
78    COMMUNICATIONS OF THE ACM    |   JANUARY 2020  |   VOL.  63  |   NO.  1

review articles

ON E  OF THE most daunting challenges in information 
science and technology has always been mastering 
concurrency. Concurrent programming is enormously 
difficult because it copes with many possible 
nondeterministic behaviors of tasks being done at 
the same time. These come from different sources, 
including failures, operating systems, shared memory 
architectures, and asynchrony. Indeed, even today 

we do not have good tools to build ef-
ficient, scalable, and reliable concur-
rent systems.

Concurrency was once a specialized 
discipline for experts, but today the chal-
lenge is for the entire information tech-
nology community because of two dis-
ruptive phenomena: the development of 
networking communications, and the 
end of the ability to increase processors 
speed at an exponential rate. Increases 
in performance come through concur-
rency, as in multicore architectures. 
Concurrency is also critical to achieve 
fault-tolerant, distributed services, as in 
global databases, cloud computing, and 
blockchain applications.

Concurrent computing through sequen-
tial thinking. Right from the start in the 
1960s, the main way of dealing with con-
currency has been by reduction to se-
quential reasoning. Transforming 
problems in the concurrent domain 
into simpler problems in the sequential 
domain, yields benefits for specifying, 
implementing, and verifying concur-
rent programs. It is a two-sided strategy, 
together with a bridge connecting the 
two sides.

First, a sequential specification of 
an object (or service) that can be ac-

Mastering 
Concurrent 
Computing 
through 
Sequential 
Thinking

DOI:10.1145/3363823

A 50-year history of concurrency.

BY SERGIO RAJSBAUM AND MICHEL RAYNAL

 key insights
 ˽ A main way of dealing with the enormous 

challenges of building concurrent 
systems is by reduction to sequential 
thinking. Over more than 50 years, more 
sophisticated techniques have been 
developed to build complex systems in 
this way.

 ˽ The strategy starts by designing 
sequential specifications, and then 
mechanisms to associate a concurrent 
execution to a sequential execution 
that itself can be tested against the 
sequential specification. 

 ˽ The history starts with concrete, physical 
mutual exclusion techniques, and evolves 
up to today, with more abstract, scalable, 
and fault-tolerant ideas including 
distributed ledgers.

 ˽ We are at the limits of the approach, 
encountering performance limitations 
by the requirement to satisfy a 
sequential specification, and because 
not all concurrent problems have 
sequential specifications.

I must appeal to the patience of the wondering readers,
suffering as I am from the sequential nature of human 
communication.

—E.W. Dijkstra, 196812

http://dx.doi.org/10.1145/3363823


JANUARY 2020  |   VOL.  63  |   NO.  1   |   COMMUNICATIONS OF THE ACM     79

I
M

A
G

E
 F

R
O

M
 S

H
U

T
T

E
R

S
T

O
C

K
.C

O
M

cessed concurrently states the desired 
behavior only in executions where the 
processes access the object one after 
the other, sequentially. Thus, famil-
iar paradigms from sequential com-
puting can be used to specify shared 
objects, such as classical data struc-
tures (for example, queues, stacks, 
and lists), registers that can be read 
or modified, or database transactions. 
This makes it easy to understand the 
object being implemented, as op-
posed to a truly concurrent specifi-
cation which would be hard or un-
natural. Instead of trying to modify 
the well-understood notion of say, a 
queue, we stay with the usual sequen-
tial specification, and move the mean-
ing of a concurrent implementation of 
a queue to another level of the system.

The second part of the strategy is to 
provide implementation techniques for 

efficient, scalable, and fault-tolerant 
concurrent objects. Locks enforce ex-
clusive accesses to shared data, and 
concurrency control protocols. More 
abstract and fault-tolerant solutions 
that include agreement protocols that 
can be used for replicated data to lo-
cally execute object operations in the 
same order. Reliable communication 
protocols such as atomic broadcast and 
gossiping are used by the processes to 
communicate with each other. Distrib-
uted data structures, such as block-
chains. Commit protocols to ensure at-
omicity properties. Several techniques 
are commonly useful, such as time-
stamps, quorums, group membership 
services, and failure detectors. Inter-
esting liveness issues arise, specified 
by progress conditions to guarantee 
that operations are actually executed.

The bridge establishes a connection 

between the executions of a concurrent 
program and the sequential specifica-
tion. It enforces safety properties by 
which concurrent executions appear as 
if the operations invoked on the object 
where executed instantaneously, in 
some sequential interleaving. This is 
captured by the notion of a consistency 
condition, which defines the way con-
current invocations to the operations 
of an object correspond to a sequential 
interleaving, which can then be tested 
against the its sequential specification.

A brief history and some examples. 
The history of concurrency is long and 
the body of research enormous; a few 
milestones are in the sidebar “A Few 
Dates from the History of Synchroniza-
tion.” The interested reader will find 
many more results about principles 
of concurrency in textbooks.4,21,35,37 We 
concentrate here only on a few signifi-



80    COMMUNICATIONS OF THE ACM    |   JANUARY 2020  |   VOL.  63  |   NO.  1

review articles

Algorithm 1. Peterson’s mutual exclusion algorithm for two processes.

