 Causal atomic multicast: Causal multicast + total-ordered 

delivery



Focus 22: Total-Ordered Multicasting

 Total-ordered multicasting
 Each transfer order (message) can be assigned a global sequence 

number.
 There exists a global sequence.

 Sequencer
 The sender sends message to a sequencer 
 The sequencer allocates a global sequence number to the message.
 The message is delivered by every destination based on the order.



Implementations of Sequencer

 Privilege-based (token circulated among the senders) 
 Fixed sequencer (a fixed third party) 
 Moving sequencer(token circulated among the third-party 

nodes)



Multicast with Total Order

seq(m1) < seq(m2)

Neither seq(m1) < seq(m2) nor seq(m2) < seq(m1)

Multicast 
with total 
order

Multicast 
without total 
order



Focus 23: Birman’s Virtual Synchrony
 Virtual synchrony: reliable multicast with a special property. 
 View: a multicast group. 
 View change: (a) a new process joins, (b) a process leaves, 

and
(c) a process crashes.

 Each view change is multicast to members in the group. 
 Special property: each view change acts as a barrier across 

which no multicast can pass. (Application: distributed 
debugging.)



Focus 23 (Cont’d)

Virtual synchrony.



Implementing a Virtual Synchronous 
Reliable Multicast

 Message received versus message delivered. 
 If message m has been delivered to all members in the group, 

m is called stable.
 Point-to-point communication is reliable (TCP). 
 Sender may crash before completing the multicasting. (Some 

members received the message but others did not.)

Message receipt versus message delivery.



 At group view Gi, a view changed is multicast. 
 When a process receives the view-change message for Gi+1, it 

multicasts to Gi+1 a copy of unstable messages for Gi
followed by a flush message.

 A process installs the new view Gi+1 when it has received a 
flush message from everyone else.

Virtual synchrony.

Implementing a Virtual Synchronous 
Reliable Multicast (Cont’d)



Reliable Process
Active model

Passive model



Exercise 7
1. Use a practical example to illustrate the differences among faults, 
errors, and failures.

2. Illustrate the correctness of the agreement protocol for authenticated 
messages using a system of four processes with two faulty processes. You 
need to consider the following two cases:
 The sender is healthy and two receivers are faulty (the remaining receiver is healthy). 
 The sender is faulty and one receiver is faulty (the remaining receivers are healthy).

3. In Byzantine agreement protocol k + 1 rounds of message exchanges 
are needed to tolerant k faults. The number of processes n is at least 3k + 
1. Assume P1 and P2 are faulty in a system of n = 7 processes.
 (a) Show the messages P3 receives in first, second, and third round.
 (b) Demonstrate the correctness of the protocol by showing the final result 

vector (after a majority voting) for P3.
 (c) Briefly show that result vectors for other non-faulty processes are the 

same.
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Distributed Operating Systems

 Key issues
 Communication primitives 
 Naming and protection 
 Resource management 
 Fault tolerance 
 Services: file service, print service, process service, terminal service, 

file service, mail service, boot service, gateway service 
 Distributed operating systems vs. network operating 

systems 
 Commercial and research prototypes

 Wiselow, Galaxy, Amoeba, Clouds, and Mach



Distributed File Systems
 A file system is a subsystem of an operating system whose 

purpose is to provide long-term storage.
 Main issues: 

 Merge of file systems 
 Protection 
 Naming and name service 
 Caching 
 Writing policy

 Research prototypes: 
 UNIX United, Coda, Andrew (AFS), Frangipani, Sprite, Plan 9, 

DCE/DFS, and XFS
 Commercial:

 Amazon S3, Google Cloud Storage, Microsoft Azure, SWIFT 
(OpenStack)



Distributed Shared Memory

A distributed shared memory is a shared memory 
abstraction what is implemented on a loosely coupled system.

Distributed shared memory.



Focus 24: Stumm and Zhou's Classification

 Central-server algorithm (nonmigrating and 
nonreplicated).
 (Client) Sends a data request to the central server.
 (Central server) Receives the request, performs data 

access and
sends a response.

 (Client) Receives the response.



Focus 24 (Cont’d)

 Migration algorithm (migrating and non-
replicated).
 (Client) If the needed data object is not local, determines 

the
location and then sends a request.

 (Remote host) Receives the request and then sends the 
object.

 (Client) Receives the response and then accesses the data 
object (read and /or write).



Focus 24 (Cont’d)

Read-replication algorithm (migrating and 
replicated)

(Client) If the needed data object is not local, 
determines the location and sends a request.

(Remote host) Receives the request and then sends the 
object.



Focus 24 (Cont’d)

(Client) Receives the object and then multicasts by 
sending either invalidate or update messages to all sites 
that have a copy of the data object.
(Remote host) Receives an invalidation signal and then 
invalidates its local copy, or receives an update signal 
and then updates the local copy.
(Client) Accesses the data object (write).



Focus 24 (Cont’d)

 Full-replication algorithm (non-migrating and 
replicated)
 (Client) If it is a write, sends the data object to the 

sequencer. 
 (Sequencer) Receives the data object and adds a sequence 

number. Sends the client a signal with the sequence 
number and multicasts the data object together with the 
sequence number to all the other sites.



