
Joint Scheduling of Overlapping Phases
in the MapReduce Framework

Jie Wu
Collaborators: Huanyang Zheng and Yang Chen

Center for Networked Computing
Temple University

Road Map

1. Introduction

2. Model and Formulation

3. General Greedy Solutions

4. Experiment

5. Conclusion

Shuffle

1. Introduction

Map-Shuffle-Reduce
Map and Reduce: CPU-intensive
Shuffle: I/O-intensive

TeraSort
Map: sample & partition data
Shuffle: partitioned data
Reduce: locally sort data

Data
partition

Map Reduce

Local
sort

Data
partition

Local
sort

Map-Shuffle-Reduce

Multiple jobs
TeraSort, WordCount, etc.

Reduce is not significant (Zaharia, OSDI 2008)
7% of jobs are reduce-heavy

Centralized scheduler
Determines a sequential order for jobs on the
map and shuffle pipelines

Job Classification

Dependency relationship
Map emits data at a certain rate
Shuffle waits for the map data

Job classification
Map-heavy: map > shuffle (m > s)
Balanced: map = shuffle (m = s)
Shuffle-heavy: map < shuffle (m < s)

Execution Order

Impact of overlapping map and shuffle

Map
pipeline

Shuffle
pipeline

WordCount (map-heavy) TeraSort (shuffle-heavy)

2. Model and Formulation

Schedule objective:
Minimize the average job completion time for all jobs;
Ji includes the wait time before the job starts.

Schedule is NP-hard

Offline scenarios
All jobs arrive at the beginning (and wait for schedule)

Related Work: Flow Shop
Minimize last job completion time

l-phase flow shop is solvable when l=2
○ Gm: map-heavy jobs sorted in increasing order of map load
○ Gs: shuffle-heavy jobs sorted in decreasing order of shuffle load

Optimal schedule: Gs followed by Gm

S. M. Johnson, Optimal two-and three-stage production schedules with
setup times included, Naval Research Logistics Quarterly, 1954.

Map

Shuffle
J2

J2

J1
J1

J3
J3

J4
J4

J2
J2

J1
J1

J3
J3

J4
J4

Related Work: Strong Pair
Minimize average job completion time

Strong pair
○ J1 and J2 are a strong pair if m1 = s2 and s1 = m2

Optimal schedule: jobs are strong pairs
Pair jobs and rank pairs by total workloads

H. Zheng, Z. Wan, and J. Wu, Optimizing MapReduce framework through
joint scheduling of overlapping phases, Proc. of IEEE ICCCN, 2016.

Map

Shuffle
J1

J1

J3
J3 J4

J4
J2

J2J1
J1

J3
J3J4

J4
J2

J2

First Special Case

When all jobs are map-heavy, balanced, or shuffle-heavy
Optimal schedule:

Sort jobs ascendingly by dominant workload max{m, s}
Execute smaller jobs earlier

Map
pipeline

Shuffle
pipeline

Finishing times J1, J2, J3: 1, 3, 6 vs. J3, J2, J1: 3, 5, 6

Second Special Case

Jobs J1 and J2 can be “paired”
if m1 ≤ m2, s1 ≥ s2, and m1+m2=s1+s2

(non-dominance) (balance)

Optimal schedule:
Pair jobs: shuffle-heavy before map-heavy
Sort job pair: by total workload m+s
Execute smaller pairs earlier

Map

Shuffle
Time

Time

0%

100%

0%

100%
J2

J2J1

J1

2 3 40 1

Why Non-dominance?
Cannot pair small and large jobs J1 and J2

Time

Time

J1

J1

J2

J2

Map

Shuffle

0 1 2 3 4 5 6 7 8 9 10

Time

Time

J1

J1

J2

J2

Map

Shuffle

0 1 2 3 4 5 6 7 8 9 10

If jobs can be paired, paired job scheduling is optimal if
(1) job pairs with smaller workloads are executed earlier and
(2) all pairs are executed together (shuffle-heavy first).

Proof ideas

In each pair, shuffle-heavy job is executed before map-heavy job
Otherwise a swap leads to a better result

Job pairs with smaller total workloads are executed earlier
Otherwise a swap leads to a better result

Paired jobs should not be separately executed (a bit more involved)

Theorem

S1 is better than S3 and S4 when J* is large
S2 is better than S3 and S4 when J* is small

Proof

Sort jobs based on their sizes (“workload”)

Partition sorted list in k (group factor) groups

Execute each group in order based on workload
Order matters for inter-group!

Pair jobs in each group
Pairing matters for intra-group!