A Few Dates from the  
History of Synchronization

foundational articles on concurrent pro-
gramming appears in Brinch.6

As soon as the programs being run 
concurrently began to interact with 
each other, it was realized how difficult 
it is to think concurrently. By the end 
of the 1960s a crisis was emerging: 
programming was done without any 
conceptual foundation and programs 
were riddled with subtle errors caus-
ing erratic behaviors. In 1965, Dijks-
tra discovered that mutual exclusion 
of parts of code is a fundamental con-
cept of programming and opened the 
way for the first books of principles on 
concurrent programming, which ap-
peared at the beginning of the 1970s.

Locks. A mutual exclusion algorithm 
consists of the code for two opera-
tions—acquire() and release()—
that a process invokes to bracket a 
section of code called a critical section. 
The usual environment in which it is 
executed is asynchronous, where pro-
cess speeds are arbitrary, independent 
from each other. A mutual exclusion 
algorithm guarantees two properties.

 ˲ Mutual exclusion. No two processes 
are simultaneously executing their crit-
ical section.

 ˲ Deadlock-freedom. If one or several 
processes invoke acquire() opera-
tions that are executed concurrently, 
eventually one of them terminates its 
invocation, and consequently executes 
its critical section.

Deadlock-freedom does not pre-
vent specific timing scenarios from oc-
curring in which some processes can 
never enter their critical section. The 
stronger starvation-freedom progress 
condition states that any process that 
invokes acquire() will terminate its 
invocation (and will consequently ex-
ecute its critical section).

A mutual exclusion algorithm. The 
first mutual exclusion algorithms were 
difficult to understand and prove cor-
rect. We describe here an elegant al-
gorithm by Peterson32 based on read/
write shared registers. Algorithms for 
a message-passing system have been 
described since Lamport’s logical 
clock paper.25

The version presented in Algorithm 
1 is for two processes but can be eas-
ily generalized to n processes. The 
two processes p1 and p2 share three 
read/write atomic registers, FLAG[1], 
FLAG[2], and LAST. Initially FLAG[1], 

1965 Mutual exclusion from atomic read/write registers Dijkstra11

1965 Semaphores Dijkstra13

1971 Mutual exclusion from non-atomic  
read/write registers Lamport23

1974 Concurrent reading and writing Lamport,24 Peterson33

1977, 1983 Distributed state machine (DA 2000) Lamport25

1980 Byzantine failures in synchronous systems  
(DA 2005) Pease, Shostak, Lamport31

1981 Simplicity in mutex algorithms Peterson32

1983 Asynchronous randomized consensus (DA 2015) Ben-Or,5 Rabin34

1985 Liveness (progress condition) (DA 2018) Alpern, Schneider1

1985
Impossibility of asynchronous deterministic 
consensus in the presence of process crashes  
(DA 2001)

Fischer, Lynch, Paterson16

1987 Fast mutual exclusion Lamport27

1991 Wait-free synchronization (DA 2003) Herlihy19

1993, 1997 Transactional memory (DA 2012) Herlihy, Moss,20 Shavit, 
Touitou40

1995
Shared memory on top of asynchronization 
message-passing systems despite a minority  
of process crashes (DA 2011)

Attiya, Bar Noy, Dolev2

1996
Weakest information on failures to solve consensus 
in the presence of asynchrony and process crashes 
(DA 2010)

Chandra, Hadzilacos, Toueg8

2008 Scalability, accountability Nakamoto30

A paper that received the Dijkstra ACM Award in the year X is marked (DA X).

cant examples of sequential reasoning 
used to master concurrency, providing 
a sample of fundamental notions of 
this approach, and we describe several 
algorithms, both shared memory and 
message passing, as a concrete illustra-
tion of the ideas.

We tell the story through an evo-
lution that starts with mutual ex-
clusion, followed by implementing 
read/write registers on top of mes-
sage passing systems, then imple-
menting arbitrary objects through 
powerful synchronization mecha-
nisms. We discuss the modern dis-
tributed ledger trends of doing so in 
a highly scalable, tamper-proof way. 
We conclude with a discussion of the 
limitations of this approach: It may 

be that it is expensive to implement, 
and furthermore, there are inher-
ently concurrent problems with no 
sequential specifications.

Mutual Exclusion
Concurrent computing began in 1961 
with what was called multiprogramming 
in the Atlas computer, where concur-
rency was simulated—as we do when 
telling stories where things happen con-
currently—interlacing the execution of 
sequential programs. Concurrency was 
born in order to make efficient use of a 
sequential computer, which can execute 
only one instruction at a time, giving us-
ers the illusion that their programs are 
all running simultaneously, through the 
operating system. A collection of early 



JANUARY 2020  |   VOL.  63  |   NO.  1   |   COMMUNICATIONS OF THE ACM     81

review articles

FLAG[2], are down, while LAST does not 
need to be initialized. Both processes 
can read all registers. Moreover, while 
LAST can be written by both processes, 
only pi , i ∈ {1, 2}, writes to FLAG[i]. 
Atomic means the read and write op-
erations on the registers seem to have 
been executed sequentially (hence, the 
notion of “last writer” associated with 
LAST is well defined).

When process pi invokes acquire(), 
it first raises its flag, thereby indicat-
ing it is competing, and then writes its 
name in LAST indicating it is the last 
writer of this register. Next, process pi re-
peatedly reads FLAG[j] and LAST until it 
sees FLAG[j] = down or it is no longer the 
last writer of LAST. When this occurs, 
pi terminates its invocation. The opera-
tion release() consists in a simple 
lowering of the flag of the invoking pro-
cess. The read and write operations on 
FLAG[1], FLAG[2], and LAST are totally 
ordered (atomicity), which facilitates 
the proof of the mutual exclusion and 
starvation-freedom properties.