Focus 24 (Cont’d)

 (Client) Receives the acknowledgment and updates local 
memory based on the sequence number of each data 
object.

(Other sites) Receive the data object and update local 
memory based on the sequence number of each data 
object.



Focus 24 (Cont’d)

 Main Issues:
 Structure and granularity 
 Coherence semantics 
 Scalability 
 Heterogeneity 

 Several research prototypes:
 Dash, Ivy, Munin, and Clouds 
 Alewife (MIT), Treadmarks (Rice), Coherent Virtual machine

(Maryland), and Millipede (Israel Inst. Tech.)



Distributed Database Systems

A distributed database is a collection of multiple, logically 
interrelated databases distributed over a computer network.

 Possible design alternatives: 
 Autonomy 
 Distribution 
 Heterogeneity



Distributed Database Systems (Cont’d)

Alternative architectures.



Essentials of Distributed Database Systems
 Local autonomy 
 No reliance on a central site 
 Continuous operation 
 Location independence
 Fragment independence
 Replication independence
 Distributed query processing 
 Distributed transaction management 
 Hardware independence 
 Operating system independence 
 Network independence 
 Data independence



 Network scaling problem 
 Distributed query processing 
 Integration with distributed operating systems 
 Heterogeneity 
 Concurrency control 
 Security
 Next-generation database systems:

 Object-oriented database management systems 
 Knowledge base management systems

Open Research Problems



 Research Prototypes
 ADDS (Amocha Distributed Database Systems) 
 JDDBS (Japanese Distributed Database Systems) 
 Ingres/star 
 SWIFT (Society for Worldwide Interbank Financial Telecomm)
 System R, MYRIAD, MULTIBASE, and MERMAID

 Commercial products (XML, NewSQL, and NoSQL)
 Blockchain (popularized by bitcoin)
 Aerispike, Cassandra, Clusterpoint, Druid (open-source data store)
 ArangoDB, ClustrixDB, Couchbase, FoundationDB, NueDB, and 

OrientDB

Prototypes and Products



Heterogeneous Processing

 Tuned use of diverse processing hardware to meet 
distinct computational needs.
 Mixed-machine systems. Different execution modes by 

inter-connecting several different machine models.
 Mixed-mode systems. Different execution modes by 

reconfigurable parallel architecture obtained by 
interconnecting the same processors.



Classifications

 Single Execution Mode/Single Machine Model 
(SESM) 

 Single Execution Mode/Multiple Machine Models 
(SEMM) 

 Multiple Execution Modes/Single Machine Model 
(MESM) 

 Multiple Execution Modes/Multiple Machine 
Models (MEMM)



Focus 25: Optimization
An optimization problem that minimizes

 ti,j

such that

 cj  C

where ti,j equals the time for machine i on code segment j, ci
equals the cost for machine i, C equals the specified overall 
cost constraint.
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"Killer" Applications

 Distributed Object-based Systems: CORBA 
 Distributed Document-based Systems: WWW 
 Distributed Coordination-based Systems: JINI 
 Distributed Multimedia Systems: QoS requirements
 Distributed currency and transactions: Bitcoin and blockchain



Other Applications: MapReduce

 A framework for processing highly distributable problems 
across huge datasets on a file system or a database.
 Map: In a recursive way, the master node takes the input, divides it 

into smaller sub-problems, and distributes them to worker nodes. 
 Reduce: The master node then collects the answers to all the sub-

problems and combines them in some way to form the output. The 
shuffle is used collect all data through I/O. Usually, shuffle dominates 
the actual reduce phase.

 Apache Hadoop: a software framework that supports data-intensive 
distributed applications under a free license. It was derived from Google’s 
MapReduce and Google File System (GFS).

 Spark for Big Data and beyond



Pipeline: Map followed by Shuffle

Impact of overlapping map and shuffle

Map pipeline

Shuffle 
pipeline

WordCount (map-heavy) TeraSort (shuffle-heavy)



Minimize Last Job: Flow Shop

Minimize last job completion time 

l-phase flow shop is solvable when l=2
 Gm: map-heavy jobs sorted in increasing order of map load 
 Gs: shuffle-heavy jobs sorted in decreasing order of shuffle load

Optimal schedule:  Gs followed by Gm

S. M. Johnson, Optimal two-and three-stage production schedules with setup times 
included, Naval Research Logistics Quarterly, 1954.

Map 

Shuffle
J2

J2

J1

J1

J3

J3

J4

J4

J2

J2

J1

J1

J3

J3

J4

J4



Minimize Average Jobs: Strong Pair

Minimize average job completion time, NP-hard in general 

Special case one:  strong pair
 J1 and J2 are a strong pair if m1 = s2 and s1 = m2 (m: map, s: shuffle)

Optimal schedule:  jobs are strong pairs
Pair jobs and rank pairs by total workloads

H. Zheng, Z. Wan, and J. Wu, Optimizing MapReduce framework through joint 
scheduling of overlapping phases, Proc. of IEEE ICCCN, 2016.