3. First General Algorithm

Group jobs by their workloads (first factor)
Optimally divide jobs into k groups

minimize the sum of maximum job
workload difference in each group

Execute the group of smaller jobs earlier

Pair jobs in each group (second factor)
Jobs in each group have similar workloads
Pair shuffle-heaviest and map-heaviest jobs

Time complexity is O(n2k)

Group-Based Scheduling Policy (GBSP)

Example 1

Group-based scheduling policy
J1

J1

J4
J4J2

J2 J3
J3

J1
J1

J4
J4 J2

J2J3
J3

J1
J1

J4
J4 J2

J2 J3
J3

J1
J1

J4
J4 J2

J2 J3
J3

Workload Definition
Dominant workload scheduling policy (DWSP)

Groups jobs by dominant workloads, max (m, s)
Performs well when jobs are simultaneously map-heavy, balanced,

or shuffle-heavy

Total workload scheduling policy (TWSP)
Groups jobs by total workloads, m+s
Performs well when jobs can be perfectly paired

Weighted workload scheduling policy (WWSP)
A tradeoff between DWSP and TWSP
Groups jobs by weighted workloads , α*max(m,s) + (1-α)*(m+s)

Pair jobs through minimum weight maximum matching
Matching weight for J1 and J2:

β * balance factor + (1-β) * non-dominance factor

Balance factor:

Non-dominance factor:

Second Algorithm Design

Sort jobs by map-shuffle workload difference
Cut jobs into two parts
Use minimum weight maximum matching to pair jobs in the second part

Exhaust all possible cuts and pick the best cut
Sort jobs by their workloads after pairing

Paired jobs are regarded as one job

Match-Based Scheduling Policy (MBSP)

m-s s-m

Example 2
Match-based scheduling policy

J2
J2

J4
J4J1

J1 J3
J3

J4
J4

J3
J3

st

nd

J2
J2

J4
J4

J3
J3

J2
J2J1

J1

J1

J1

J2
J2

J4
J4

J3
J3J1

J1

Theorem

Match-based scheduling policy has an approximation ratio
of 2 if

(1) some jobs can be perfectly paired,
(2) all remaining jobs are map-heavy, balanced, or shuffle-heavy,
(3) dominant workload is used to sort jobs.

Time complexity is O(n3.5)
Exhausting all cuts takes O(n) iterations
Matching in each iteration takes O(n2.5)

4. Experiment

Google Cluster Simulation
About 11,000 machines
96,182 jobs over 29 days in May 2011

Number of job submissions per hour (arrival rate)

Google Cluster Dataset

Distribution of map and shuffle time

Slightly more map-heavy jobs

Comparison Algorithms

Pairwise: has only one group then iteratively pairs the
map-heaviest and shuffle-heaviest jobs in the group

MaxTotal: ranks jobs by total workload m+s and
executes jobs with smaller total workloads earlier

MaxSRPT: ranks jobs by dominant workload max{m,s}
and executes jobs with smaller dominant workloads
earlier

Waiting, Execution, and Completion
Results (group k = 20, weight α = 0.5, β = 0.5)

Control job waiting time using the workload of each group
Control job execution time by pairing jobs within a group

GBSP

The average job completion time ratio between MBSP
and WWSP is 92.3%, 95.8% and 85.1%, respectively.

Scheduling
algorithms

Average job
waiting time

Average job
execution time

Average job
completion time

𝜶/ሺ𝜶 ൅ 𝜷ሻ 50% 75% 25% 50% 75% 25% 50% 75% 25%

Pairwise 8289 7652 3609 149 23 28 8438 7675 3637

MaxTotal 5054 4586 2525 362 32 156 5416 4618 2681

MaxSRPT 4768 4546 2591 840 32 150 5608 4578 2741

DWSP 4809 4519 2545 581 53 85 5390 4572 2630

TWSP 4787 4501 2522 563 49 104 5350 4550 2626

WWSP 4619 4482 2479 532 45 079 5151 4527 2558

MBSP 4562 4314 2142 193 26 36 4340 4755 2178

Impact of k and α in WWSP

Group-based scheduling policy with k groups
Sorts jobs by α*max(m,s) + (1-α)*(m+s)

Small/large group k
Small/large weight α

Minimized
when α = 0.57

Impact of β in MBSP

Match-based scheduling policy matches J1 and J2 by
β * balance factor + (1-β) * non-dominance factor

Small/large weight β
Minimized

when β = 0.68

Hadoop Testbed on Amazon EC2

Testbed
Ubuntu Server 14.04 LTS (HVM)
Single core CPU and 8G SSD memory

Jobs: WordCount jobs and TeraSort jobs
6 WordCount uses books of different sizes

2MB, 4MB, 6MB, 8MB, 10MB, 12MB

6 TeraSort uses instances of different sizes
1KB, 10KB, 100KB, 1MB, 10MB, 100MB

Waiting, Execution, and Completion

Hadoop: one master node + several data nodes
Number of data nodes: 1, 2, 4, 8, 16

MBSP has a slightly larger job waiting time than
WWSP, but a smaller job makespan.

Performance Comparison

Pairwise has the smallest average execution time, but
a large job wait time since workloads are ignored.

MaxTotal and MaxSPRT do not balance the trade-off
between job sizes and job pairs.

DWSP, TWSP, WWSP, and MBSP jointly consider job
sizes and job pairs.

5. Conclusion

Map and Shuffle phases can overlap
CPU and I/O resource

Objective: minimize average job completion time

Group-based and match-based schedules
Job workloads (dominant factor)
Job pairs (avoid I/O underutilization)
Optimality under certain scenarios

Shuffle

Map

Reduce

Time

Time

0%

100%

0%

100%
J2

J2J1

J1

Time0%

100%
J2J1

2 310

Future Work

Multiple phases
Beyond 2-phase 3-phase example

Batched online scheduling
Window-based approach

More simulations
Imbalanced map and shuffle
Impact of k, α, and β

More testbed cases