Mutual exclusion was the first 
mechanism for mastering concur-
rent programming through sequential 
thinking, and lead to the identification 
of notions that began to give a scien-
tific foundation to the approach, such 
as the concepts of progress condition 
and atomicity. It is the origin of the im-
portant area of concurrency control, by 
controlling access to data using locks 
(for example, 2-phase locking).

From Resources to Objects
At the beginning, a critical section was 
encapsulating the use of a physical re-
source, which by its own nature, is se-
quentially specified (for example, disk, 
printer, processor). Conceptually not 
very different, locks were then used to 
protect concurrent accesses of simple 
data (such as a file). However, when 
critical sections began to be used to en-
capsulate more general shared objects, 
new ideas were needed.

Data is not physical resources. A 
shared object is different from a physi-
cal object, in that it does not a priori 
require exclusive access; a process can 
read the data of a file while another 
process concurrently modifies it. The 
lock-free approach (introduced by 
Lamport24), makes possible to envis-
age implementations of purely digital 
objects without using mutual exclu-

sion, in a way that operations can over-
lap in time.

Tolerating crash failures. Addition-
ally, mutual exclusion cannot be used 
to implement an object in the presence 
of asynchrony and process crashes. If a 
process crashes inside its critical sec-
tion, other processes, unable to tell if 
it crashed or is just slow, are prevented 
from accessing the object.

Consistency conditions. Wherever 
concurrent accesses to share data take 
place, a consistency condition is need-
ed to define which concurrent opera-
tion executions are considered correct. 
Instead of transforming a concurrent 
execution into a sequential execution 
(as in mutual exclusion), the idea is to 
enforce that, from an external observer 
point of view, everything must appear 
as if the operations were executed se-
quentially. This is the sequential consis-
tency notion (or serializability), which 
has been used since early 1976 in the 
database context to guarantee that 
transactions appear to have executed 
atomically.38 However, sequential con-
sistency is not composable. The stron-
ger consistency condition of lineariz-
ability (or atomicity) requires that the 
total order of the operations respects 
the order on non-overlapping opera-
tions.22 Linearizability is illustrated in 
the sidebar “An Atomic (Linearizable) 
Execution of Processes,” that describes 
an execution in which three processes 
access an atomic read/write register R.

Read/Write Register on Top  
of Message-Passing Systems
Perhaps the most basic shared ob-
ject is the read/write register. In the 
shared memory context, there are im-
plementations from very simple regis-
ters (that only one process can write, 
and another can read), all the way to 
a multi-writer multireader (MWMR) 
register, that every process can write 
and every process can read; for exam-
ple, see Herlihy.21

Distributed message-passing sys-
tems often support a shared memory 
abstraction and have a wide accep-
tance in both research and commer-
cial computing, because this abstrac-
tion provides a more natural transition 
from uniprocessors and simplifies 
programming tasks. We describe here 
a classic fault-tolerant implementa-
tion of a read/write register on top of 
a message passing system.

It is relatively easy to build atomic 
read/write registers on top of a reli-
able asynchronous message-passing 
system, for example, Raynal,36 but if 
processes may crash, more involved 
algorithms are needed. Two important 
results are presented by Attiya, Bar-Noy 
and Dolev:2

 ˲ An algorithm that implements an 
atomic read/write register on top of 
a system of n asynchronous message-
passing processes, where at most t < 
n/2 of them may crash.

 ˲ A proof of the impossibility of 

An Atomic (Linearizable)  
Execution of Processes p1, p2, and p3  
on xRead/Write Register R.

Here R = 3

Omniscient observer’s

time line
Here R = 2Here R = 1

p1

p2

p3

R.read() → 1 R.read() → 2

R.read() → 2

R.write(1) R.write(2)

R.write(3)

From an external observer point of view, it appears as if the operations 
were executed sequentially, at the sequence of linearization points 
of the read/write operations (indicated by the dotted arrows)



82    COMMUNICATIONS OF THE ACM    |   JANUARY 2020  |   VOL.  63  |   NO.  1

review articles

Algorithm 2. ABD’s implementation of read/write register: write operation.

quorum, pi terminates the write op-
eration.

On its server side, a process pi that 
receives a write_req message sent by 
a process pj during phase 1 of a write 
operation, sends it back an acknowl-
edgment carrying the sequence num-
ber associated with the latest value it 
saved in regi .When it receives write_
req message sent by a process pj dur-
ing phase 2 of a write operation, it up-
dates its local data regi implementing 
REG if the received timestamp is more 
recent (with respect to the total order 
on timestamps) than the one saved in 
timestampi, and, in all cases, it sends 
back to pj and acknowledgment (so pj 
terminates its write).

It is easy to see that, due to the in-
tersection property of quorums, the 
timestamp associated with a value v by 
the invoking process pi is greater than 
the ones of the write operations that 
terminated before pi issued its own 
write operation. Moreover, while con-
current write operations can associate 
the same sequence number with their 
values, these values have different (and 
ordered) timestamps.

The operation REG.read(). Algorithm 
3 implements operation REG.read(), 
with a similar structure as the imple-
mentation of operation REG.write().