Map

Shuffle
J1

J1

J3

J3 J4

J4

J2

J2J1

J1

J3

J3J4

J4

J2

J2



Minimize Average Jobs: Dominant Load

Special case two: when all jobs are map-heavy or shuffle-heavy
Optimal schedule: 

Sort jobs ascendingly by dominant workload max{m, s}
Execute smaller jobs earlier

Map 
pipeline

Shuffle 
pipeline

Finishing times J1, J2, J3: 1, 3, 6  vs.  J3, J2, J1: 3, 5, 6



Other Applications: Crowdsourcing

How Much Data?
 Facebook: 40 B photos; 30 B pieces of content shared every month

 WeChat: 846 M users and 20 B message per day

 Global Internet traffic: quadrupled from 2010 to 2015, reaching 
966 EB (1018) per year
(All human knowledge created from the dawn of man to 2003 is totaled 5 EB)

640K ought to be 
enough for anybody.



Big Data Era
 “In information technology, big data consists of datasets 

that grow so large that they become awkward to work 
with using on-hand database management tools.”

 Computers are not efficient in processing or creating 
certain things: pattern recognition, complex 
communication, and ideation.

 Crowdsourcing: coordinating a crowd (a large group of 
people online) to do microwork (small jobs) that solves 
problems (that software or one user cannot easily do)

 Crowdsourcing: crowd + outsourcing  (through Internet)



The Benefits of Crowdsourcing

 Performance
 Inexpensive and fast
 The whole is greater than the sum of its parts

 Human Processing Unit (HPU)
 More effective than CPU (for some apps)

• Verification and validation: Image labeling
• Interpretation and analysis: language translation
• Surveys: Social network survey

 High adoption in business (85% of the top global 
brands) based on eYeka



Basic Components of Crowdsourcing
 Requester

 People submit jobs (microwork)
 Human Intelligence Tasks (HITs)

 Worker
 People work on jobs

 Platform
 Job management 

Amazon Mechanical Turk (MTurk): 18th century chess 
playing robot with a human inside



Other Applications: PageRank

A link analysis algorithm 
 PR(E): Rage Rank of E
 likelihood that a person 

randomly clicking on links 
will arrive at any particular 
page

M(pi): set of pages link to pi, 
L(pj): the number of outgoing 
links on pj, d: dumping 
factor, N: total number of 
pages.

HITS (Jon Kleinberg): each node has 
two values in a mutual recursion
• Authority: the sum of the Hub 

Scores of each node that points to it. 
• Hub: the sum of the Authority 

Scores of each node that it points to. 



Other Applications: P2P Systems

 Client/server limitations: scalability, single point of failure, etc.
 P2P: an overlay network no centralized control, e.g., Blockchain
 Unstructured P2P

 Napster: share music, server stores index
 Gnutella: no server, query flooding
 Kazza: supernodes to improve scalability
 Freenet: data caching in reverse path of query
 BitTorrent: Tit-for-Tat to avoid free-raiders

 Structured P2P: distributed hash table (DHT): map key to value
 Chord: n-node ring, table size: log(n), search time: log(n)
 CAN: n-node d-dimension mesh, table size: d, search time: d n1/d

 Others based on different graphs: De Brujin, Butterfly, and Kautz graphs



P2P Systems: Search

 Unstructured P2P
 BFS and variations (e.g. expanding rings and directed BFS)
 Probabilistic search and variations (e.g., random walk)
 Indices-based search and variations (e.g., dominating-set and Bloom filter)

 Structured P2P: Chord (hypercube) and CAN (2-D mesh)



Emerging Systems

 Wireless networks and mobile computing: mobile agents
 Move the computation to the data rather than the data to the 

computations.

 Grid
 TeraGrid: 13.6 teraflops of Linux Cluster computing power 

distributed at the four TeraGrid sites.
 Open Grid Services Architecture (OGSA): delivering tighter 

integration between grid computing networks and Web services 
technologies.

 Grid Computing (via OGSA) as the basis of evolution of Internet 
computing in the future.



Distributed Grid
OptIPuter (UC San Diego and U. of Chicago)
 Parallel optical networks using IP
 Supernetworks: networks faster than the computers attached to them
 Parallelism takes the form of multiple wavelengths, or lambdas (1-10 

Gbps)
 A new resource abstraction: distributed virtual computer

E-Science (UK Research Councils, 2001)
 Large-scale science carried out through distributed global 

collaboration enabled by networks, requiring access to very large data 
collaborations, very large-scale computing resources, and high-
performance visualization.



Cloud (edge, fog) Computing
Sharing of resources to achieve 

coherence and economies of scale 
similar to utility (e.g. electricity 
grid) over a network (e.g. Internet)

 Characteristics
• Agility, API, cost, device, 

virtualization, multi-tenancy, 
reliability, scalability,  
performance, security, 
maintenance

 Service
• Infrastructure as a Service (LaaS)
• Platform as a Service (PaaS)
• Software as a Service (SaaS)