Notice that the following scenario 
can occur, which involves two read op-
erations read1 and read2 on a register 
REG by the processes p1 and p2, respec-
tively, and a concurrent write opera-
tion REG.write(v) issued by a process 
p3. Let ts(v) be the timestamp associ-
ated with v by p3. It is possible that the 
phase 1 majority quorum obtained by 
p1 includes the pair (v, ts(v)), while the 
one obtained by p2 does not. If this oc-
curs, the first read operation read1 ob-
tains a value more recent that the one 
obtained by the second read2, which 
violates atomicity. This can be easily 
solved by directing each read operation 
to write the value it is about to return as 
a result. In this way, when read1 termi-
nates and returns v, this value is known 
by a majority of processes despite asyn-
chrony, concurrency, and a minority 
of process crashes. This phenomenon 
(called new/old inversion) is prevented 
by the phase 2 of a read operation (as il-
lustrated in the accompanying figure).

We have seen how the combina-
tion of intersecting quorums and 

building an atomic read/write register 
when t ≥ n/2.

This section presents the algorithm, 
referred to as the ABD Algorithm, which 
illustrates the importance of the ideas 
of reducing concurrent thinking to 
sequential reasoning. A more detailed 
proof as well as other algorithms can 
be found.2,4,37

Design principles of ABD. Each writ-
ten value has an identity. Each process 
is both a client and a server. Let REG be 
the multi-writer multi-reader (MWMR) 
register that is built (hence, any pro-
cess is allowed to read and write the 
register). On its client side a process pi 
can invoke the operations REG.write 
(v) to write a value v in REG, and REG.
read() to obtain its current value. On 
its server side, a process pi manages 
two local variables: regi which locally 
implements REG, and timestampi, 
which contains a timestamp made up 
of a sequence number (which can be 
considered as a date) and a process 
identity j. The timestamp timestampi 
constitutes the “identity” of the value 
v saved in regi (namely, this value was 
written by this process at this time). 
Any two timestamps 〈sni, i〉 and 〈snj, 
j〉 are totally ordered by their lexico-
graphical order; namely, 〈sni, i〉 < 〈snj, j〉 
means (sni < snj) ∨ (sni = snj ∧ i < j).

Design principles of ABD: intersect-
ing quorums. A process pi broadcasts 
a query to all the processes and waits 
for acknowledgments from a majority 
of them. Such a majority quorum set, 
has the following properties. As t < n/2, 
waiting for acknowledgments from a 
majority of processes can never block 
forever the invoking process. More-
over, the fact that any two quorums 
have a non-empty intersection implies 
the atomicity property of the read/
write register REG.

The operation REG.write(v). This 
operation is implemented by Algo-
rithm 2. When a process pi invokes 
REG.write(v), it first creates a tag 
denoted (tag) which will identify the 
query/response messages generated 
by this write invocation. Then (phase 
1), it executes a first instance of the 
query/response exchange pattern 
to learn the highest sequence num-
ber saved in the local variables time-
stampj of a majority of processes pj . 
When this is done, pi computes the 
timestamp ts which will be associat-
ed with the value v it wants to write in 
REG. Finally (phase 2), pi starts a sec-
ond query/response pattern in which 
it broadcasts the pair (v, ts) to all the 
processes. When it has received the 
associated acknowledgments from a 



JANUARY 2020  |   VOL.  63  |   NO.  1   |   COMMUNICATIONS OF THE ACM     83

review articles

Algorithm 3. ABD’s implementation of read/write register: read operation.

timestamps, two ideas useful in other 
situations, facilitate the implementa-
tion of atomic read/write registers in 
asynchronous message-passing sys-
tems where a minority of process may 
crash. And how sequential thinking for 
shared registers can be used at the up-
per abstraction level.

The World of Concurrent Objects
A read/write register is a special case 
of an object. In general, an object is 
defined by the set of operations that 
processes can invoke, and by the be-
havior of the object when these opera-
tions are invoked sequentially. These 
can be represented by an automaton 
or by a set of sequential traces. In the 
case of an automaton, for each state, 
and each possible operation invoca-
tion, a transition specifies a response 
to that invocation, and a new state 
(the transition is often a determinis-
tic function, but not always). Thus, 
usual data structures from sequen-
tial programing, such as queues and 
stacks, can be used to define concur-
rent objects.

Consensus. At the core of many situ-
ations where sequential reasoning 
for concurrent programming is used 
(including state machine replication) 
are agreement problems. A common 
underlying abstraction is the consen-
sus object. Let CONS be a consensus 
object. A process pi can invoke the op-
eration CONS.propose(v) once. The 
invocation eventually returns a value v′. 
This sequential specification for CONS 
is defined by the following properties.

 ˲ Validity. If an invocation returns v 
then there is a CONS.propose(v).

 ˲ Agreement. No two different values 
are returned.

 ˲ Termination. If a process invokes 
CONS.propose(v) and does not crash, 
the operation returns a value.

All objects are not equal in an asyn-
chronous, crash-prone environment. 
Consensus objects are the strongest, 
in the sense that (together with read/
write registers), they can be used to im-
plement, despite asynchrony and pro-
cess crashes, any object defined by a 
sequential specification. Other impor-
tant objects, such as a queue or a stack 
are of intermediate strength: they can-
not be implemented by asynchronous 
processes, which communicate using 
read/write registers only. Such imple-

New/old inversion scenario.

mentations, that require that any op-
eration invoked by a process that does 
not crash must return (independently 
of the speed or crashes of other pro-
cesses), are said to be wait-free.

One way of measuring the synchro-
nization power of an object in the 
presence of asynchrony and process 
crashes is by its consensus number. 
The consensus number of an object 
O is the greatest integer n, such that 
it is possible to wait-free implement a 
consensus object for n processes from 
any number of objects O and atomic 
read/write registers. The consensus 
number of O is ∞ if there is no such 
greatest integer. As an example, the 
consensus number of a Test&Set ob-
ject or a stack object is 2, while the con-
sensus number of a Compare&Swap 
or Load/Link&Store/Conditional (LL/
SC) object is ∞. We will discuss a LL/
SC object later. These ideas where first 
discussed by Herlihy.19

State Machine Replication
A concurrent stack can be implement-
ed by executing the operations pop() 
and push() using mutual exclusion. 
However, as already indicated, this 
strategy does not work if processes may 
crash. The state machine replication 
mechanism25,39 is a general way of imple-
menting an object by asynchronous 
processes communicating by message-
passing. We will discuss implementa-
tions where the processes may fail by 
crashing; there are also implementa-
tions that tolerate arbitrary (Byzantine) 
failures.7 We should point out that non-
deterministic automata sometimes ap-
pear in applications and pose addition-
al challenges for implementations.

The general idea is for the processes 
to agree on a sequential order of the 
concurrent invocations, and then each 
one to simulate the sequential specifi-
cation automaton locally. We illustrate 
here the approach with a total order 

The phase 1 majority quorum
obtained by p1 contains 

the pair (v, ts(v))

p2

p1

p3

The phase 1 majority quorum
obtained by p2 does not contain 

the pair (v, ts(v))

read2()

read1()

REG.write(v)



84    COMMUNICATIONS OF THE ACM    |   JANUARY 2020  |   VOL.  63  |   NO.  1

review articles

broadcast mechanism for reaching the 
required agreement.

Total order broadcast. The TO-broad-
cast abstraction is an important primi-
tive in distributed computing, which 
ensures that all correct processes 
receive messages in the same order.18,37 
It is used through two operations, 
TO _ broadcast() and TO _ deliver(). 
A process invokes TO _ broadcast(m), 
to send a message m to all other pro-
cesses. As a result, processes execute  
TO_deliver() when they receive a (to-
tally ordered) message.

TO-broadcast illustrates one more 
general idea within the theory of 
mastering concurrent programming 
through sequential thinking: the iden-
tification of communication abstrac-
tions that facilitate building concur-
rent objects defined by a sequential 
specification.

State machine replication based on 
TO-broadcast. A concurrent imple-
mentation of object O is described 
in Algorithm 4. It is a universal con-
struction, as it works for any object O 
defined by a sequential specification. 
The object has operations opx(), and 
a transition function δ() (assuming 
δ is deterministic),where δ(state, opx 
(paramx)) returns the pair 〈state′, res〉, 
where state′ is the new state of the ob-
ject and res the result of the operation.

The idea of the construction is sim-
ple. Each process pi has a copy statei of 
the object, and the TO-broadcast ab-
straction is used to ensure that all the 
processes pi apply the same sequence 
of operations to their local representa-
tion statei of the object O.

Implementing TO-broadcast from 
consensus. Algorithm 5 is a simple con-
struction of TO-broadcast on top of an 
asynchronous system where consensus 
objects are assumed to be available.18

Let broadcast(m) stand for “for 
each j ∈ {1, . . . , n} do send(m) to pj 
end for.” If the invoking process does 
not crash during its invocation, all pro-
cesses receive m; if it crashes an arbi-
trary subset of processes receive m.

The core of the algorithm is the 
background task T. A consensus ob-
ject CS[k] is associated with the itera-
tion number k. A process pi waits until 
there are messages in the set pendingi 
and not yet in the queue to_deliver-
ablei. When this occurs, process pi 
computes this set of messages (seq) 

Algorithm 4. TO-broadcast-based universal construction.

Algorithm 5. Implementing TO-broadcast from consensus.

Circumventing Consensus 
Impossibility

Three ways of circumventing the consensus impossibility:

˲  The failure detector approach8 can abstract away synchrony assumptions 
sufficient to distinguish between slow processes and dead processes.

˲  In eventually synchronous systems14 there is a time after which the processes 
run synchronously. The celebrated Paxos algorithm is an example.28

˲  By using random coins5 consensus is solvable with high probability.

˲  Often not all combinations of input values occur.29



JANUARY 2020  |   VOL.  63  |   NO.  1   |   COMMUNICATIONS OF THE ACM     85

review articles

Universal Construction 
based on LL/SC

and order them. Then it proposes seq 
to the consensus instance SC[k]. This 
instance returns a sequence saved in 
resi, which is added by pi at the end of 
its local queue to_deliverablei.

When are Universal  
Constructions Possible?
An impossibility. A fundamental re-
sult in distributed computing is the 
impossibility to design a (determinis-
tic) algorithm that solves consensus 
in the presence of asynchrony, even if 
only one process may crash, either in 
message-passing or read/write shared 
memory systems.16 Given that consen-
sus and TO-broadcast are equivalent, 
the state machine replication algo-
rithm presented above cannot be im-
plemented in asynchronous systems 
where processes can crash.

Thus, sequential thinking for con-
current computing has studied proper-
ties about the underlying system that 
enable the approach to go through. 
There are several ways of considering 
computationally stronger (read/write 
or message-passing) models,35,37 where 
state machine replication can be im-
plemented. Some ways, mainly suited 
to message-passing systems, are pre-
sented in the sidebar “Circumventing 
Consensus Impossibility.” Here, we 
discuss a different way, through power-
ful communication hardware.

Systems that include powerful ob-
jects. Shared memory systems usually 
include synchronization operations 
such as Test&Set, Compare&Swap, or 
the pair of operations Load Link and 
Store Conditional (LL/SC), in addi-
tion to read/write operations. These 
operations have a consensus number 
greater than 1. More specifically, the 
consensus number of Test&Set is 2, 
while the consensus number of both 
Compare&Swap and the pair LL/SC, is 
+∞. Namely, 2-process (but not a 3-pro-
cess) consensus can be implemented 
from Test&Set, despite crash failures. 
Compare&Swap (or LL/SC) can imple-
ment consensus for any number of 
processes. Hence, for any n, any ob-
ject can be implemented in an asyn-
chronous n-process read/write system 
enriched with Compare&Swap (or LL/
SC), despite up to n−1 process crashes. 
Furthermore, there are implementa-
tions that tolerate arbitrary, malicious 
(Byzantine) failures.7,37

State machine replication based on 
LL/SC. To give more intuition about 
state machine replication, and further-
more, about the way that blockchains 
work, we present an implementation 
based on LL/SC. (Another option is 
based on Compare&Swap, but it is not 

“self-contained” in the sense it has to 
deal with the ABA problem.35)

The intuition of how the LL/SC op-
erations work is as follows. Consider a 
memory location M, initialized to ⊥, ac-
cessed only by the operations LL/SC. As-
sume that if a process invokes M.SC(v) 

Algorithm 6. Implementing a consensus object CONS from the operations LL/SC.



86    COMMUNICATIONS OF THE ACM    |   JANUARY 2020  |   VOL.  63  |   NO.  1

review articles

tion δ. To do so, when a process invokes 
append(X), X consists of a transition 
to be applied to the state machine. The 
state of the object is obtained through 
a read() invocation, which returns 
the sequence of operations which have 
been sequentially appended to the led-
ger, and then locally applying them 
starting from the initial state of the ob-
ject (see Raynal37 for more details).

Three remarkable properties. The 
apparently innocent idea of a read() 
operation that returns the list of com-
mands that have been applied to the 
state machine, opens the discussion of 
one of the remarkable points of distrib-
uted ledgers that has brought them to 
such wide attention. The possibility of 
guaranteeing a tamperproof list of com-
mands. The blockchain implementa-
tion is by using cryptographic hashes 
that link each record to the previous one 
(although the idea has been known in 
the cryptography community for years).

The ledger implementation used in 
Bitcoin showed it is possible to have a 
state machine replication tolerating 
Byzantine failures that scales to hun-
dreds of thousands of processes. The 
cost is temporarily sacrificing consis-
tency—forks can happen at the end of 
the blockchain, which implies that the 
last few records in the blockchain may 
have to be withdrawn.

The third remarkable property 
brought to the public attention by dis-
tributed ledgers is the issue of who 
the participants can be. As opposed to 
classic algorithms for mastering con-
currency through sequential thinking, 
the participants do not have to be a pri-
ori-known, can vary with time, and may 
even be anonymous. Anyone can ap-
pend a block and read the blockchain 
(although there are also permissioned 
versions where participants have to be 
registered, and even hybrid models). In 
a sense, a distributed ledger is an open 
distributed database, with no central 
authority, where the data itself is dis-
tributed among the participants.

Agreement in dynamic, Byzantine sys-
tems. Bitcoin’s distributed ledger im-
plementation is relatively simple to ex-
plain in the framework of state machine 
replication. Conceptually it builds on 
randomized consensus (something 
that had already been carefully studied 
in traditional approaches, as noted in 
the sidebar “Circumventing Consensus 

it has previously invoked M.LL(). The 
operation M.LL() is a simple read of 
M which returns the current value of 
M.LL(). When a process pi invokes 
M.SC(v) the value v is written into M if 
and only if no other process invoked 
M.SC() since its (pi) last invocation of 
M.LL(). If the write succeeds M.SC() re-
turns true, otherwise it returns false.

Algorithm 6 is a simple implemen-
tation of consensus from the pair of 
operations LL/SC, which tolerates any 
number of process crashes.

In the sidebar “Universal Construc-
tion Based on LL/SC,” there is a shared-
memory, LL/SC based universal con-
struction.15 Looking at the algorithm, 
one begins to get a feeling for the dis-
tributed ledgers discussed next.

Distributed Ledgers
Since ancient times, ledgers have been 
at the heart of commerce, to represent 
concurrent transactions by a permanent 
list of individual records sequentialized 
by date. Today we are beginning to see 
algorithms that enable the collaborative 
creation of digital distributed ledgers 
with properties and capabilities that go 
far beyond traditional physical ledgers. 
All participants within a network can 
have their own copy of the ledger. Any of 
them can append a record to the ledger, 
which is then reflected in all copies in 
minutes or even seconds. The records 
stored in the ledger can stay tamper-
proof, using cryptographic techniques.

Ledgers as universal constructions. 
Mostly known because of their use 
in cryptocurrencies, and due to its 
blockchain implementation,30 from 
the perspective of this paper a distrib-
uted ledger is a byzantine fault-tolerant 
replicated implementation of a spe-
cific ledger object. The ledger object 
has two operations, read() and ap-
pend(). Its sequential specification 
is defined by a list of blocks. A block 
X can be added at the end of the list 
with the operation append(X), while 
a read() returns the whole list. In the 
case of a cryptocurrency, X may contain 
a set of transactions.

Thus, a ledger object, as any other 
object, can be implemented using a 
Byzantine failures-tolerant state ma-
chine replication algorithm. Converse-
ly, a ledger can be used as a universal 
construction of an object O defined by 
a state machine with a transition func-

While resources  
are physical 
objects, data  
is digital objects.



JANUARY 2020  |   VOL.  63  |   NO.  1   |   COMMUNICATIONS OF THE ACM     87

review articles

Impossibility”), through the following 
ingenious technique to implement it. 
Whenever several processes (not neces-
sarily known a priori, hence the name 
of “dynamic system”) want to concur-
rently append a block, they participate 
in a lottery. Each process selects a ran-
dom number (by solving cryptographic 
puzzles) between 0 and some large in-
teger K, and the one that gets a number 
smaller than k << K, wins, and has the 
right to append its desired block.

The implementation details of the 
lottery (by a procedure called proof of 
work) are not important for this arti-
cle; what is important here is that with 
high probability only one wins (and se-
lected at random). However, from time 
to time, more than one process wins, 
and a fork happens, with more than 
one block being appended at the end 
of the blockchain. Only one branch 
eventually pervades (in Bitcoin this is 
achieved by always appending to the 
longest branch). This introduces a new 
interesting idea into the paradigm of 
mastering concurrency through se-
quential thinking: a trade-off between 
faster state machine replication, and 
temporary loss of consistency. In other 
words, the x operations at the very end 
of the blockchain, for some constant 
x (which depends on the assumptions 
about the environment) cannot yet be 
considered committed.

The Limits of the Approach
It is intuitively clear, and it has been 
formally proved, that linearizability or 
even serializability may be costly. Re-
cent papers in the context of shared 
memory programming, argue that it is 
often possible to improve performance 
of concurrent data structures by relax-
ing their semantics.9 In the context 
of distributed systems, eventual con-
sistency is widely deployed to achieve 
high availability by guaranteeing that 
if no new updates are made to a given 
data item, eventually all accesses to 
that item will return the last updated 
value (despite its name is not techni-
cally a consistency condition.3). In the 
case of distributed ledgers, we have 
seen the benefit that can be gained by 
relaxing the sequential approach to 
mastering concurrency: branches at 
the end of the blockchain (such as Bit-
coin) temporarily violate a consistent 
view of the ledger. Still, blockchains 

suffer from a performance bottleneck 
due to the requirement of ordering all 
transactions in a single list, which has 
prompted the exploration of partially 
ordered ledgers, based on directed acy-
clic graphs such as those of Tangle or 
Hedera Hashgraph.

The CAP Theorem formalizes a fun-
damental limitation of the approach 
of mastering concurrency through se-
quential reasoning—at most, two of the 
following three properties are achiev-
able: consistency, availability, partition 
tolerance.17 This may give an intuition 
of why distributed ledgers implemen-
tations have temporary forks. An alter-
native is a cost in availability and post-
pone the property that every non-failing 
participant returns a response for all 
operations in a reasonable amount of 
time. We have already seen in the ABD 
algorithm that the system continues to 
function and upholds its consistency 
guarantees, provided that only a minor-
ity of processes may fail.

Finally, another fundamental limita-
tion to the approach of mastering con-
currency through sequential reasoning 
is that not all concurrent problems of 
interest have sequential specifications. 
Many examples are discussed in Casta-
ñeda et al.,10 where a generalization of 
linearizability to arbitrary concurrent 
specifications is described. 

Acknowledgment. The authors ac-
knowledge support of UNAM-PAPIT  
IN106520, INRIA-Mexico Associate 
Team, CNRS-Mexico UMI.  

References
1. Alpern, B. and Schneider, F.B. Defining liveness. 

Information Processing Letters 21, 4 (1985), 181–18.
2. Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory 

robustly in message-passing systems. JACM 42, 1 
(1995), 121–132.

3. Attiya, H., Ellen, F. and Morrison, A., Limitations of 
highly-available eventually-consistent data stores. 
IEEE Trans. Parallel Distributed Systems 28, 1 (2017), 
141–155.

4. Attiya, H. and Welch, J. Distributed Computing: 
Fundamentals, Simulations and Advanced Topics, (2nd 
Edition), Wiley, 2004.

5. Ben-Or, M. Another advantage of free choice: 
completely asynchronous agreement protocols. 
In Proc. 2nd ACM Symp. on Principles of Distributed 
Computing, (1983), 27–30.

6. Brinch, H.P. (Ed.). The Origin of Concurrent Programming. 
Springer, (2002).

7. Cachin, C. State machine replication with Byzantine 
faults. Replication. Springer LNCS 5959, (2011), 169–184.

8. Chandra, T.D., Hadzilacos, V., and Toueg, S. The 
weakest failure detector for solving consensus. JACM 
43, 4 (1996), 685–722.

9. Calciu, I., Sen, S., Balakrishnan, M., and Aguilera, M. 
How to implement any concurrent data structure for 
modern servers. ACM Operating Systems Rev. 51, 1 
(2017), 24–32.

10. Castañeda, A., Rajsbaum, S., and Raynal, M. Unifying 
concurrent objects and distributed tasks: Interval-
linearizability. JACM 65, 6 (2018), Article 45.

11. Dijkstra, E.W. Solution of a problem in concurrent 

programming control. Comm. ACM 8, 8 (Sept. 1965), 569.
12. Dijkstra, E.W. Cooperating sequential processes. 

Programming Languages. Academic Press, 1968, 43–112.
13. Dijkstra, E.W. Hierarchical ordering of sequential 

processes. Acta Informatica 1, 1 (1971), 115–138.
14. Dolev, D., Dwork, C., and Stockmeyer, L. On the 

minimal synchronism needed for distributed 
consensus. JACM 34, 1 (1987), 77–97.

15. Fatourou, P. and Kallimanis, N.D. Highly-efficient wait-
free synchronization. Theory of Computing Systems 55 
(2014), 475–520.

16. Fischer, M.J., Lynch, N.A., and Paterson, M.S. 
Impossibility of distributed consensus with one faulty 
process. JACM 32, 2 (1985), 374–382.

17. Gilbert, S. and Lynch, N. Brewer’s conjecture and the 
feasibility of consistent, available, partition-tolerant 
web services. SIGACT News 33, 2 (2002), 51–59.

18. Hadzilacos, V. and Toueg, S. A modular approach to 
fault-tolerant broadcasts and related problems. TR 
94-1425. Cornell Univ. (1994)

19. Herlihy, M.P. Wait-free synchronization. ACM Trans. on 
Prog. Languages and Systems 13, 1 (1991), 124–149.

20. Herlihy, M.P. and Moss, J.E.B. Transactional memory: 
Architectural support for lock-free data structures. 
In Proc. 20th ACM Int’l Symp. Computer Architecture. 
ACM Press, 1993, 289–300.

21. Herlihy, M. and Shavit, N. The Art of Multiprocessor 
Programming. Morgan Kaufmann, ISBN 978-0-12-
370591-4 (2008).

22. Herlihy, M.P. and Wing, J.M. Linearizability: A 
correctness condition for concurrent objects. ACM 
Trans. Programming Languages and Systems 12, 2 
(1990), 463–492.

23. Lamport, L. A new solution of Dijkstra’s concurrent 
programming problem. Commun. ACM 17, 8 (1974), 
453–455.

24. Lamport, L. Concurrent reading and writing. Commun. 
ACM 20, 11 (Nov. 1977), 806–811.

25. Lamport, L. Time, clocks, and the ordering of events 
in a distributed system. Commun. ACM 21, 7 (Sept. 
1978), 558–565.

26. Lamport, L. On interprocess communication, Part I: Basic 
formalism. Distributed Computing 1, 2 (1986), 77–85.

27. Lamport, L. A fast mutual exclusion algorithm. ACM 
Trans. Computer Systems 5, 1 (1987), 1–11.

28. Lamport, L. The part-time parliament. ACM Trans. 
Computer Systems 16, 2 (1998), 133–169.

29. Mostéfaoui, Rajsbaum, S. and Raynal, M. Conditions on 
input vectors for concensus solvability in asynchronous 
distributed systems. JACM 50, 6 (2003, 922–954.

30. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash 
system. Unpublished manuscript (2008).

31. Pease, M., Shostak, R. and Lamport, L. Reaching 
agreement in the presence of faults. JACM 27 (1980), 
228–234.

32. Peterson, G.L. Myths about the mutual exclusion 
problem. Information Processing Letters 12, 3 (1981), 
115–116.

33. Peterson, G.L. Concurrent reading while writing. 
ACM Trans. on Prog. Languages and Systems (1983), 
5:46-5:55.

34. Rabin, M. Randomized Byzantine generals. Proc. 24th 
IEEE Symp. Foundations of Computer Science. IEEE 
Computer Society Press, 1983, 116–124.

35. Raynal, M. Concurrent Programming: Algorithms, 
Principles and Foundations. Springer, 2013, ISBN 978-
3-642-32026-2.

36. Raynal, M. Distributed Algorithms for Message-Passing 
Systems. Springer, 2013, ISBN 978-3-642-38122-5.

37. Raynal, M. Fault-Tolerant Message-Passing Distributed 
Systems: An Algorithmic Approach. Springer, 2018, 
ISBN 978-3-319-94140-0.

38. Stearns, R.C., Lewis, P.M. and Rosenkrantz, D.J. 
Concurrency control for database systems. In Proc. 
16th Conf. Found. Comp. Sci., (1976), 19–32.

39. Schneider, F.B. Implementing fault-tolerant services 
using the state machine approach. ACM Computing 
Surveys 22, 4 (1990), 299–319.

40. Shavit, N. and Touitou, D. Software transactional 
memory. Distributed Computing 10, 2 (1997), 99–116.

Sergio Rajsbaum (rajsbaum@im.unam.mx) is a professor 
at the Instituto de Matematicas at the Universidad 
Nacional Autónoma de Mexico inn Mexico City, México.

Michel Raynal (raynal@irisa.fr) is a professor at IRISA, 
University of Rennes, France, and Polytechnic University in 
Hong Kong.

© 2020 ACM 0001-0782/20/1


